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A b s t r a c t  The purpose of this article is to discuss some proper- 
ties of optimal microstructure that are used in the homogenization 
approach for structural optimization problems involving compli- 
ance as the design criterion. The key ingredient for the homoge- 
nization method is to allow for microperforated composite mate- 
rials as admissible designs. Some authors use periodic holes while 
others rely on optimal microstructures such as the so-called rank- 
2 layered materials which achieve optimality in the 2-D Hashin- 
Shtrikman bound. We prove that, in two space dimension, when 
the eigenvalues of the average stress have opposite signs, there is 
no optimal periodic microstructure. We also prove in this case that 
any optimal microstructure is degenerate, like the rank-2 layered 
material, i.e. it cannot sustain a nonaligned shear stress. When 
the eigenvalues of the average stress have the same sign, we exhibit 
higher order layered material that is optimal and not degenerate. 

weighted sum of its compliance and weight. More precisely, 
let s be a bounded domain of ~ 2  submitted to a surfacic 
load f on its boundary and occupied by an isotropic elastic 
material, characterized by a bulk modulus x and a shear mod- 
ulus ~. An admissible structure co is a subset of the reference 
domain (2 obtained by removing some holes. The equations 
of elasticity for the resulting design are 

{ erw = Ae(uw),  e(uw) = 21-(VUw + V u T ) ,  
div ~rw = 0 in co, 
erw.n = f on 0f2, 
O'w.n = 0 on Ow\OQ, 

(1) 

where uw is the displacement vector, e(uw) is the strain ten- 
sor, and o-w is the stress tensor. The compliance of the struc- 
ture is defined by 

1 I n t r o d u c t i o n  

Solving structural optimization problems by the homoge- 
nization method, amounts to find extremal microstructures 
which maximize the rigidity of a structure or equivalently 
which minimize its compliance (the work done by the load 
the structure is submitted to). These microstructures are 
called extremal in the sense that  they achieve optimality in 
the well-known Hashin-Shtrikman bounds on the effective 
properties of composite materials. For more details on the 
homogenization method in structural design, we refer to A1- 
laire et al. (1997), Allaire and Kohn (1-993b), Bendsee (1995), 
Bendsee and Kikuchi (1988), Gibianski and Cherkaev (1997), 
Jog et al. (1994), Kohn and Strang (1986), Murat and Tar- 
tar (1997), and references therein. There are several exam- 
ples of optimal microstructures in the literature. Mainly, 
they are the sequential laminates (see e.g. Francfort and 
Murat 1986), the concentric sphere assemblages of IIashin 
(1963), the confocal ellipsoid assemblages of Tartar [Tartar 
(1985), and Grabovsky and Kohn (1995a) in the elasticity 
setting], the Vigdergauz periodic constructions (Vigdergauz 
1994; Grabovsky and Kohn 1995b). 

Before discussing the properties of these extremal mi- 
crostructures, we introduce the shape optimization problem 
considered in this paper. We restrict ourselves to plane prob- 
lems, corresponding to the generalized shape optimization 
problem for perforated plates in plane stress [according to 
the terminology of Rozvany et al. (1995)]. We seek the op- 
timal shape of a linearly elastic structure that  minimizes a 

c(co) = /f.uw=/Ae(uw).e(uw) =/A-lerw' O'c~ �9 
0s w w 

Our structural optimization problem is to minimize, over all 
subsets w C ~2, the objective function E(co) equal to the 
weighted sum of the compliance and weight of co 

E(co) = c(co) +  lcol �9 

It can be written as 

min E(w). 
wCY2 

Since this problem is known to generically have no solu- 
tion [cf. the counter-examples of Murat (1977) and the nu- 
merical evidence of Cheng and Olhoff (i981)], we shall work 
with its relaxation. This means that  we must enlarge the 
space of admissible designs by permitting perforated compos- 
ites as solutions. Such composite structures are determined 
by two functions 0(x) and A*(x):  0 is the local volume frac- 
tion of the original material, taking values between 0 and 1, 
and A* is the effective Hooke's law determined by the mi- 
crostructure of perforations. 

The relaxation formulation of (1) is given by 

{ o" ---- A*e(u)  in ~2, 
div o* = 0 in S2, 
o ' . n  = f on 0(2. 

