
DISCRETE AND CONTINUOUS Website: http://AIMsciences.org
DYNAMICAL SYSTEMS–SERIES B
Volume 7, Number 1, January 2007 pp. 1–28

ON BLOCH WAVES FOR THE STOKES EQUATIONS
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Abstract. In this work, we study the Bloch wave decomposition for the Stokes
equations in a periodic media in Rd. We prove that, because of the incompress-
ibility constraint, the Bloch eigenvalues, as functions of the Bloch frequency ξ,
are not continuous at the origin. Nevertheless, when ξ goes to zero in a fixed
direction, we exhibit a new limit spectral problem for which the eigenvalues
are directionally differentiable. Finally, we present an analogous study for the
Bloch wave decomposition for a periodic perforated domain.

1. Introduction and main results. The method of Bloch wave decomposition
(or Floquet decomposition) is well known for reducing the problem of solving
the Schrödinger equation in an infinite periodic medium to a family of simpler
Schrödinger equations posed in a single periodicity cell and parametrized by the
so-called Bloch frequency [9], [10], [17], [23]. We extend this method to the Stokes
equations of incompressible fluid mechanics or equivalently to the equations of linear
incompressible elasticity.
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A key ingredient in this study is the so-called Bloch cell spectral problem. Let
Y = [0, 2π[d be the unit cell and Y ′ = [0, 1[d the dual cell. For any Bloch frequency
ξ ∈ Y ′, we consider the following Stokes system





Find λ(ξ) ∈ R, φ 6= 0 ∈ H1
#(Y )d, p ∈ L2

#(Y ) such that

−D(ξ) · (µ(y)D(ξ)φ) + κ(y)φ + D(ξ)p = λ(ξ)φ in Y,

D(ξ) · φ = 0, in Y,

(1)

where D(ξ) = (∇ + iξ), µ ∈ L∞# (Y ) is a given uniformly positive viscosity, and
κ ∈ L∞# (Y ) is a given damping coefficient. We assume µ(y) ≥ µ0 > 0 and κ(y) ≥ 1
a.e. in Y (without loss of generality since adding a constant to κ is equivalent to
shifting the spectrum). All our results could be generalized to the case of κ being a
symmetric matrix and µ a symmetric coercive fourth-order tensor. We also discuss
the limit case κ(y) = +∞ in some subset T ⊂ Y which corresponds to a hole or
obstacle T supporting a Dirichlet boundary condition.

We are mainly interested in the continuity and differentiability properties of the
eigenvalues and eigenfunctions of (1). Indeed, it is well-known for the Schrödinger
equation [7], [9], that the Hessian of the first eigenvalue at the origin ξ = 0 is
the effective tensor for the corresponding homogenized problem. A first rigorous
analysis of the homogenization process along these lines was given in [10]. Their
results have been generalized to some extent for systems of diffusion equation [4]
when the first eigenvalue is simple, and for the elasticity system [13] using merely
directional derivability. Therefore, the differentiability structure of (1) is a problem
of paramount importance for homogenization which is our main motivation here.
The difficulty, in the case of Stokes equations, is that (1) is not posed in a fixed
functional space when ξ varies because the incompressibility constraint D(ξ) ·φ = 0
precisely depends on ξ.

Our first result (Proposition 2.8) is that, contrary to the above examples, the
eigenvalues and eigenfunctions of (1) are usually not even continuous at the origin.
The main reason for this strange phenomenon is that the limit of the incompress-
ibility constraint D(ξ) · φ = 0, as ξ goes to 0 in a fixed direction e, is not only
D(0) · φ = 0 but it also includes the additional constraint

∫
Y

e · φdy = 0. A simi-
lar discontinuity of the Bloch eigenvalues at the origin was already obtained for a
completely different model of fluid structure interaction in [5].

Our main result (Theorem 3.7) is to nevertheless prove that there exists a new
family of spectral Stokes problem, featuring the additional constraint

∫
Y

e·φdy = 0,
which are the limits of (1) when ξ goes to 0 in a fixed direction e. We prove that
eigenvalues and eigenfunctions are thus directionally analytic. Then, as a final
result (Lemma 4.2), we partially recover the usual homogenized effective tensor of
Stokes equations, whose entries are linked to the second-order derivatives of the
first eigenvalues.

The content of the present paper is the following. In Section 2 we first study the
simpler non-homogeneous Stokes problem, i.e. we replace the right hand side of (1)
by a fixed force term. Already for this simpler problem we obtain a discontinuity
result in Proposition 2.8. Section 3 is devoted to the analyticity properties of the
Bloch waves and contain our main result, Theorem 3.7. In Section 4 we compute the
derivatives of the first Bloch eigenvalue at ξ = 0 and we show that we can partially
recover the homogenized tensor of the Stokes problem (see Lemma 4.2). In Section
5 we present the Bloch decomposition of the space of divergence-free vector fields on



ON BLOCH WAVES FOR THE STOKES EQUATIONS 3

Rd. In Section 6, we study the Bloch decomposition and the regularity of the Bloch
waves in the case of a periodically perforated domain, in a similar way as for non-
perforated domains. Finally Section 7 contains some 2-d numerical computations
which illustrate the discontinuity of the Bloch eigenvalues.

Notations. Let us make precise the definition of D(ξ). If φ = (φk)1≤k≤d is a
vector-valued function, then D(ξ)φ = ∇φ+ iφ⊗ ξ is a matrix of entries (∂φk/∂yl +
iφkξl)1≤k,l≤d. Let L2

#(Y ) denote the space of functions in L2
loc(Rd) which are Y -

periodic. A similar definition holds for the Sobolev space H1
#(Y ). Its dual is denoted

by H−1
# (Y ). We denote by L2

#,0(Y ) the subspace of L2
#(Y ) made of functions with

zero-average on Y . All these spaces are made of complex-valued functions.

2. The non-homogeneous Stokes problem. We first consider the Stokes equa-
tions with a source term f ∈ L2

#(Y )d, namely,



−D(ξ) · (µ(y)D(ξ)φ) + κ(y)φ + D(ξ)p = f in Y

D(ξ) · φ = 0 in Y
p, φ are Y − periodic

(2)

Note that in the case ξ = 0, the well-posedness theory of (2) is well-known: for each
function f ∈ L2

#(Y )d, there exists a unique solution (φ, p) ∈ H1
#(Y )d × L2

#(Y )/C
(the pressure is defined up to an additive constant). As we shall see the existence
theory in the case ξ 6= 0 is different but not more difficult. However, the surprising
property that we shall establish is the lack of continuity of (2) as ξ goes to zero (see
Proposition 2.8).

Proposition 2.1. For ξ ∈ Y ′ \ {0} and f ∈ L2
#(Y )d, there exists a unique solution

(φ, p) ∈ H1
#(Y )d × L2

#(Y ) of (2), which satisfies

‖φ‖1,Y ≤ C‖f‖0,Y ‖p−m(p)‖0,Y ≤ C‖f‖0,Y

|ξm(p)| ≤ C‖f‖0,Y ,
(3)

where the constant C > 0 does not depend on ξ and m is the averaging operator
defined by

m(p) =
1
|Y |

∫

Y

p(y) dy.

(Note that, in this case, the pressure is uniquely defined.)
As usual, for ξ = 0, there exists a unique solution (φ, p) ∈ H1

#(Y )d × L2
#(Y )/C

of (2).

Before proving Proposition 2.1 we need a series of lemma. We introduce the
spaces of ”generalized” divergence-free velocities

Vξ = {φ ∈ H1
#(Y )d : D(ξ) · φ = 0}

Hξ = {φ ∈ L2
#(Y )d : D(ξ) · φ = 0}

We first prove an adequate version of the De Rham’s Theorem.

