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Problems 1, 2 and 3 are independent. The solution can be written either in French or English.
Documents (handwritten or typed courses and exercises notes, together with books related to the
course) are allowed.

Recall that this exam is based on all Lectures (Tuesday Sept. 12 to Wednesday Nov. 8, 2023),
and that its purpose is to validate the master course. For master students who are also ENSTA
students, it can be used to validate ENSTA Course SOD312 (possibly with more ECTS).

1 Problem 1

A manufacturer is producing a product which uses a raw material with high volatility (random
variation of price), so, in order to avoid big variations of its profit, he is managing this raw material
by bying some amount of it in advance at a lower price or for selling it later at a higher price.
We shall denote by φ(p) the every-day profit of production of the product by the firm when the
price of the raw material is equal to p. We assume that the price at time (day) n ∈ N of the raw
material is equal to Pn and that (Pn)n∈N is a sequence of independent random variables with values
in some finite set P and with the same law which is known by the firm. Each time (day) n ∈ N,
the manufacturer can choose to bye a certain amount Un ∈ Z of the raw material, independent of
its current needs, where Un < 0 means that he is indeed selling the amount −Un. This induces a
cost PnUn. The amount Un need however to satisfy the constraint that the total amount Xn of raw
material which is not needed currently, and is thus put in stock, is between 0 and x̄.

Q 1.1. The manufacturer wants to maximize the total expected return during N days. Write this
problem as a Markov decision process with state space P × X , with X = {0, . . . , x̄}, action space
Z, and finite horizon N , and precise the dynamics and criterion.

Q 1.2. Write the dynamic programming equation allowing one to compute the value function of
this problem and explain how optimal strategies of the manufacturer can be obtained.

Q 1.3. The manufacturer wants now to maximize its expected amount of profit by time unit in the
long run. Write this problem as a MDP with mean-payoff (long run time-average payoff) criterion.

1



Q 1.4. Relate the value of the above problem with the existence of a solution (ρ, v) to the equation :

ρ+ v(p, x) = max
u∈Z, x+u∈X

(φ(p)− pu+ E [v(P1, x+ u)]) , ∀(p, x) ∈ P × X

where ρ is a real scalar.

Q 1.5. Show the existence of a solution to the previous equation.

Q 1.6. Let ρ and v be as above and denote w(x) = E [v(P1, x)] for x ∈ X . Deduce an ergodic
equation for w.

Q 1.7. Solve the equation of w, find ρ as a function of φ and of the law of P1, and find a stationary
optimal policy.

2 Problem 2

Consider a stationary Markov Decision Process with finite state space E , finite control spaces

C be finite sets, and C(x) ⊂ C, for x ∈ E , and transition probability vectors (M
(u)
xy )y∈E , for all

(x, u) ∈ E × C (so that M
(u)
xy ≥ 0 and

∑
y∈EM

(u)
xy = 1). Let r : E × C → R be a reward map, and

consider the map B from RE to itself defined by :

[B(v)](x) = sup
u∈C(x)

r(x, u) +
∑
y∈E

M (u)
xy v(y)

 , (1)

We denote by Π = {π : E → C | π(x) ∈ C(x) ∀ ∈ E} the set of (stationary) policies for the above
Markov decision process, and for each π ∈ Π, we denote by r(π) ∈ RE the vector with entries

r
(π)
x = r(x, π(x)), by M (π) ∈ RE×E the Markov matrix with entries M

(π)
xy = M

(π(x))
xy , and by B(π)

the affine operator :
B(π)(v) = r(π) +M (π)v .

We shall assume that all the Markov matrices M (π) are ergodic meaning that they have a unique
final class. We shall also assume that there exists c ∈ E such that c belongs to the final class of
each M (π).

Given π0 ∈ Π, we construct the sequences πk ∈ Π and vk ∈ RE , for k ≥ 0, respectively of
policies and value functions of the following variant of the policy iteration algorithm for the ergodic
case :

1. ρ(k) and vk satisty ρ(k) + vk = B(πk)(vk) and vk(c) = 0.

2. πk+1 is an optimal policy for vk, meaning that B(vk) = B(πk+1)(vk) that is

πk+1(x) ∈ Argmax
u∈C(x)

r(x, u) +
∑
y∈E

M (u)
xy v

k(y)

 for all x ∈ E ,

such that

πk+1(x) = πk(x) if πk(x) ∈ Argmax
u∈C(x)

r(x, u) +
∑
y∈E

M (u)
xy v

k(y)

 for all x ∈ E .
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Q 2.1. Show that there exists a solution (ρ, v) ∈ R× RE to the following equation

ρ+ v(x) = [B(v)](x) x ∈ E , (2)

and explain why the solution ρ is unique. We shall denote by ρ∗ the unique solution.