(2) 
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The compliance is now 

-d(O,A*)= f f . u=  f A * - l , , . ~ ,  
Of 2 f2 

and the objective function rewrites 

/ E(o, A*) = A*) + a O. 

f~ 

For a given value 0 of the density, they are many different ef- 
fective Itooke's law A* in a set GO, the so-called G-closure set 
at volume fraction 0, which is the set of all possible homoge- 
nized Hooke's law with density 0. The relaxed optimization 
problem is thus 

min E(0, A*) .  
0<0<I, A*EG O 

The main advantages of this relaxed problem are the ex- 
istence of minimizers and the efficient numerical algorithms 
available for computing them. For more details on the the- 
oretical aspects of this relaxation procedure we refer to A1- 
laire et al. (1997), Allaire and Kohn (1993b), Bendsce (1995), 
Gibianski and Cherkaev (1997), Kohn and Strang (1986) and 
Murat and Tartar (1997), and for the numerical aspects to 
Allaire et al. (1997), Bendsr and Kikuchi (1988), and Jog et 
al. (1994). 

Although the set G o is unknown, it is possible to com- 
pute the minimum over G o of the complementary energy 
A*- l~ r  . o'. The minimum value is called a Hashin-Shtrikman 
bound, and the homogenized Hooke's laws A* that  achieve 
this minimum correspond to so-called optimal microstruc- 
tures. Such a computation is recalled in Section 2. An opti- 
mal microstructure can always be found in the class of rank- 
2 sequential laminates aligned with the principal directions 
of the stress ~ (its eigenvectors). However, rank-2 sequen- 
tial laminates have the inconvenience of having a degenerate 
Hooke's law: in the basis of the principal stress directions, 

, its rigidly tensor has a zero component, A1212 = 0. In other 
words, this rank-2 sequential laminate cannot sustain a shear 
stress not aligned with o'. Although this does not mean that  
this structure is unstable for any load condition, it is gener- 
ically impossible to solve the corresponding elasticity equa- 
tions. This fact yields some difficulties in the numerical algo- 
rithm used by Allaire et al. (1997) (see also Bendsce 1995), 
since it is based on iteratively solving elasticity problems for 
the previous optimal mierostructures. Such a difficulty is pe- 
culiar to the 2-D case because the optimal rank-3 sequential 
laminates in 3-D do not suffer from this degeneracy property. 

The aim of this note is to prove that,  in two-dimensional 
space, when the average stress ~ is such that  det o" _< 0, any 
optimal microstructure is degenerate. On the other hand, 
when det o" > 0, we exhibit a higher order sequential laminate 
which is both optimal and nondegenerate. In other words, 
the numerical problem of dealing with nondefinite Hooke's 
law cannot be alleviated if det ~r _< 0, while a simple rem- 
edy is available if deter > 0. Other extremal microstructures 
have been investigated by Grabovsky and Kohn (1995a,b), 
namely the concentric spheres, or confocal ellipsoids, assem- 
blages and Vigdergauz periodic constructions. Note however 

that  they are optimal only in the case det o" > 0 (and their 
Hooke's law is not explicit). Our method relies on a careful 
investigation of the Hashin-Shtrikman bound on the effective 
elastic energy. As such, its application is restricted to the 
compliance optimization problem. We are therefore unable 
to extend our results to so-called nonselfadjoint problems for 
which the objective function is not the compliance. 

With this goal in view, we first prove that, if det o- < 
0, there is no periodic microstructure which is optimal [this 
is consistent with recent results by Cherkaev et al. (1998)]. 
Then, in the same case, we show that the microgeometry 
of a nonperiodic optimal microstructure must have an H- 
measure with the same support as that  of the optimal rank-2 
sequential laminate (the H-measure is a kind of two-point 
correlation function, see the proof of Theorem 2 for a precise 
definition). This implies that  any optimal composite cannot 
sustain a nonaligned shear stress when det ~ < 0. Finally, 
we show that,  when det ~r > 0, there exists a rank-4 laminate 
that  is optimal and nondegenerate. 

2 H a s h i n - S h t r i k m a n  lower  b o u n d  for  c o m p l e m e n -  
t a r y  e n e r g y  

In this section we recall classical results about Hashin- 
Shtrikman bounds on the effective energy of a two-phase 
composite material. In the next sections we shall use several 
technical points introduced here. We follow the exposition of 
Allaire and Kohn (1993a,b), and Kohn (1991) (see also the 
references therein). 

Let us introduce some notations before proceeding. Let S 
be the space of all 2 x 2 symmetric second-order tensors. The 
inner products in ~ 2  and in S are represented by a dot. We 
denote by | the tensor product and by | the symmetrized 
tensor product defined by 

1 
a |  ~ ( a | 1 7 4  b E ~ 2 .  