Lemma 2.2. For ξ ∈ Y ′ \ {0} we have

H⊥
ξ =

{
D(ξ)ρ : ρ ∈ H1

#(Y )
}

and V ⊥
ξ =

{
D(ξ)ρ : ρ ∈ L2

#(Y )
}

,

with a unique representation.
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Proof. Let ξ ∈ Y ′ \ {0}. First, take ψ ∈ H⊥
ξ (the orthogonal in the L2 sense). By

definition

ψ ∈ H⊥
ξ ⇐⇒

∫

Y

ϕ(y) · ψ(y)dy = 0, ∀ϕ ∈ Hξ,

which, upon introducing the Fourier series ϕ(y) =
∑

k∈Zd ϕ̂(k)eik·y, implies

ϕ̂(k) · ψ̂(k) = 0, ∀k ∈ Zd.

Since D(ξ) · ϕ = 0, the Fourier components ϕ̂(k) satisfy

i(k + ξ) · ϕ̂(k) = 0, ∀k ∈ Zd,

and we deduce that

ψ̂(k) = i(k + ξ)p̂(k), ∀k ∈ Zd with p̂(k) ∈ C,

which implies that ψ = D(ξ)p, with p a distribution. Moreover, since ψ ∈ L2
#(Y )

we obtain that ∑

k∈Zd

|k + ξ|2 |p̂(k)|2 < ∞,

that is, p ∈ H1
#(Y ) (because ξ 6=0), and we conclude that H⊥

ξ =
{
D(ξ)ρ :ρ ∈ H1

#(Y )
}

as required.
Now, take ψ ∈ V ⊥

# (the orthogonal in the H1 sense). By definition
∫

Y

∇ϕ : ∇ψ +
∫

Y

ϕ · ψ = 0, ∀ϕ ∈ Vξ,

that is, in terms of Fourier series,

(1 + |k|2)ϕ̂(k) · ψ̂(k) = 0, ∀k ∈ Zd,

and since ϕ̂(k) satisfies

i(k + ξ) · ϕ̂(k) = 0, ∀k ∈ Zd,

we deduce
ψ̂(k) = i(k + ξ)p̂(k), ∀k ∈ Zd with p̂(k) ∈ C,

and moreover ∑

k∈Zd

(1 + |k|2)−1
∣∣∣ψ̂(k)

∣∣∣
2

< ∞,

which implies ∑

k∈Zd

|p̂(k)|2 < ∞.

Therefore, we conclude that p ∈ L2
#(Y ), V ⊥

ξ =
{

D(ξ)ρ : ρ ∈ L2
#(Y )

}
and the

representation is unique, which completes the proof. ¤
On the other hand, we have the following regularity result for the pressure.

Lemma 2.3. Let g ∈ H−1
# (Y )d, such that g = D(ξ)p, with p a distribution. Then

p ∈ L2
#(Y ). Furthermore, there exists a constant C > 0, independent of ξ, such

that
‖p−m(p)‖L2

#(Y ) ≤ C ‖g −m(g)‖H−1
# (Y )d

where m is the averaging operator defined by m(f) = 1
|Y |

∫
Y

f dy.
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Proof. Let g = D(ξ)p ∈ H−1
# (Y )d. Its Fourier coefficients satisfy for every k ∈ Zd

ĝ(k) = i(ξ + k)p̂(k),

with p̂(k) ∈ C, moreover, it is easy to check that

m(g) =< g, 1 >H−1
# ×H1

#
= ĝ(0). (4)

Let us assume that m(g) = 0, therefore multiplying by −i(ξ + k) we obtain that

|ξ + k|2p̂(k) = −i(ξ + k) · ĝ(k),

or equivalently

p̂(k) =
−i(ξ + k)
|ξ + k|2 · ĝ(k) for k 6= 0.

Furthermore, if ξ 6= 0 we have p̂(0) = 0, while if ξ = 0 the value of p̂(0) is free.
Thus, for ξ 6= 0, there exists a positive constant c, independent on k and ξ, such
that, for every k ∈ Zd,

|p̂(k)| ≤ |ξ + k|
|ξ + k|2 |ĝ(k)| ≤ c

|ĝ(k)|√
1 + |k|2 . (5)

When ξ = 0, inequality (5) holds true if we choose p such that p̂(0) = 0. Therefore,
for any value of ξ, summing up the squared inequalities (5) we conclude that p ∈
L2

0,#(Y ) and
‖p‖20,Y ≤ c2‖g‖2−1,Y . (6)

Now, if we consider a general function g = D(ξ)p ∈ H−1
# (Y )d, we check that

g −m(g) = D(ξ)(p−m(p))

and applying (6) we deduce that

‖p−m(p)‖0,Y ≤ c‖D(ξ)(p−m(p))‖−1,Y .

and p ∈ L2
#(Y ). ¤

Proof of Proposition 2.1 For ξ = 0 the result is well known [18]. For ξ 6= 0 we define
the bilinear form on H1

#(Y )

a(ϕ,ψ) =
∫

Y

µD(ξ)ϕ : D(ξ)ψ +
∫

Y

κϕψ, ∀ϕ,ψ ∈ Vξ,

which is easily seen to be symmetric, continuous and coercive since there exists a
positive constant C such that (see [9])

C {‖∇ϕ‖0,Y + |ξ| ‖ϕ‖0,Y } ≤ ‖D(ξ)ϕ‖0,Y ≤ {‖∇ϕ‖0,Y + |ξ| ‖ϕ‖0,Y } .

By the Lax-Milgram’s Lemma, the problem

a(φ, ψ) = (f, ψ), ∀ψ ∈ Vξ

has a unique solution φ ∈ Vξ for any f ∈ L2
#(Y ). Since

(
D(ξ) · (µD(ξ)φ)− κφ + f

)
∈ V ⊥

ξ

by application of Lemma 2.2, there exists a unique pressure p ∈ L2
#(Y ) such that

D(ξ)p = D(ξ) · (µD(ξ)φ)− κφ + f

which proves the existence and uniqueness of the solution of (2).
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Furthermore, since κ(y) ≥ 1, the bilinear form is uniformly coercive, namely
there exists a positive constant C, independent of ξ, such that

C‖φ‖21,Y ≤ a(φ, φ) = (f, φ) ≤ ‖f‖0,Y ‖φ‖1,Y ,

which proves that
C‖φ‖1,Y ≤ ‖f‖0,Y .

Introducing g = D(ξ) · (µD(ξ)φ)− κφ + f), from Lemma 2.3, we deduce that

‖p−m(p)‖0,Y ≤ c ‖g −m(g)‖−1,Y ≤ c1 ‖f‖0,Y

and
|ξm(p)| = |m(g)| ≤ c2 ‖f‖0,Y

which completes the proof. ¤
Remark 2.4. The ”generalized” incompressibility constraint D(ξ) · φ = 0 contains
an additional implicit constraint. Indeed, any function φ ∈ H1

#(Y )d, such that
D(ξ) · φ = 0, satisfies also the constraint

ξ ·
∫

Y

φ(y) dy = 0,

which is simply obtained by integrating D(ξ) · φ = 0 over Y . Therefore, in the
limit as ξ goes to 0 in a fixed direction e, we formally obtain two limit constraints:
∇·φ = 0 and e ·∫

Y
φdy = 0. This explains the introduction of a new Stokes problem

(7) below.

To study the limit of the Stokes problem (2) when ξ goes to 0, we introduce a
new family of Stokes problems, parametrized by a unit vector e ∈ Rd with |e| = 1,





−∇ · (µ∇u) + κu +∇q + q0e = f in Y

e ·
∫

Y

u(y) dy = 0

∇ · u = 0 in Y
q, u are Y − periodic

(7)

Since there is an additional constraint on the velocity in (7), there is also an ad-
ditional Lagrange multiplier q0e, where q0 is a real constant. A possible physical
interpretation is that adding the constraint e · ∫

Y
u = 0 amounts to apply an affine

pressure term q0 e · y.
We introduce new spaces of ”extended” divergence-free velocities: for each unit

vector e ∈ Rd, |e| = 1, we define

Ve = {φ ∈ H1
#(Y )d : ∇ · φ = 0, e · ∫

Y
φ(y) dy = 0}

He = {φ ∈ L2
#(Y )d : ∇ · φ = 0, e · ∫

Y
φ(y) dy = 0}

Lemma 2.5. For a given unit vector e ∈ Rd, |e| = 1, there exists a unique solution
(u, q, q0) in H1

#(Y )d × L2
#,0(Y )× R of (7).

