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Problems 1 and 2 are independent. The solution can be written either in French or English.
Documents (handwritten or typed courses and exercises notes, together with books related to the
course) are allowed.

Recall that this exam is based on Lectures 1 to 5 (Tuesday Sept. 10 to Tuesday Oct. 1, 2024),
and that its only purpose is to validate ENSTA Course SOD312. (Another exam will be proposed
later to Master students.)

1 Problem 1

A concert will hold tonight in a concert hall on top of a private underground parking garage.
There is no difficulty to find a place in the parking, the cost of which is fixed for the night to P
(in euros). There is a one-way avenue which leads straight to the concert hall, on which there are
N parallel parking places, numbered from 0 to N − 1, the place number N − 1 beeing the closest
from the parking, and the place number 0 being the farthest from the parking.

For n = 0, . . . , N − 1, let Xn be a random variable equal to 0 if the parking place number n in
the avenue is not free, and equal to some measure of the difficulty to park in the parking space of
place number n otherwise, which will be an integer between 1 and x̄. Xn will be called the state
of place n. We assume that the random variables X0, . . . , XN−1 are independent with same law on
the space E := {0, . . . , x̄}, and we denote by q this law. We also associate a cost to park in Place
number n ≤ N − 1 equal to N − n + Xn (this is the time to park and to walk “converted” in
euros). By convention, the underground parking garage corresponds to place number N , and we
set XN = 1 and assume that the fixed price P for the underground parking is > 2.

The attendee know the state Xn of place n only after having drived by the place number n.
When an attendee is arriving in the avenue, he is trying to find a free parking place the closest to
the concert hall and if he does not find such a place, he parks his car in the underground parking
garage.

Q 1.1. Consider first an attendee who is taking the first free parking place. For each n ∈ {0, . . . , N},
and x ∈ E , denote by wn(x) the expected cost of parking for this attendee when he is in front of
Place number n and this place has state x. Write this cost in the form

wn(x) = E [rτ (Xτ ) | Xn = x]
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for some stopping time τ ∈ {n, . . . , N}. Precise to which filtration the stopping time is adapted
and give the expression of the functions rn : E → R ∪ {+∞}, for n ∈ {0, . . . , N}.

Q 1.2. Determine a recurrence equation allowing to compute the functions wn of Q. 1.1.

Q 1.3. Assume now that the attendee is trying to find a free parking place in such a way he is
minimizing his expected cost. Show that this problem can be written as :

min
τ

E [rτ (Xτ )]

where the minimization is done under all stopping times ≤ N , with the same functions rn as before.

Q 1.4. Define auxiliary value functions vn : E → R ∪ {+∞} allowing to compute the value of the
problem of Q. 1.3 and show that they satisfy, for n ≤ N − 1 :

vn(0) =

{∑x̄
i=0 qivn+1(i) if n+ 1 6= N

P if n+ 1 = N
(1)

vn(x) = min(N − n+ x, vn(0)) for x ∈ E \ {0} . (2)

Q 1.5. Show that vn(0) is a nondecreasing sequence.

Q 1.6. For all x ∈ E \ {0}, let

n∗x = inf{n ∈ {0, . . . , N} | N − n+ x ≤ vn(0)} .

Show n∗x is nondecreasing with respect to x and that one cannot have N−n+x > vn(0) for n ≥ n∗x.

Q 1.7. Describe the optimal stopping time τ∗ as a function of the numbers n∗x, x ∈ E \ {0}.

2 Problem 2

We consider a MDP on a state space E ′ = E ∪ δ, where E = {1, · · · , n} and δ is a cemetery
point (when the state equals δ at some time, it stays in δ for all following times). We assume
that the action space C is independent of the state, and is a compact metric space (for instance a

compact subset of some Rp). We denote by M
(u)
xy the transition probability of the MDP : M

(u)
xy =

P (Xn+1 = y | Xn = x, Un = u), for x, y ∈ E ′ and u ∈ C, and assume that it is continuous with
respect to u ∈ C. We consider a nonnegative cost function c : E ′ × C → R+, such that c(x, u) = 0
for x = δ, and c(x, u) = exp(γg(x, u)), where g : E × C → R is continuous with respect to u ∈ C.