Let G o be the set of all effective Hooke's law correspond- 
ing to a microperforated composite obtained by mixing the 
original material A with void in proportions 0 and 1 - 0, 
respectively. Since homogenization is a local process, i.e. at 
each point x the value of 0(x) and A*(x)  do not depend on 
what happens elsewhere, we restrict our attention to con- 
stant values of the density and of the homogenized Hooke's 
law (of course, in the shape optimization process, these val- 
ues may vary from point to point). In truth, homogenization 
can be made rigorous only for mixtures of two nondegener- 
ate materials. Therefore, we fill the holes and replace void 
by a very compliant material B. We prove all our results 
for such two-phase composites, and in the end let B go to 0 
to mimick holes. We shall not justify further this approach 
and refer to Allaire et al. (1997) for a thorough discussion of 
this matter. We first recall, without proof, a classical result 
of the homogenization theory (due to Dal Maso and Kohn) 
which claims that  there is no loss of generality in consider- 
ing only composites obtained by homogenization of periodic 
microstructures. 



88 

Propos i t ion  I Let PO be the set of all periodic composites 
defined, forO < 0 < 1, by A* E PO if and only if there exists 
a periodic characteristic function X(y) such that 

f X(y) dy = 0, (3) 
Y 

and, for any stress ~r G S, A* is defined by the following 
quadratic form: 

--/4,*-1o" �9 o" ---- 

inf 
diwl=O 

[(1 - + X(y))B -1 

Y 
fy  ,,(y) dy=O 

X(y)A -1] (a + 7/(y)) - (or + T/(y)) dy .  (4) 

Then, G O is the closure of PO in the space of fourth-order 
symmetric tensors. 

In the limit when B goes to 0, definition (4) of the homog- 
enized tensor A* implies that the stress o '+rl(y) must vanish 
in the holes. Before giving the ttashin-Shtrikman bound, we 
introduce the class of sequential laminate composites with 
their explicit formula (5) (see Francfort and Murat 1986). 

Defini t ion 1 A rank-p sequential laminate of material A 
and void in proportions 0 and 1 - O, respectively, with unit 
lamination directions (ei)l<_i<_ p and lamination parameters 

(mi)l<i< p satisfying 0 <_ m i <_ 1 and P ~-'~i=l mi = 1, is de- 
fined by its Hooke's law A L 

p 

(1 - 0 ) ( A L  1 - A - l )  -1  = 0 E m i f A ( e i ) '  (5) 
i=1 

where fA(e) is a positive nondefinite fourth-order tensor de- 
fined, for any symmetric tensor ~, by 

fA(e) (  = A(  - 4# [((e) | e - ( (e .e)e | e ] -  

1 
- -  [(x - #)tr(()  + 2#(~e.e)] [(~ + p)I 2 + 2ue Ge] . (6) 
n + #  

The set of all sequential laminates of rank p, denoted by LPo , 
is a subset of G 0. 

We obtain an optimal bound for the complementary en- 
ergy evaluated at the stress tr by using the well-known 
Hashin-Shtrikman variational principle. 

P ropos i t ion  2 For 0 < 0 < 1, any A* in G O satisfies 

A * - l o  ". tr _> H S ( ~ ) ,  

where HS(er) is the so-called Hashin-Shtrikman bound de- 
fined by 

HS( t r )=  A- l e r - c r  + ( 1 - O ) m a x { 2 t r . ~ ' - O g ( ' r ) }  (7) 
~CS 

with g(v) = max[k[= 1 G0- , k) and 

c ( . ,  k) = ( i . i  2 _ 21 .kl2  + (Tk.k)2). 

Furthermore, denoting by (rl, (r 2 the eigenvalues of o', and 
by n l , n  2 the corresponding unit eigenvectors, the maximum 
in (7) is achieved by 

1- ~ + # / , g  ,+ [c r2 l ) (n l |  I n 2 |  i f de t t r<O,  = 4n#O ~,1 11 -- _ 

X + # , ,  
r = 4---~0 tidal + IO'21)12 if det~ > O, 

and, this bound is attained by a rank-2 laminate. 