Proof. Lax-Milgram’s Lemma is easily applied to the variational formulation in Ve∫

Y

µ∇u : ∇ψ +
∫

Y

κu · ψ =
∫

Y

f · ψ ∀ψ ∈ Ve

which thus admits a unique solution u ∈ Ve. To recover the pressure and the
constant q0, we use Lemma 2.6 below. A priori the pressure q is defined up to an
additive constant, but forcing its average to be zero (as is the case in L2

#,0(Y ))
uniquely determines q. ¤



ON BLOCH WAVES FOR THE STOKES EQUATIONS 7

Lemma 2.6. Let e ∈ Rd be a unit vector. We have

H⊥e =
{∇ρ + ce : ρ ∈ H1

#,0(Y ), c ∈ R}

and
V⊥e =

{∇ρ + ce : ρ ∈ L2
#,0(Y ), c ∈ R}

,

with a unique representation.

Proof. Note that Ve = U ∩ V where U and V are closed subspaces of H1
#(Y )d

V =
{
ϕ ∈ H1

#(Y )d : div ϕ = 0 in Y
}

, U =
{

ϕ ∈ H1
#(Y )d : e ·

∫

Y

ϕ = 0
}

.

Thus (U ∩ V )⊥ = U⊥ + V ⊥, which concludes the proof since U⊥ = {q0e : q0 ∈ R}
and V ⊥ =

{
∇q : q ∈ L2

#,0(Y )
}

by De Rham’s Theorem. A similar proof applies
to He. ¤

Remark 2.7. In the spirit of Lemma 2.6, we can give a characterization of V ⊥
ξ ,

which is different from that of Lemma 2.2, namely,

V ⊥
ξ =

{
D(ξ)q + ce : q ∈ L2

#,0(Y ), c ∈ C}
,

with a unique representation.

We are now ready to prove that the family of Stokes equations (7) are the limits
of (2) when ξ goes to 0. In other words the Stokes problem (2) is not continuous
as ξ goes to 0.

Proposition 2.8. For a given unit vector e ∈ Rd, |e| = 1, we define ξ = εe. Then,
as ε tends to 0, the solution (φ(ξ), p(ξ)) of (2) satisfies

φ(ξ) → u(e) strongly in H1
#(Y )d

p(ξ)−m(p(ξ)) → q(e) strongly in L2
#,0(Y )

iξm(p(ξ)) → q0(e)e,
(8)

where (u(e), q(e), q0(e)) is the unique solution of (7).

Proof. From the uniform bounds in (3), we deduce that there exist limits
(u(e), q(e), q0) ∈ H1

#(Y )d × L2
#(Y )× R such that, up to a subsequence,

φ(ξ) ⇀ u(e), weakly in H1
#(Y )d

p(ξ)−m(p(ξ)) ⇀ q(e), weakly in L2
#,0(Y )

iξm(p(ξ)) → q0(e)e.

For any ψ ∈ H1
#(Y )d we have the variational formulation

∫

Y

µD(ξ)φ(ξ) : D(ξ)ψ +
∫

Y

κφ(ξ) · ψ −
∫

Y

(p(ξ)−m(p(ξ)))D(ξ) · ψ

+
∫

Y

m(p(ξ))iξ · ψ =
∫

Y

f · ψ

and passing to the limit as ε tends to zero, we obtain
∫

Y

µ∇u(e) : ∇ψ +
∫

Y

κu(e) · ψ −
∫

Y

q(e)∇ · ψ + q0(e)
∫

Y

e · ψ =
∫

Y

f · ψ
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which is precisely a variational formulation for (7). Thus (u(e), q(e), q0(e)) is the
unique solution of (7) and the entire sequence converges. On the other hand, we
have ∫

Y

µD(ξ)φ(ξ) : D(ξ)φ(ξ) +
∫

Y

κφ(ξ) · φ(ξ) =
∫

Y

f · φ(ξ)

and ∫

Y

µ∇u(e) : ∇u(e) +
∫

Y

κu(e) · u(e) =
∫

Y

f · u(e),

and since φ(ξ) → u(e) strongly in L2
#(Y ), we can conclude that

∫

Y

µ∇φ(ξ) : ∇φ(ξ) →
∫

Y

µ∇u(e) : ∇u(e)

which implies the strong convergence of φ(ξ) in H1
#(Y )d. A similar strong conver-

gence for the pressure is finally obtained from Lemma 2.3. ¤

3. Bloch Waves and Analyticity Properties. This section is devoted to the
study of the Bloch spectral problem for the Stokes equation. In particular a detailed
study of the Bloch waves as ξ tends to zero is performed since the Bloch waves are
not smooth at the origin ξ = 0.

For ξ ∈ Y ′ we consider the eigenvalue problem



Find λ(ξ) ∈ R, φ 6= 0 ∈ H1
#(Y )d, p ∈ L2

#(Y ) such that
−D(ξ) · (µ(y)D(ξ)φ) + κφ + D(ξ)p = λ(ξ)φ in Y,

D(ξ) · φ = 0, in Y.
(9)

We begin by stating a classical result of existence and regularity of the Bloch
waves away from the origin ξ = 0.

Theorem 3.1. For all fixed ξ ∈ Y ′\{0}, problem (9) admits a countable sequence of
real positive eigenvalues each of which is of finite multiplicity. As usual, we arrange
them in increasing order repeating each value as many times as its multiplicity:

0 < λ1(ξ) ≤ λ2(ξ) ≤ · · · ≤ λn(ξ) ≤ · · · → ∞.

The corresponding eigenfunctions denoted by {φn(ξ)}n≥1 forms a Hilbert basis in
Hξ.

Moreover, for all n ≥ 1, the functions ξ ∈ Y ′ \ {0} → (λn(ξ), φn(ξ), pn(ξ)) with
values in R×H1

#(Y )d × L2
#(Y ) are Lipschitz continuous functions of ξ. ¤

We will refer to {λn(ξ)}n≥1 as Bloch eigenvalues and to {φn(ξ)}n≥1 as Bloch
eigenvectors or Bloch waves associated to the classical incompressible Stokes equa-
tions.

Remark 3.2. The continuity of the functions λn : Y ′ \ {0} → R cannot be derived
by using minimax principle as in [10], this is due to the dependence on the parameter
ξ ∈ Y ′ \ {0} of the spaces Vξ. Thus the proof of Theorem 3.1 is similar to the proof
of Theorem 3.7 (see Appendix) and the previous proofs in [20, 21, 22, 24] so we shall
not repeat it here. The main idea is to consider, for any λ > 0 and ξ ∈ Y ′ \ {0},
the map

A :
(
H1

# (Y )
)d × L2

# (Y ) −→
(
H−1

# (Y )
)d

× L2
# (Y )

defined by

A(ϕ, π) =
( −D(ξ) · (µD(ξ)ϕ) + κϕ + D(ξ)π − λϕ
−D(ξ) · ϕ

)
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and to use the Lyapunov-Schmidt method, which is well known in bifurcation theory.
The point is that if λ(ξ) is an eigenvalue of multiplicity h of (9) and φ1(ξ), . . . , φh(ξ)
are the associated velocities and p1(ξ), . . . , ph(ξ) the corresponding pressures, we
have

Ker(A) = span {(φj(ξ), pj(ξ)) : j = 1, . . . , h} .