The following study is related to the problem of minimization of the possibly “positively dis-
counted” total cost :

Jπ(x) = E

[ ∞∑
n=0

n∏
k=0

c(Xk, Uk) | X0 = x

]
= E

[
τ∑

n=0

n∏
k=0

c(Xk, Uk) | X0 = x

]
,

among all feedback strategies π = (πk)k≥0 with πk : E ′ → C and Uk = πk(Xk), where τ is the first
arrival time of the state at point δ. Note that since c is nonnegative, this expectation exists, while
it may be infinite.
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We shall restrict strategies to E and denote by Π0 the set of all policies π : E → C. For π ∈ Π0,

we denote by M(π) the n× n matrix with entry (x, y) equal to M
(π(x))
xy and we set :

D(π) := diag (c(1, π(1)), · · · , c(n, π(n))) , A(π) = D(π)M(π) ∈ Rn×n, c(π) = D(π)1 ∈ Rn ,

where 1 is the vector of Rn with all entries equal to 1.
For all functions v : E 7→ R identified to a vector of Rn, we define the operators :

L(π)(v) = A(π)v + c(π) and L(v) = inf
π∈π
L(π)(v) .

We say that a strategy π = (πk)k≥0 is γ-admissible if the following limit exists and is equal to
zero :

lim
t7→∞

[A(π0)A(π1) · · ·A(πt)]x,y = 0 for (x, y) ∈ E2 .

For a stationary strategy equal to π ∈ π, this is equivalent to the condition ρ(A(π)) < 1 where
ρ(A) denotes the spectral radius of the matrix A.

We shall admit the following (Collatz-Wielandt) property : if A ∈ Rn×n has nonnegative entries,
then

ρ(A) < 1⇔ ∃λ ∈ [0, 1), w ∈ Rn, s.t. wi > 0, i = 1, . . . , n, and Aw ≤ λw .

Q 2.1. Let A ∈ Rn×n be such that ρ(A) < 1. Show that there exists a vectorial norm such that A
is strictly contracting with respect to this norm.

Q 2.2. Show that for all v ∈ Rn, there exist a policy π] ∈ π depending on v such that Lπ]
(v) = L(v).

Q 2.3. We shall say that a strategy is proper if the following limit exists and is equal to zero :

lim
t7→∞

[M(π0)M(π1) · · ·M(πt)]x,y = 0 for all (x, y) ∈ E2 .

Show that if a stationary strategy is proper then it is also a stationary γ-admissible strategy for γ
small enough.

Q 2.4. Show that the operator L is order preserving (v ≤ w implies L(v) ≤ L(w)).

Q 2.5. Show that for all v ∈ Rn and λ > 0, we have :

L(v + λe) ≤ L(v) + cλe ,

where the constant c is an upper bound of c.

Q 2.6. Deduce that L is Lipschitz continuous for the sup-norm ‖v‖ = maxi |vi|. Show that the
same holds for the operators L(π) with π ∈ π.

Q 2.7. Let π be a stationary γ-admissible strategy. Show that L(π) has a unique fixed point v(π).
How v(π) can be computed ?

Q 2.8. Show that v(π) > 0 (that is v
(π)
i > 0, for all i = 1, . . . , n).

Q 2.9. Let π ∈ Π0 be such that there exists v ∈ Rn, v > 0 satisfying L(π)(v) ≤ v. Show that π is a
stationary γ-admissible strategy (one can show that there exists λ ∈ [0, 1) such that A(π)v ≤ λv ).
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Q 2.10. Show that L has at most one fixed point v in the set of vectors such that v > 0.

Q 2.11. Denote by πk ∈ Π0 the sequence of policies obtained in the policy iteration algorithm
applied to the equation of L(v) = v, starting with a stationary γ-admissible strategy π0 ∈ Π0.
Show that the πk is γ-admissible for all k ≥ 0, and deduce that the algorithm is well posed.

Q 2.12. Deduce that the sequence v(πk) of fixed points of L(πk) is nonincreasing, and that the limit
is a fixed point of L.
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