Proof." Since the set PO of periodic composites is dense in 
the set G o of all possible composites, we establish the lower 
bound for A* E PO" We first fill the holes with a weak mate- 
rial B that will tend to 0 in the end. Denoting by Y = [0, 1] 2 
the periodic cell, and using a dual variational formulation 
(i.e. complementary energy), the Hooke's law A* of a peri- 
odic composite is defined by the following formula: 

A * - l t r  .er = inf J / [ ( 1 -  X(y))B -1 + 
divn=0 

Y f,,(y) dy=0 
Y 

X(y)A -1 ] (or + r/(y)).(o" + ~/(y)) dy ,  

where X(y) is the characteristic function of that part of Y 
occupied by material A. The volume fraction of material A 
is then 

0 = /  X(y) dy.  

Y 

Step  1. We begin by adding and subtracting a reference en- 
ergy 

A * - l t r .  tr = divninf=0 [ / ( 1  - X(y))(B -1 - 

f,,(y) dy=0 
Y 

A-1) (o  " + ~?(y)).(o" -I- r/(y))) dy+ 

A - l ( o  -t- ~/(y)).(er + ~/(y)) dy] . 

Y 

Using the p ositivity of (B-1  _ A-1)  and convex 
duality, the first integral on the right-hand side is 
rewritten 

sup [ ( 1  - X(y))(2(o" + T/(y)). T ( y ) -  
r(y) ~. 

(B -1 - A - 1 ) - I t ( y ) .  ~-(y))dy (s)  



S t e p  2. 

S t e p  3. 

min 
divn=0 

f n(Y) dy=0 
Y 

A lower bound is obtained in (8) by setting r ( y )  = 
r independent of y. This yields 

2(1 - O ) ~ . r  -- (1 -- 0)(B - 1  - A - 1 ) - l r  �9 r +  

2 ( 1 -  X ( y ) ) r / ( y ) . r d y ,  (9) 

Y 

where 0 = f X(y)  dy. After some algebra, we have 
Y 

A * - I ~ . ~  _> A - l ~ r . ~ -  (1 - 0 ) (B  - 1 -  

A - 1 ) - l r  . r  + 2(1 - 0)~ �9 r +  

[--2 X(y)r /(y)  �9 r + 

Y 

A - l r / ( y )  �9 r/(y) dy] 

By taking the limit B --+ 0, we have 

A * - l ~ r  �9 ~r _> A - l o  - �9 tr + 2(1 - 0)tr . r +  

min / [ - - 2  X(y)~/(y) . ~r + 
divn=0 

Y 
f n(Y) dy=0 
Y 

A - l r / ( y ) .  r/(y) dy] . 

The last minimum with respect to 71 is called the 
nonlocal term. It can be computed by Fourier anal- 
ysis. Denoting by X(k) the Fourier component at 
the frequency k of the characteristic function X, 
i.e. 

X(y) = E ~'X(k)e2iTrk'Y' 

kCZ N 

this last integral is exactly equal to 

- ~ I X ( k ) I 2 G ( r , k ) ,  (10) 
kr  

where 

4 ~ #  ( G ( r , k ) -  s  I r l 2 - 2 1 r k l 2  + ( r k ' k ) 2 ~  
Ik[ 2 [kl 4 ] 

Remarking that  

I~(k) l  2 = 0(1 - o),  (11) 
kr 

S t e p  4. 
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the quantity (10) is bounded from below by 

- ~ I • ( k ) 1 2 G ( r , k )  _> - 0 ( 1  - O)g(r), 
kr 

(12) 

where g(r) = maxlkl= 1 G(T, k). Varying r among 
all constant symmetric  matrices gives the desired 
lower bound 

A * - I ~  - ~ > A - I ~  - G +  

(1 - 0) sup { 2 . . ~  - @(~)}. 
rES 

To evaluate g( r ) ,  we maximize G( r ,  k) on the 
unit sphere. Decomposing the vector k on the eigen- 
basis of the symmetr ic  matr ix  r ,  an easy computa- 
tion yields 

g ( r ) =  4~#  max(r12,r2) ,  

where r I and r 2 are the two eigenvalues of r .  Of 
course, the corresponding optimal k 's  are eigenvec- 
tors of r associated with the eigenvalue of largest 
absolute value. 

To prove the at tainabil i ty of the bound (7), for each 
stress ~r, we exhibit a rank-2 sequential laminate 
with Hooke's law A L such that  A71~r.~r HS(o-). 
As is well-known, the optimality condition with 
respect to -r in the definition of HS(o') delivers 
the lamination parameters  of the optimal sequential 
laminate.  Since g ( r )  depends only on the eigenval- 
ues of r ,  the optimal  v in 

m a x { 2 ~  �9 ~ - @(~)} 
rES 

(13) 

must be simultaneously diagonal with tr because 
this is so for the inner product  ~r . r .  For a l ,  r r 0, 
the optimal  choice is easily seen to be r I = sgn (cr 1)t 
and r 2 = sgn (~r2)t with 

n + # , ,  
t = ~._--~..~ Ur + 1~2l). : tn#~ 

(14) 

Recall tha t  the fourth-order tensor fA(e)  defined 
by (6) is such that  

f A ( e ) -  - = a ( . , e ) .  