Then, the problem is reduced to the existence of the roots of a polynomial of degree
h of the form

P (ξ, α) = αh + ah−1(ξ)αh−1 + . . . + a1(ξ)α + a0(ξ)

where the coefficients aj(ξ) have an analytic dependence on the parameter ξ. Thus,
since the parameter belongs to Rn we can conclude only the continuity of the roots
αj(ξ) of the polynomial and the eigenvalues have the form λ(ξ) = λ+α(ξ). We note
that in the case of the scalar perturbation, the Weierstrass Preparation Theorem
gives us the regularity of the eigenvalues.

The continuity of the functions (φn, pn) is an easy consequence of the continuity
of λn and the smoothness of the corresponding Green’s operator.

Remark 3.3. The study of the analyticity properties of λn with respect to ξ requires
special attention. A standard application of Rellich’s theorem (see [16] p. 392) shows
the existence of branches of eigenvalues of the Green’s operator of problem (1) which
are real analytic with respect to each individual variable ξl. However, perturbation
theory is inadequate to study the real-analyticity of these branches with respect to all
the variables ξ (see [16] p. 177). In the sequel, we will come back to study analyticity
properties of λn, but following a completely different strategy which in fact merely
allows to get a directional analyticity of these functions.

Remark 3.4. From Rellich’s theory, one can check that if the Bloch eigenvalue at
a given frequency ξ0, ξ0 6= 0, is simple, the branch ξ → λ(ξ) is also simple in a
neighborhood of ξ0 and moreover, it is analytic in this same neighborhood. Hence
the map ξ → φ(ξ) can also be proved to be analytic in this neighborhood.

In the general case, if we consider ξ = ξ0 + εe, with ε ∈ R \ {0}, ξ0 ∈ Y ′ \ {0}
and e ∈ Rd, a unit vector, the classical results of Rellich [24] or Kato [16] show that
the branches of eigenvalues and eigenvectors are analytic with respect to the real
parameter ε in a neighborhood of 0. This allows to compute directional derivatives
of the Bloch waves at ξ0 in the direction e.

Theorem 3.1 has left apart the regularity of the spectrum of (9) at ξ = 0. Ac-
tually, the spectrum is not continuous at ξ = 0 because, as already mentioned in
Remark 2.4, the incompressibility constraint D(ξ) · φ = 0 changes with ξ and its
limit as ξ goes to 0 is not just D(0) ·φ = 0. We shall establish below that the limits
of (9) when ξ converges to 0 in the direction e are given by



Find ν(e) ∈ R, u(e) 6= 0 ∈H1
#(Y )d, q(e) ∈ L2

#,0(Y ), q0 ∈ R such that
−∇ · (µ∇u(e)) + κu(e) +∇q(e) + q0e = ν(e)u(e) in Y,

∇ · u(e) = 0, in Y,

e ·
∫

Y

u(e) = 0.

(10)
To resolve this spectral problem, it is a classical technique to introduce the so-called
Green’s operator Ge : L2

#(Y )d → L2
#(Y )d which is defined as Gef = u, where

u ∈ Ve is the unique weak solution of (7) given by Lemma 2.5. Applying next
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Rellich’s compactness lemma it is straightforward to check that Ge is a compact
operator. Furthermore, it is also selfadjoint and it is easily verified that (ν(e), u(e)),
ν(e) 6= 0 satisfies (10) iff

Geu(e) =
1

ν(e)
u(e) and u(e) 6≡ 0.

This means that ν(e) is a nonzero eigenvalue of problem (10) with corresponding
eigenfunction u(e) iff 1

ν(e) is a nonzero eigenvalue of Ge with eigenvector u(e). A
standard application of the classical Hilbert-Schmidt theorem yields the following
result about the spectrum of (10).

Lemma 3.5. Problem (10) admits a countable sequence of real positive eigenvalues
(νn(e))n≥1 converging to +∞ with n (repeated with their multiplicity) and an Hilbert
basis of associated eigenfunctions (un(e))n≥1.

To study the continuity of (9) when ξ converges to 0, we rewrite (9) in a slightly
different form. For a given unit vector e ∈ Rd, |e| = 1, we introduce a scalar
parameter ε ∈ R and define

ξ = εe.

The eigenvalue problem (9) is thus rewritten




Find λε ∈ R, φε 6= 0 ∈ H1
#(Y )d, pε ∈ L2

#(Y ) such that
−D(εe) · (µ(y)D(εe)φε) + κφε + D(εe)pε = λεφε in Y,

D(εe) · φε = 0, in Y.
(11)

Introducing a new pressure variable qε ∈ L2
#,0(Y ) defined by

qε = pε −m(pε),

we obtain that

D(εe)pε = D(εe)qε + qε
0e with qε

0 = iεm(pε).

On the other hand, as already said in Remark 2.4, the condition D(εe) · φε = 0
implies that

e ·
∫

Y

φε(y) dy = 0.

Therefore, problem (11) is equivalent to




Find λε ∈ R, φε 6= 0 ∈ H1
#(Y )d, qε ∈ L2

#,0(Y ), qε
0 ∈ C such that

−D(εe) · (µ(y)D(εe)φε) + κφε + D(εe)qε + qε
0e = λεφε in Y,

D(εe) · φε = 0, in Y,

e ·
∫

Y

φε(y) dy = 0.

(12)
The spectral problem (12) has a structure similar to (10), so we can expect the for-
mer is an analytic perturbation of the latter. The study of analytic properties of the
solution of (12) with respect to ε will follow from the general analytic perturbation
theory for solutions of operators depending on one real parameter (see [24]). This
is the starting point to obtain the analyticity of the spectrum in a neighborhood of
ε = 0.
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Remark 3.6. As already noticed in Remark 2.7 the orthogonal of the space

Vεe = {φ ∈ H1
#(Y )d : D(εe) · φ = 0}

admits two representation, either

V ⊥
εe =

{
D(εe)ρ : ρ ∈ L2

#(Y )
}

,

or equivalently

V ⊥
εe =

{
D(εe)q + q0e : q ∈ L2

#,0(Y ), q0 ∈ C
}

.

We are now ready to prove a result on the regularity of (λε, φε, qε, qε
0) ∈ R ×

H1
#(Y )N × L2

#,0(Y ) × C with respect to ε in a neighborhood of ε = 0. We shall
follow the generalization proposed in [20] of Rellich’s method. We remark that
the main difficulty for applying Rellich’s method is that the functional spaces are
varying with ε.

Theorem 3.7. Assume that ν is an eigenvalue of multiplicity h of the Stokes system
(10). Then there exist h analytic functions defined in a neighborhood of ε = 0 ∈ R
with values in R, ε → λε

j , and h analytic functions ε → (φε
j , q

ε
j , q

ε
0,j) defined in the

same neighborhood of ε = 0 ∈ R with values in H1
#(Y )d×L2

#,0(Y )×C, i = 1, . . . , h,
such that

1. λε
j |ε=0 = ν, j = 1, . . . , h,

2. for all ε small enough,
(
λε

j , φ
ε
j , q

ε
j , q

ε
0,j

)
is a solution of (12),

3. for all ε small enough, the set {φε
1, . . . , φ

ε
h} is orthonormal in L2

# (Y ),

4. for each interval I ⊂ R such that I contains only the eigenvalue ν, and for
all ε small enough, there are exactly h eigenvalues (counting the multiplicity)
λε

1, . . . , λ
ε
h of (11) contained in I.

The proof of Theorem 3.7 is given in the Appendix.

Remark 3.8. In the above theorem, if ν correspond to the k + 1-th eigenvalue of
(10) of multiplicity h, that is

ν1 ≤ ν2 ≤ . . . ≤ nuk < νk+1 = νk+2 = . . . = νk+h < νk+h+1 ≤ . . .

such that
νk+1 = νk+2 = . . . = νk+h = ν,

then there exist h regular functions ε → λε
j , such that, λε

j is an eigenvalue of (12)
verifying λε

j |ε=0 = ν and the branches of eigenvalues λε
j correspond to the k + 1-th

to k + h-th eigenvalues of (12), but not necessarily ordered in an increasing order.