In the sequel, ‖ · ‖ denote the sup-norm on RE : ‖v‖ = maxx∈E |v(x)|. For any Markov matrix
M , we denote by M(c) the matrix obtained from M by putting to zero all entries of M that are

in column c (so M(c) is not a Markov matrix). We assume that there exists a vector ϕ ∈ RE with
positive coordinates such that

ϕ ≥ 1 +M
(π)
(c) ϕ ,∀π ∈ Π , (3)

and let K be a bound on its coefficients, K ≥ ‖ϕ‖.

Q 2.2. Let L be the map which associates to any couple (ρ, v) ∈ R × RE such that vc = 0, the
vector w ∈ RE such that w(x) = v(x)ϕ(x)−1 + ρ. Show that L is a (linear) bijection.

Q 2.3. Show that (2) is equivalent to the fixed point equation for w of an operator B̃ on RE ,
B̃(w) = w, and show that B̃ is the Bellman operator of a new MDP on the same state and action
spaces, but with a state dependent discount factor equal to α(x) = 1−1/ϕ(x), and new parameters
that will be precised.

Q 2.4. Show that B̃ is a contracting operator.

Q 2.5. Show that the construction of Q 2.3 can also be applied to the operators B(π). Explain the
relation between the above policy iteration and the policy iteration for the fixed point of B̃.

Q 2.6. Can we deduce a contraction of the error on ρ(k) and vk ?

3 Problem 3

Consider a provider (of electricity or telecommunication networks) with N − 1 different offers
(contracts), and assume that N corresponds to an alternate offer from concurent providers, which
is fixed. Denote E = {1, . . . , N}. The provider has also a finite set C of actions on his offers, for
instance the set of different prices during the day, or the week.

There are many customers, all of the same type and undistinguishable, so the provider only
consider at each time or period t the proportion bn(t) of customers using the offer n, so that
b(t) = (bn(t))n∈E ∈ ∆E , the set of probability vectors over E . His return at each period or time t is
then linear with respect to these proportions :

r(u, b) =
N∑
m=1

Rm(u)bm ,

wher Rm(u) > 0 for m < N and RN (u) = 0, and the provider wishes to maximize his total payoff
on the period of time [0, T ] :

T−1∑
t=0

r(u(t), b(t)) .
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All customers have the same probability to switch from offer n to offer m which depends on the
action u ∈ C of the provider and has the form :

M (u)
nm = βP (u)

m + (1− β)δnm

where δnm = 1 if n = m and 0 otherwise, P (u) is a probability vector on E , and β ∈ (0, 1] is the

probability to switch. Here P
(u)
m can be seen as a measure of the utility of any customer to use offer

m, and β is the probability of switching.
Seeing the proportions of customers in each offer as probabilities, we approximate the dynamics

of the proportions by using the Fokker-Plank equation that is :

bn(t+ 1) =
∑
m∈E

bm(t)M (u(t))
mn .

Q 3.1. Write this problem as a finite horizon problem for a deterministic control problem over the
state space ∆E . One can also consider the finite subsets St obtained by considering only all the
possible values of b(t) when b(0) is fixed and the controls u(s), with s ∈ {0, . . . , T − 1}, are taken
in the action space C.

Q 3.2. Write the dynamic programming equation satisfied by the value function b ∈ ∆E 7→ vk(b),
for k = 0, . . . , T , and explain why it is related to a partially observable Markov Decision Process.
Precise the parameters of the latter.

Q 3.3. Assume now that β = 1. Show that when t ≥ 1, b(t) takes only a finite number of possible
values.

Q 3.4. Under the same assumption that β = 1, we consider the discounted infinite horizon problem
with discount factor 0 ≤ α < 1, which consists in maximizing

∞∑
t=0

αtr(u(t), b(t)) ,

over all possible strategies. Write the corresponding dynamic programming equation. Deduce that
there is a periodic sequence of controls (uk)k≥0 with period K ≤ N , such that for every initial
proportion b(0), there exists an optimal (open-loop) control sequence which coincides with the
periodic sequence (uk)k≥0 after some finite time t ≤ N .
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