Therefore, the optimal r is easily seen to satisfy 

2 

i= l  
(15) 

where n l ,  n 2 are the unit eigenvectors of tr, associ- 
ated to the eigenvalues ~1, c~2, and 

1~21 I~1[ 
rnl -- I~l l  + r~21' rn2 -- IGI[ + IG21. (16)  
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In other words, recalling (5), there exists a rank- 
2 sequential laminate  A L such tha t  

Since, for the opt imal  v, we have 

H (er) = A - l o - . e r  + ( i  - o)er . 

this proves tha t  HS(o ' )  = A L l e r  �9 o-. When one of 
the eigenvalues of ~ is zero, say cr 2 = 0, an opt imal  

v is only constrained by T 1 = ~4atB or1 and 1721 _< 

Ivl [. In this case, m 1 is zero and the opt imal  rank- 
2 sequential laminate  is t ruly a rank-1 sequential 
laminate.  

R e m a r k  1 When deter < O, the optimal T in (13) is 

( t 0 ) and i thas twod i s t i nc t e igenva lues .  I n th i s  "r = 0 - t  ' 

case, k maximizes G(r ,  k) i f  and only if  it is one of the two 
eigenvectors of er. As we shall see in the next section, this 
fact implies more or less that there is no other optimal mi- 
crostructure apart from the rank-2 sequential laminate. When 
deter > O, the optimal-r in (13) is-r = t I  2. Then, G ( ' r , k )  is 
constant and every k is a maximizer. In the next section, we 
will check that this freedom of choice for  the vector k allows 
several other microstruetures to be optimal. Finally, when 
deter = 0 (and er 7 ~ 0), the optimal v is not unique but it 
can be chosen to be proportional to er. Then, k maximizes 
G ( r , k )  i f  and only if  it is an eigenvector of er for its unique 
nonzero eigenvalue. 

3 M a i n  r e s u l t s  

We can now state the new results of this article. 

T h e o r e m  1 Let A* be the Hooke's law in G o of an optimal 
microstructure for the Hashin-Shtrikman lower bound (7), 
i.e. 

A * - l e r  �9 er = H S(er) . 

I f  deter < O, then A* ~ t90, i.e. an optimal microstructure 
cannot be obtained by periodic homogenization. I f  deter = O, 
then A* E t90 if  and only if  it is a rank-I sequential laminate. 

R e m a r k  2 As a rank-2 laminate is not a periodic mi- 
crostructure, the previous theorem does not contradict Propo- 
sition 2 which claims that the Hashin-Shtrikman bound is al- 
ways achieved by a rank-2 laminate. Indeed, such a structure 
is defined as two successive simple laminations occurring at 
well separated lengthscales. It is therefore not periodic since 
periodic microstruclures have a single lengthscale. 

The fact that the only optimal composite, when ~ is uni- 
axial in 2-D (which is equivalent to deter -- 0), is a rank-1 se- 
quential laminate is already well-known (see Ball and James 
1987). 

T h e o r e m  2 Let A* be the Hooke's law in G 0 of an optimal 
microstrueture for the Hashin-Shtrikman lower bound (7), 
i.e. 

A * - l e r  �9 o" -- HS(o ' )  . 

I f  deter <_ O, then, A* is degenerate, as the rank-2 sequential 
laminate, in the sense that, in the eigenbasis of ~, it satisfies 

( A  * - 1 )  = + o o ,  
1212 

i.e. it cannot sustain a nonaligned shear stress. 

R e m a r k  3 Actually, the proof of Theorem 2 amounts to 
show that the H-measure of the optimal A* [see Tartar 
(1990) and (19) for a precise definition] has the same sup- 
port as that of the optimal rank-2 sequential laminate when 
deter < O. In particular it implies that, i f  deter < O, there is 
no other optimal sequential laminate apart from the rank-2 
one exhibited in the previous section, and if  deter -- O, the 
only optimal microstructure is a rank-1 laminate. On the 
contrary, i f  deter > O, the next result states that there are 
other optimal sequential laminates which can even be nonde- 
generate. 