Remark 3.9. Since the Stokes problems (10) are the limits of the Bloch spectral
problems (9) when ξ tends to 0, one can wonder if the purely periodic problem





Find λ ∈ R, φ 6= 0 ∈ H1
#(Y )d, p ∈ L2

#,0(Y ) such that
−∇ · (µ(y)∇φ) + κφ +∇p = λφ in Y,

∇ · φ = 0, in Y,
(13)

obtained by taking ξ = 0 in (9), has any connections to (10). It turns out that any
eigenvalue and eigenvector of (13) is also an eigenvalue and eigenvector of (10) for
a well-chosen vector e (orthogonal to the average of the eigenvector) and for q0 = 0.
Therefore, (13) gives no new contribution in the spectrum of the Bloch problems.
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4. On the derivatives of the Bloch eigenpairs. This section focus on the
computation of the derivatives of the Bloch eigenvalues and eigenvectors near the
origin ξ = 0. It is well known, in the case of the Laplace operator, that the first
Bloch eigenvalue is analytic in a neighborhood of ξ = 0, which is a consequence
of the simplicity of the first eigenvalue, and its Hessian matrix is just the usual
homogenized tensor [9]. In the spirit of [12], we want to generalize this result for
the Stokes equations. The main difficulty is that the first Bloch eigenvalue is not
simple and not continuous. Fortunately we can compute directional derivatives due
to the directional analyticity of the Bloch eigenvalues.

In view of the application that we have in mind (namely, the homogenization of
the Stokes equations), we restrict ourselves to the special case

κ(y) ≡ 1 in Y. (14)

For a unit vector e ∈ Rd, we define ξ = εe, for ε ∈ R, and we study the directional
derivatives of the first Bloch eigenvalues and eigenfunctions with respect to the
real scalar parameter ε. Because of assumption (14), the first eigenvalue of (10) is
ν1(e) = 1 which is of multiplicity d− 1, i.e.,

ν1(e) = ... = νd−1(e) = 1.

The corresponding velocity eigenvectors are constant vectors orthogonal to e and
the eigenpressures are 0. By Theorem 3.7 in the neighborhood of ε = 0, there exist
d−1 (directionally) analytic branches of Bloch eigenvalues and Bloch eigenfunctions
of (12)

ε → λε
j , ε → φε

j , ε → qε
j and ε → qε

0,j , j = 1, . . . , d− 1,

verifying

λε
j |ε=0 = νj(e) = 1, φε

j |ε=0 = uj(e), qε
j |ε=0 = qj(e) = 0 and qε

0,j |ε=0 = q0,j(e) = 0,
(15)

where {uj(e)}1≤j≤d−1 is an orthonormal family of vectors in Rd orthogonal to the
chosen direction e. Note that the labeling of the above eigenvalues is not the usual
one of increasing order and depends on the direction e. As usual, we normalize the
eigenvectors as follows

1
|Y |

∫

Y

|φε
j |2dy = 1. (16)

We differentiate the eigenvalue problem (12) with respect to ε or, equivalently,
we differentiate problem (9) in the direction e to obtain
{−D(εe) · (µD(εe)φ′j(ε)

)
+ φ′j(ε) + D(εe)q′j(ε) + eq′0,j(ε)− λε

jφ
′
j(ε) = f(ε) in Y,

D(εe) · φ′j(ε) = g(ε), in Y,
(17)

where φ′j(ε), q′j(ε), q′0,j(ε) and λ′j(ε) are the derivatives at ε of φε
j , qε

j , qε
0,j and λε

j

respectively, with

f(ε) = λ′j(ε)φ
ε
j − iqε

je + ie · µD(εe)φε
j + iD(εe) · (µφε

j ⊗ e
)

and
g(ε) = −D′(εe)φε

j = −ie · φε
j ,

where D(εe)ϕ = ∇ϕ + iεϕ⊗ e. To simplify the exposition, we choose as an ortho-
normal basis of Rd the family

e1 = u1(e), . . . , ed−1 = ud−1(e), ed = e. (18)
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In order to identify the derivatives at ε = 0 in (17) we recall the so-called cell
problems [7] which are useful for the classical homogenization of Stokes equations

{ −div (µ∇(wkl + ylek)) +∇πkl = 0 in Y,

div wkl = 0, in Y,
(19)

which admits a unique solution (wkl, πkl) ∈ (H1
#(Y )/R)d ×L2

#(Y )/C for 1 ≤ k, l ≤
d. The homogenized tensor A∗ is then defined by

A∗klpq =
1
|Y |

∫

Y

µ∇(wkl + ylek) : ∇(wpq + yqep) dy.

Lemma 4.1. The first order derivatives at ε = 0 satisfy

λ′j(0) = 0, φ′j(0) = iwdj , q′j(0) = iπdj and q′0,j(0) = 0 j = 1, . . . , d− 1.

Proof. By the Fredholm alternative f(ε) must be orthogonal to φε
j , that is,

∫

Y

f(ε) · φε
j = 0,

which implies

λ′j(ε)|Y | = i

∫

Y

qε
je · φε

j − i

∫

Y

{
e · µD(εe)φε

j

} · φε
j − i

∫

Y

{
D(εe) · (µφε

j ⊗ e
)} · φε

j

since the functions φε
j satisfy the normalization condition (16). Taking ε = 0 and

recalling (15) we obtain λ′j(0) = 0. Moreover, (φ′j(0), q′j(0), q′0,j(0)) is solution of
the problem





−div
(
µ∇φ′j(0)

)
+∇q′j(0) + eq′0,j(0) = idiv(µej ⊗ e) in Y,

div φ′j(0) = 0, in Y,

e ·
∫

Y

φ′j(0)dx = 0

(20)

It is not difficult to check that (20) has a solution in Ve × L2
#(Y )/C × C which

is unique up to the addition of a constant vector, orthogonal to e, to the velocity.
Furthermore, φ′j(0) = iwdj , q

′
j(0) = iπdj , q

′
0,j(0) = 0 is such a solution since adding

a suitable constant to wdj makes its average orthogonal to e. ¤

We now compute the second order directional derivatives. Differentiating (17)
with respect to ε yields

{−D(εe) · (µD(εe)φ′′j (ε)
)

+ φ′′j (ε) + D(εe)q′′j (ε) + q′′0,j(ε)e− λε
jφ
′′
j (ε) = F (ε) in Y,

D(εe) · φ′′j (ε) = G(ε), in Y,

where

F (ε) = −2µφε
j + 2ie · µD(εe)φ′j(ε) + 2iD(εe) · (µφ′j(ε)⊗ e)

− 2ieq′j(ε) + λ′′j (ε)φε
j + 2λ′j(ε)φ

′
j(ε) (21)

and
G(ε) = −2D(εe)′φ′j(ε) = −2ie · φ′j(ε).
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Lemma 4.2. The second order derivative of the eigenvalue at ε = 0 satisfies

1
2
λ′′j (0)δjk = A∗djdk j, k = 1, . . . , d− 1, (22)

where δjk is the Kronecker symbol and the homogenized tensor A∗ is written in the
basis (18).

Proof. By the Fredholm alternative F (ε) must be orthogonal to φε
k, which implies

λ′′j (ε)δjk|Y | = 2
∫

Y

µφε
jφ

ε
k − 2i

∫

Y

(e · (µD(εe)φ′j(ε))) · φε
k

− 2i

∫

Y

D(εe)(µφ′j(ε)⊗ e) · φε
k + 2i

∫

Y

q′j(ε)e · φε
k − 2λ′j(ε)

∫

Y

φ′j(ε) · φε
k (23)

For ε = 0, we obtain

λ′′j (0)δjk|Y | = 2
∫

Y

δjkµ+2
∫

Y

(e ·(µ∇wdj)) ·ek = 2
∫

Y

(µ(e⊗ ej +∇wdj)) : (e⊗ek).

Since multiplying equation (19) by wdk yields
∫

Y

(µ(e⊗ ej +∇wdj)) : ∇wdk = 0,

we deduce
1
2
λ′′j (0)δjk = A∗djdk. ¤

Remark 4.3. Formula (22) is similar to that obtained by Ganesh and Vanninathan
in the elasticity case [13]. Recalling our choice (18) of the basis of Rd, it is equiva-
lent to say that 1

2λ′′j (0) is an eigenvalue and ej is an eigenvector of the symmetric
matrix (A∗didk)i,k. There is however a notable change with the elasticity case in
[13]: the indices j and k in (22) must be different from d, so the alluded matrix
eigenvalue problem is of dimension d − 1 instead of d as in [13]. In other words,
the knowledge of only d − 1 branches of eigenvalues λj yields less informations on
the homogenized Stokes tensor A∗ than in the elasticity case. For example, among
others, the homogenized coefficient A∗dddd is not characterized by (22).

In the elasticity case, Ganesh and Vanninathan were able to prove that the ho-
mogenized tensor A∗ is completely recovered from the knowledge of the d derivatives
λ′′j (0) and d eigenvectors ej = uj(e). One can not expect such a result for the Stokes
equation. Indeed, one can check that adding a multiple of I2 ⊗ I2 (where I2 is the
identity matrix of order d) to A∗ does not change formula (22) because it does not
involve coefficients of the type A∗jjdd. On the other hand, the underdeterminacy of
A∗ up to the addition of I2⊗I2 does not matter in the homogenized Stokes equations
since
(
(A∗+cI2⊗I2)∇u

)
ij

=
d∑

k,l=1

(A∗ijkl+cδijδkl)
∂uk

∂xl
=

(
A∗∇u

)
ij

+c∇·uδij =
(
A∗∇u

)
ij

because u is a divergence-free vector field. Eventually we conjecture that the sole
knowledge of the d − 1 derivatives λ′′j (0) and the d − 1 eigenvectors ej = uj(e)
completely characterizes the homogenized Stokes tensor, up to the addition of an
unimportant I2 ⊗ I2 term. However, we have been unable to prove such a result so
far.
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5. Bloch wave decomposition of H(Rd). Let V(Rd) be the space (without topol-
ogy)

V(Rd) =
{
u ∈ C∞c (Rd)d : ∇ · u = 0

}

The closures of V(Rd) in L2(Rd)d and in H1(Rd)d are denoted by H(Rd) and V (Rd)
respectively.

We associate to every v ∈ H(Rd) and to every ξ the following function

ṽ(x, ξ) =
∑

p∈Zd

v(x + 2πp)e−iξ·(x+2πp)

It is easily seen that ṽ(·, ξ) belongs to L2
#(Y ). The right hand-side series converges

and define an element of Hξ as a function of x, satisfying the following properties:

(i) We recover v from ṽ by the following formula:

v(x) =
∫

Y ′
eiξ·xṽ(x, ξ)dξ.

(ii) The norms of v and ṽ(·, ξ) are related by

||v||2L2(Rd)d =
∫

Y ′
||ṽ(·, ξ)||2L2

#(Y )ddξ

Since ṽ(ξ) ∈ Hξ and (φm(ξ))m∈N is a basis of Hξ, we can write

ṽ(ξ) =
∞∑

m=1

[Bmv(ξ)] φm(ξ).

Theorem 5.1. Let v ∈ H(Rd) be arbitrary.

(i) For m ∈ N, the mth Bloch coefficient is defined by

Bmv(ξ) := lim
R→∞

∫

|x|<R

v(x) · e−iξ·xφm(ξ, x)dx

where the limit is taken in L2(Y ′).
(ii) Then the following inverse formula holds:

v(x) = lim
k→∞

∫

Y ′

k∑
m=1

Bmv(ξ)eiξ·xφm(ξ, x)dξ

where the limit is taken in the space H(Rd).
(iii) In particular, we have the following Parseval identity:

∫

Rd

|v(x)|2dx =
∫

Y ′

∞∑
m=1

|Bmv(ξ)|2dξ.

(iv) More generally, the following Plancherel Identity is also valid:
∫

Rd

v(x) · u(x)dx =
∫

Y ′

∞∑
m=1

Bmv(ξ)Bmu(ξ)dξ.

The proof of the above result is analogous to the one in [7] so we omit it.
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6. Bloch waves in a perforated domain. In this section we briefly explain how
the previous results can be extended to the case of perforated domains. This is
an important issue since many models of flows in porous media, like Darcy’s law,
are obtained by homogenization of the Stokes equations in a periodically perfo-
rated domain. At least formally, the case of Stokes equations in a domain with
holes, supporting a Dirichlet boundary condition, can be recovered by letting the
damping coefficient κ goes to +∞ inside the hole in equation (1). Nevertheless,
in full mathematical rigor, some previous technical results need a specific proof for
perforated domains that we now give.

Let us recall that Y = [0, 2π[d and let T ⊂ Y be a smooth closed open subset.
We assume that the hole T is isolated in the unit cell Y , i.e. the two holes of two
adjacent cells do not touch (we denote this assumption by T ⊂⊂ Y ). We can thus
define:

Y ∗ = Y \ T and O = Rd \ ∪p∈Zd{T + 2πp}

T

Y*
Y

x

y

2π

2π

Figure 1. Periodic perforated cell

At first, we consider the Stokes equations with a source term f ∈ L2
#(Y ∗), namely





−D(ξ) · (µ(y)D(ξ)φ) + D(ξ)p = f in Y ∗

D(ξ) · φ = 0 in Y ∗

φ = 0 on ∂T
p, φ are Y − periodic

(24)

We introduce the spaces of “generalized” divergence-free velocities

Vξ(Y ∗) = {φ ∈ H1
#(Y ∗)d : D(ξ) · φ = 0 and φ = 0 on ∂T}

Hξ(Y ∗) = {φ ∈ L2
#(Y ∗)d : D(ξ) · φ = 0 and φ · n = 0 on ∂T}

(25)

In order to obtain uniform a priori estimate for the pressure in (25) we first need
to generalize a result of Tartar [28] about a restriction operator on vector fields.

Lemma 6.1. For each ξ ∈ Y ′ there exists an operator

Rξ : H1
#(Y )d → H1

#(Y )d,

such that ‖Rξ(ϕ)‖H1
#(Y )d ≤ C‖ϕ‖H1

#(Y )d ∀ϕ ∈ H1
#(Y )d where C does not depend

on ξ and it satisfies:
(i) If D(ξ) · ϕ = 0, then D(ξ) ·Rξ(ϕ) = 0.
(ii) For each ϕ ∈ H1

#(Y )d, Rξ(ϕ) = 0 in T .
(iii) If ϕ = 0 in T , then Rξ(ϕ) = ϕ.
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Proof. From Lemma 4 pp 373 in [28], there exists an operator

R : H1(Y )d → H1(Y )d

such that
||Rw||H1(Y d) ≤ C1||w||H1(Y )d

for each w ∈ H1(Y )d. This operator R satisfies:
(a) If ∇ ·w = 0, then ∇ ·Rw = 0.
(b) For each w ∈ H1(Y )d, Rw = 0 in T ⊂⊂ Y .
(c) If w = 0 in T , then Rw = w.

Define Rξ(ϕ) = e−ix·ξR(eix·ξϕ). The properties (ii) and (iii) of Rξ follow directly
from the properties (b) and (c) of R. Property (i) follows from property (a) and
the equality ∇ · (eix·ξϕ) = eix·ξ(∇ · ϕ + iξ · ϕ), ∀ϕ ∈ H1

#(Y )d. By the existence of
constant C1 for R, we can deduce the existence of constant C for Rξ. ¤

We establish an adequate version of De Rham’s Theorem with a proof which is
different from those of Lemmas 2.2 and 2.3. We denote by H1

0,#(Y ∗) the subspace
of H1

#(Y ) made of functions vanishing on T , and by H−1
# (Y ∗) its dual.