R e m a r k  4 In a recent paper, Cherkaev et al. (1998) found 
the optimal shape of a simply connected hole in an infi= 
nite elastic plane submitted to a shear stress at infinity (i.e. 
deter < 0). This problem is equivalent, in the low volume 
limit (for the hole), to that of finding the optimal periodic 
microstructure under the restriction that the hole is simply 
connected (which is not the case for the rank-two laminate). 
Of course, the homogenized properties of such a perforated 
microstructure is not degenerate. However, they remarked 
[see Section 1.2 in the paper by Cherkaev el al. (1998)] that 
the energy of their microstruclure is significantly higher than 
that of the rank-two laminate, which is consistent with our 
Theorem 2. 

P r o p o s i t i o n  3 Assume that deter > O. Denoting by 0-1,o- 2 
the eigenvalues of ~, and by n l ,  n 2 the corresponding unit 
eigenvectors, there exists a nondegenerate rank- 4 laminate, 
achieving optimality in the Hashin-Shtrikman bound (7), 
which is defined by the lamination directions 

n l  + n 2  n l  - -  n 2 

e l = n 1 ,  e2----n2, e3-lnl+n2 l, e4-lnl_n2l 
and the lamination parameters 

1r 21r  1r 
ml  - -  2(1r lo'21) ' m2 - 2(1r + 1r ' 

m 3 = m 4 = m I , 

where, without loss of generality, we have assumed that I~rl >_ 

1r 
R e m a r k  5 The condition deter > 0 for having optimal 
higher rank sequential laminate is not a surprise. This is pre- 
cisely the assumption used by Grabovsky and Kohn (1995a, b) 
to show that the so-called confocal ellipsoid assemblages of 
Tartar (1995) and the periodic constructions of Vigdergauz 
(1994) are two other types of optimal microstructures for the 
Hashin-Shlrikman bound. Of  course, such composites are not 
optimal when deter < O, and when deter = 0 they all degen- 
erate to the optimal rank-1 sequential laminate. 
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P r o o f  o f  T h e o r e m  1 Let A* be a periodic microstructure 
which achieves optimality in the Hashin-Shtrikman bound, 
i .e.  

A * - l o  " . o" = HS(o ' )  . 

During the proof of Proposition 2, the Hashin-Shtrikman 
bound has been established by making two inequalities in 
(9) (Step 2) and (11) (Step 3). Actually, for an optimal ten- 
sor A* these inequalities must be equalities. We focus on (11) 
which becomes the following equality: 

IX(k)12G( ' r ,k)  = 0(1 - 0) max G(~r,k) (17) 
k#0 " Ikl=l " ' 

where, for I k] --- i ,  

4,~# [i.12_21~_kl 2 (.rk.k)2 ] c(~-, k) - ,~ u ~ + 

When det ~r < 0 the unique optimal -r in (7) (see Proposition 
2) is equal to 

~ + # . .  , 

7- ---- 4~/~0 (l~ + ]~r21)(nl |  -- n2 ~ n 2 ) "  

As -r is not proportional to the identity matrix, C(T, k) is not 
independent of k and, for any k such that  C(~', k) < g(~'), 
the equality (17) shows that  necessarily 

X(k) = 0. 

Because for all directions k that  are not eigenvectors of 
er (there are only two such eigenvectors n 1 and n2) we have 
C(7-, k) < g(~-), we obtain a contradiction: for example, tak- 
ing k parallel to n 1 + n 2 ,  implies that  X(Y) does not depend 
on y �9 (n 1 + n2) , i.e. it is invariant in the n 1 + n 2 direction. 
This would imply that  X is the characteristic function of 
a single lamination of A, which is impossible because it is 
clearly not optimal. 

When det ~r = 0 (say ~r 2 = 0), the optimal "r is not unique 
but it can be chosen equal to t n  1 |  1. From (17) we deduce 
again that X(y) depends only on y . n  1 because ~- is a rank-1 
matrix. This implies that  X(y) is the characteristic function 
of a rank-1 laminate. This proves the theorem. 

P r o o f  o f  T h e o r e m  2 Let A* be a nonperiodic microstruc- 
tare which achieves optimality in the Hashin-Shtrikman 
bound, i.e. 

A*-:lo" . er = gs (o ' ) .  

Since the set P0 of periodic composites is dense in C 0 (see 
Proposition 1), there exists a sequence A* E P0 such that  
A*  converges to A*, in the space of fourth-order tensors. Let 
Xn(y) be the characteristic function associated to A* C P0. 