Lemma 6.2. If f ∈ H−1
# (Y ∗) is such that < f, φ >H−1

# ,H1
0,#(Y ∗)= 0 for any φ ∈

Vξ(Y ∗), then there exists P ∈ L2
#(Y ) such that, denoting by p the restriction P |Y ∗ ,

we have D(ξ)p = f and

‖p−m(P )‖L2(Y ∗) + ‖D(ξ)P‖H−1
# (Y )d + |ξm(P )| ≤ C‖f‖H−1

# (Y ∗)d .

In particular, if it is already known that D(ξ)p = f with p ∈ L2
#(Y ∗), then the above

P ∈ L2
#(Y ) is an extension of p.

Proof. Define F ∈ H−1
# (Y ) by F = R∗ξ(f), in other words:

< F, ψ >H−1
# ,H1

#(Y )=< f, Rξ(ψ) >H−1
# ,H1

0,#(Y ∗), ∀ψ ∈ H1
#(Y )d. (26)

Since F satisfies

< F, ψ >H−1
# ,H1

#(Y )= 0, ∀ψ ∈ Vξ(Y ),

it follows from Lemma 2.2 that there exists a unique P ∈ L2
#(Y ) such that D(ξ)P =

F . Taking ψ ∈ H1
0#(Y ∗)d in (26) we get that D(ξ)p = f since Rξ(ψ) = ψ. From

(26) we easily obtain

‖D(ξ)P‖H−1
# (Y )d ≤ C‖D(ξ)p‖H−1

# (Y ∗)d .

Since
‖p−m(P )‖L2(Y ∗) ≤ ‖P −m(P )‖L2(Y ),

the other estimates are then a consequence of Lemma 2.3. ¤

Proposition 6.3. For ξ ∈ Y ′\{0} and f ∈ L2
#(Y ∗)d, there exists a unique solution

(φ, p) ∈ H1
#(Y ∗)d × L2

#(Y ∗) of (24), which satisfies

‖φ‖1,Y ≤ C‖f‖0,Y ∗ ‖p−m(P )‖0,Y ∗ ≤ C‖f‖0,Y ∗

|ξm(P )| ≤ C‖f‖0,Y ∗ ,
(27)

where the constant C > 0 does not depend on ξ and P is the extension of p given in
Lemma 6.2. As usual, for ξ = 0, there exists a unique solution (φ, p) ∈ H1

#(Y ∗)d ×
L2

#(Y ∗)/C of (24).
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Proof. For ξ = 0 the result is well known [18]. For ξ 6= 0 we define the bilinear
form on H1

0,#(Y ∗)

a(ϕ,ψ) =
∫

Y

µD(ξ)ϕ : D(ξ)ψ, ∀ϕ,ψ ∈ Vξ(Y ∗),

which is easily seen to be symmetric, continuous and coercive. Furthermore, since a
Poincaré inequality is satisfied by the functions belonging to H1

0,#(Y ∗)d, the bilinear
form is uniformly coercive. In the same manner as in Proposition 2.1, we can show
that there exist ϕ ∈ H1

0,#(Y ∗)d and p ∈ L2(Y ∗) such that

D(ξ)p = D(ξ) · (µD(ξ)φ) + f

which proves the existence and uniqueness of the solution of (24).
Furthermore, since the bilinear form is uniformly coercive, we prove that

C‖φ‖1,Y ∗ ≤ ‖f‖0,Y ∗ .

Introducing g = D(ξ) · (µD(ξ)φ) + f) = D(ξ)p, we have ‖g‖−1,Y ∗ ≤ C‖f‖Y ∗ .
Lemma 6.2 then yields the estimates on the pressure. ¤

As in the case of the non-perforated domain, any function φ ∈ H1
0,#(Y )d, such

that D(ξ) · φ = 0, satisfies also the constraint

ξ ·
∫

Y

φ(y) dy = 0,

and given e ∈ Rd with |e| = 1, we define

Ve(Y ∗) = {φ ∈ H1
0,#(Y ∗)d such that ∇ · φ = 0, e · ∫

Y ∗ φ(y) dy = 0 and φ = 0 on ∂T}
He(Y ∗) = {φ ∈ L2

#(Y ∗)d such that ∇ · φ = 0, e · ∫
Y ∗ φ(y) dy = 0 and φ · n = 0 on ∂T}

It is easily seen that Ve(Y ∗)⊥ = {∇ρ + ce | ρ ∈ L2
#(Y ∗), c ∈ R}.

For a given e ∈ Rd with |e| = 1, there exists (u, q, q0) ∈ H1
0,#(Y ∗)d×L2

#(Y ∗)×R
solution of the system





−∇ · (µ∇u) +∇q + q0e = f in Y ∗

e ·
∫

Y ∗
u(y) dy = 0

∇ · u = 0 in Y ∗

u = 0 on ∂T
q, u are Y ∗ − periodic

(28)

Proposition 6.4. For a given unit vector e ∈ Rd, |e| = 1, we define ξ = εe. Then,
as ε tends to 0, the solution (φ(ξ), p(ξ)) of (24) satisfies

φ(ξ) → u(e) strongly in H1
0,#(Y ∗)d

p(ξ)−m(P (ξ)) → q(e) strongly in L2
#(Y ∗)

iξm(P (ξ)) → q0(e)e,

where (u(e), q(e), q0(e)) is solution of (28) and P (ξ) is the extension of p(ξ) given
in Lemma 6.2.

For ξ ∈ Y ′ we consider the eigenvalue problem



Find λ(ξ) ∈ R, φ 6= 0 ∈ H1
0,#(Y ∗)d, p ∈ L2

#(Y ∗) such that
−D(ξ) · (µ(y)D(ξ)φ) + D(ξ)p = λ(ξ)φ in Y ∗,

D(ξ) · φ = 0, in Y ∗.
(29)
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To study the continuity of (29) when ξ converges to 0, we rewrite (29) in a slightly
different form. For a given unit vector e ∈ Rd, |e| = 1, we introduce a scalar
parameter ε ∈ R and define

ξ = εe.

The eigenvalue problem (29) is thus rewritten




Find λε ∈ R, φε 6= 0 ∈ H1
0,#(Y ∗)d, pε ∈ L2

#(Y ∗) such that
−D(εe) · (µ(y)D(εe)φε) + D(εe)pε = λεφε in Y ∗,

D(εe) · φε = 0, in Y ∗.
(30)

Introducing a new pressure variable qε ∈ L2
#(Y ∗) defined by

qε = pε −m(P ε),

we obtain that

D(εe)pε = D(εe)qε + qε
0e with qε

0 = iε m(P ε).

On the other hand, as already said in Remark 2.4, the condition D(εe) · φε = 0
implies that

e ·
∫

Y ∗
φε(y) dy = 0.

Therefore, problem (30) is equivalent to




Find λε ∈ R, φε 6= 0 ∈ H1
0,#(Y ∗)d, qε ∈ L2

#(Y ), qε
0 ∈ C such that

−D(εe) · (µ(y)D(εe)φε) + D(εe)qε + qε
0e = λεφε in Y ∗,

D(εe) · φε = 0, in Y ∗,

e ·
∫

Y ∗
φε(y) dy = 0.

(31)
We shall establish that the limit spectral problem of (31) is





Find ν(e) ∈ R, u(e) 6= 0 ∈H1
0,#(Y ∗)d, q(e) ∈ L2

#(Y ∗), q0 ∈ R such that
−∇ · (µ∇u(e)) +∇q(e) + q0e = ν(e)u(e) in Y ∗,

∇ · u(e) = 0, in Y ∗,

e ·
∫

Y ∗
u(e) = 0.