It satisfies 

Xn(Y) dy = (18) 0. 
~2 

For each characteristic function Xn, or equivalently for 
each composite A*,  we introduce a probability measure gn 
defined on the unit sphere S 1 = {k E ~ 2  I/el = 1} with 

values in ~ ,  that  is called the H-measure (see the work of 
Tartar 1990), given by 

1 ( ) 
#,~(e)- 0(1-0) ~ 1~=(k)125 k 

k6Z, k#0 ~-~ - e , 
(19) 

where 6 is the Dirac mass at the origin. As defined by (19), 
#n is a probability measure because 

/ i ~ (-Xn(k)I 2 = I .  ~ ( e )  > o and ~ . (e )  de - 0 ( i -  O) kr 
$I 

The H-measure #n can be physically interpreted as a kind 
of two-points correlation function for the microstructure. It 
can be used to obtain a more precise bound than the Hashin- 
Shtrikman bound, as follows. 

L e m m a  1 Let A* be a periodic composite in P6" Let #n be 
its H-measure as defined by (19). Then, it satisfies 

A*n-lo "- o" _~ A - l e t  . ~+ 

,1 0 : k'  (k'dk 1 
Ikl=l 

where G(T, k) is defined by Proposition 2. 

The proof of Lemma 1 is similar to that of Proposition 
2 (on the Hashin-Shtrikman bound). The two first steps are 
identical, but in the third one, rather than optimizing over 
k, we keep the exact expression of the nonlocal term. Then, 
by definition of the H-measure #n,  we have 

IXn(k)12G(~',k)=O(1-0) / G(T , k )#n(k ) dk , 

k6Z,k#0 ikl= 1 

which yields the desired result. 
Coming back to the proof of Theorem 2, we apply Lemma 

1, and we pass to the limit, when n goes to infinity. As is well- 
known, from any such sequence #n of probability measure 
(bounded and positive), one can extract a subsequence (still 
denoted by #n) and there exists another probability measure 
#oo such that  #n converges to #oo weakly*. Therefore, for 
this subsequence the limit of Lemma 1 is 

A * - l ~ r  �9 er > A - l e t  �9 ~r+ 

~ES 
$1 

(20) 

where the left-hand side is precisely equal to the Hashin- 
Shtrikman bound HS(o'). On the other hand, the function 
g('r), introduced in Proposition 2, can also be defined in 
terms of H-measures by 

max / G( r ,  e)#(e) de.  (21) 
g(ir) = #(e)>_0, f # (e )de=l  

sl SI 
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Therefore, we deduce a lower bound for (20) 

HS(o ' )  = A * - l e r  �9 o" >_ A - l o  ". o '+  

(1 - 0) sup [2o- �9 r - 0g(r)] = HS(o ' ) ,  

which is truly an equality. This implies that  (20) is also an 
equality and #c~ is optimal in (21). According to the proof of 

Proposition 2, if det ~r < 0, "1- is proportional to 0 - 1  ' 

and any optimal H-measure p in (21) vanishes except when 
e is one of the two eigenvectors of r and o" (which are si 
multaneously diagonal). Finally, we deduce that  any limit 
H-measure Pe~ has the same support identical to that  of the 
H-measure of the optimal rank-2 sequential laminate. 

It remains to check that,  in such a case, the optimal 
gooke's  law A* is also degenerate. In the eigenbasis of a 
defining a nonaligned shear stress 5- by 

1 0 ' 

we apply Lemma 1 at the new stress &. We have 

A*-I&.& _> A-I& .~+ 

( 1 - 0 ) m a x [ 2 ~ . ~ - 0  f G(%k)#n(k)dk 
~ES 

Ikl=l 

and passing to the limit as n goes to infinity 

A * - l &  . & > A -15" �9 5"+ 

(l-0)max[2~.'~-07es / a(§ 
Ikl=l 

Writing ? = ( vl v3 ~,  a simple computation gives 
\ r3 v2 / 

( ) 1 A *-1 > - +  
1212 - # 

[ 4~# ( r  2 ) ]  max 40r 3 - - -  t toe(nl)  + r12#oe(n2) . 
7-1,72,1"3 ~; d- 

Clearly, fixing r l ,  r 2 and letting r 3 go to infinity shows that  
the right-hand side is unbounded, which implies that  A* is 
degenerate for this stress ~. 

P r o o f  o f  P r o p o s i t i o n  3 We are seeking a rank-4 sequential 
laminate composite A~; E L 0 which saturates the Hashin- 
Shtrikman bound 

A~;-lcr �9 o - = HS(o ' )  = A - l ~  �9 cr-t- 

1 - 0 ~ + #  
o ~X~ (1~1[ + 1~21) 2 (22) 

By Definition 1, A 2 satisfies 

[; 1-1 A2- Io - . o -  = A - l e t .  o ' +  2-~ ---~ m i r A ( e l )  er.o-,(23) 

with fA(e i )  defined by (6) and the lamination directions de- 
noted by (ei)i=l ,  4. Denoting by (n l , n2 )  an orthonormal 
basis of eigenvectors of s,, we fix the unit lamination direc- 
tions to be equal to 

n l  + n 2  n l  - -  n 2 
el = n l '  e2 = n 2 '  e 3 - -  x/~ ' e 4 - -  x/r2 

Our goal is to compute the parameters (mi)i=l ,  4 such 
that  (22) holds true. The main task is to invert the (possibly 

4 degenerate) fourth-order tensor }-2i=1 m i f A ( e i ) .  For a unit 
vector v, with components Vl,V 2 such that  Vl 2 + v 2 = 1, and 
a symmetric matrix ~, we have 

& ( v ) .  = 

+ v ,22)[ ; 7 ;  r ]11-  2"lv2r/12 --VlV 2 V 2 

Applying it to each e i and imposing m a = rn 4 gives 

, 

4 
2n# 

E m i S A t e i ) "  -- tc + # 
i=l 

2m2rlll + m3(~11 + r/22) m3~12 ] 
m3~12 2mi~22 -I- m3(r]ll + ~]22) " 

Inverting the relationship 

y i e l d s  

2fair11 -ma( r l l  +r22) n + #  zl 

4n~ r_ka 
m 3  

m3 
2m2v22-rna(rl 1+v22) 

z~ 

where we have set 

A = 2 m l m  2 -t- ma(m 1 -t- rn2). 

This gives explicitly the value of A ~ - l r  for any symmetric 
matrix r 

= A ~ - l r  A - l r  -t- 

We now apply this formula to o', which is diagonal in 
the ( n l , n 2 )  basis, and restrict ourselves to the case where 
det (~r) > 0. Equalizing both sides of (22) leads to 

l~2I - ]Oll 
m 1 = m 2 d- 

1~21 + 1~11 
Together with the constraints m 4 =- m 3 and 2m a = 1 -  (rn 1 q- 
m2) , it characterizes many possible choices of optimal rank-4 
sequential laminate, For simplicity we choose 

~I - 2(I~11 + I~21) ' ~2 = 2(I~al + I~21) ' 

m 3 = m 4 = m 1 �9 
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For this special choice, we cheek that  A ~  is a nondegen- 
erate rank-4 laminate. Introducing m 0 = rn l (m 1 + 3m2) , it 
is given by 

(~ + #) (moo + 3 m 1 ( 1 -  0)) 
( A ~ - I )  1111 = 4~#Omo 

( A ;  - 1 )  = { A * - I ~  = 
1122 \ L J2211 

(# - -  t~)rno0 + (~ + #)ml (0  - -  1) 

4n#m0 

(~ + #)(moo -t- (2m 2 + ml)(1 -- 0)) 

4~#Omo 

2xOm I + (1 -- O)(x + #) 
( A y l )  1212 ---- 4~#rnl 

As m 0 , m  I # 0, all entries of A~  - 1  [and in particular 
[ % 

_ .(A -1)12121 a r e . n i t e ,  i e the  Hooke's law is nondegenerate 

when det ~r > 0. 

4 C o n c l u s i o n s  

In this paper we investigated the optimal microstructures for 
the Hashin-Shtrikman lower bound on complementary energy 
which plays a crucial role in the homogenization method for 
shape and topology optimization. In two space dimension, 
the well-known optimal rank-2 sequential laminate has the 
drawback to have a degenerate Hooke's law since it cannot 
sustain a nonaligned shear stress, and it yields some difficul- 
ties in the numerical algorithms deduced from this approach. 
Here we proved that, for a stress ~r such that d e t ~  < 0, 
any other optimal microstructure is also degenerate. On the 
contrary, if deter > 0, one can replace the rank-2 sequen- 
tial laminate by an optimal rank-4 sequential laminate which 
is not degenerate. Therefore, the aforementioned numerical 
problems can only be partly alleviated. We do not study the 
3-D case, since the optimal rank-3 sequential laminates in 
3-D do not suffer from this degeneracy property. 
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