(32)

Theorem 6.5. Assume that ν is an eigenvalue of multiplicity h of the Stokes system
(32). Then there exist h analytic functions defined in a neighborhood of ε = 0 with
values in R, ε → λε

j , and h analytic functions ε → (φε
j , q

ε
j , q

ε
0,j), with values in

H1
0,#(Y ∗)d × L2

#(Y ∗) × C, j = 1, . . . , h, defined in a neighborhood of ε = 0, such
that

1. λε
j |ε=0 = ν, j = 1, . . . , h,

2. for all ε small enough,
(
λε

j , φ
ε
j , q

ε
j , q

ε
0,j

)
is a solution of (31),

3. for all ε small enough the set {φε
1, . . . , φ

ε
h} is orthonormal in L2

# (Y ∗),

4. for each interval I ⊂ R such that I contains only the eigenvalue ν, and for
all ε small enough, there are exactly h eigenvalues (counting the multiplicity)
λε

1, . . . , λ
ε
h of (30) contained in I.
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The proof of Theorem 6.5 follows as the proof of Theorem 3.7.
The above results allow us to compute directional derivatives of the first Bloch

eigenvalue.

Figure 2. Two eigenvectors for the first (double) Bloch eigenvalue
for a circular hole with θ = 0 (periodic case)

7. Numerical results. To confirm our analysis and to check in which cases the
Bloch eigenvalues are discontinuous at the origin, we perform numerical compu-
tations in dimension d = 2 with the finite element software FreeFem++ [14]. We
compute the first and second eigenvalues and eigenvectors of (1) in a unit cell (0, 1)2

perforated by a hole T which is either a disk of radius 0.15, or an ellipsoid of prin-
cipal axes aligned with the cell axes and of half sizes 0.1, 0.2. The holes support a
Dirichlet boundary condition. The viscosity is uniform, µ(y) ≡ 1, and there is no
zero-order term, κ(y) ≡ 0. By using a rescaled dual variable ξ = 2πθ we still have
Y ′ = (0, 1)2 as the dual cell for θ. The incompressibility constraint is obtained by
penalization, i.e. instead of solving (1) we solve




Find λ(θ) ∈ R, φ 6= 0 ∈ H1
#((0, 1)2)2 such that

−D(θ) · (D(θ)φ)− νD(θ)(D(θ) · φ) = λ(θ)φ in (0, 1)2 \ T,
φ = 0, on ∂T,

(33)

with ν = 105 and D(θ) = (∇ + 2iπθ). We use P2 finite elements and a triangular
mesh with 7767 nodes for the circular hole and 7919 nodes for the ellipsoidal hole.
We checked that our results are converged both with respect to mesh refinement
and incompressibility penalization.

Figure 3. First (left) and second (right) Bloch eigenvectors for an
ellipsoidal hole with θ = 0 (periodic case)



ON BLOCH WAVES FOR THE STOKES EQUATIONS 21

The main difference between these two geometries is that, in the periodic case
θ = 0, the first eigenvalue is double for the circular hole (see Figure 2) and simple
for the ellipsoidal hole (see Figure 3). We plot the functions θ → λ1(θ), λ2(θ) on
the dual cell (−0.5,+0.5)2 with a zoom in the neighborhood (−0.05, +0.05)2 of the
origin (see Figures 4 and 5). In both cases we clearly see that the second eigenvalue
is discontinuous at θ = 0. However, only in the case of the ellipsoidal hole is the
first eigenvalue discontinuous: we see on Figure 5 that λ1(θ) is continuous in the x
direction but discontinuous in the y direction. Actually, the limit of λ1(θ) in the y
direction is precisely equal to λ2(0). We checked that higher eigenvalues (typically
the 3rd and 4th) are also discontinuous at the origin for both geometries.

Figure 4. First and second Bloch eigenvalue in Y ′ for a circular
hole: global picture (left), zoom around the origin (right)

Figure 5. First and second Bloch eigenvalue in Y ′ for an ellip-
soidal hole: global picture (left), zoom around the origin (right)

In view of these numerical simulations it seems that, for symmetric obstacles in
a Stokes flow, the first eigenvalue is ”smooth”. More precisely, we conjecture that
the first eigenvalue λ1(ε, e) of the spectral problem (12) is differentiable (again for
symmetric holes). Recall that (12) is equivalent to (33) for θ 6= 0, with 2πθ = εe
with ε ∈ R and e a unit vector in Rd. If this were true, such a result would pave the
way for the homogenization of the unsteady Stokes equations in a porous media by
using methods proposed in [4]. Finally, let us mention that this discontinuity phe-
nomenon for the Bloch eigenvalues at the origin was already numerically observed
for a different model of fluid-structure interaction in [1].
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8. Appendix. In this appendix we give the proof of Theorem 3.7, i.e. the regular-
ity in each direction e. To prove this regularity of the eigenvalues and eigenfunctions
we use the Lyapunov-Schmidt method (see [30], [8, pp. 30])

Lemma 8.1. [8, Lemma 4.1, pp. 31] Suppose that X and Z are Hilbert spaces and
A : X −→ Z is a continuous linear operator. Let U : X −→ N(A), E : Z −→ R(A)
be the orthogonal projection from X and Z on the kernel and range of A respectively.

Then, there exists a bounded linear operator K : R(A) −→ N(A)⊥ called the
right inverse of A such that

AK = I : R(A) −→ R(A), KA = I − U : X −→ N(A)⊥.

Let Λ be a closed subset of a Banach space, such that IntΛ 6= ∅. If N : X×Λ −→
Z is a continuous operator, then the problem

Ax−N(x, λ) = 0 (34)

is equivalent to the equations:

z −KEN(y + z, λ) = 0 (35)

(I − E)N(y + z, λ) = 0,

where x = y + z, y ∈ N(A) and z ∈ N(A)⊥.

Assume that the operator N verifies that

N(0, 0) = 0,
∂N

∂x
(0, 0) = 0

and consider the equation (35), for (x, λ) in a neighborhood of (0, 0) in X × Λ.
Applying the Implicit Function Theorem to (35), we deduce the existence of a
neighborhood V ⊂ N(A) × Λ of (0, 0) and a function z∗ : V −→ N(A)⊥ with the
same regularity of N providing the solution of (35). Therefore, if {y1, . . . , yh} is an
orthonormal basis of N(A), the solution x(λ) of (35) satisfies

x(λ) =
h∑

i=1

ci(λ)yi + z∗
(

h∑

i=1

ci(λ)yi, λ

)
,

for suitable coefficients c1, . . . , ch. Then, (x, λ) ∈ V satisfy (34) iff

(I − E)N

(
h∑

i=1

ci(λ)yi + z∗
(

h∑

i=1

ci(λ)yi, λ

)
, λ

)
= 0

which is a finite dimensional system of equations on the constants c1, . . . , ch.

Let us define the operator S as

S : (−ε0, ε0) −→ L
((

H1
# (Y )

)d × L2
#,0 (Y )× C;

(
H−1

# (Y )
)d

× L2
#,0 (Y )× C

)
,

with

S(ε)(ϕ, π, r) =




−D(εe) (µD (εe) ϕ) + ϕ + D(εe)π + re

D (εe) · ϕ− 1
|Y |

∫

Y

D (εe) · ϕ

e ·
∫

Y

ϕ




Clearly, we have the following result.
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Lemma 8.2. The map S is analytic in a neighborhood of ε = 0 with values in

L
((

H1
# (Y )

)d

× L2
#,0 (Y )× C;

(
H−1

# (Y )
)d

× L2
#,0 (Y )× C

)
.

Now, we define two mappings T and A by

T : H1
# (Y )d × L2

#,0 (Y )× C→ H−1
# (Y )d × L2

#,0 (Y )× C,

T (ϕ, π, r) =




ϕ
0
0




and A = S(0)− νT, with ν an eigenvalue of S(0), that is,

A : H1
# (Y )d × L2

#,0 (Y )× C→ H−1
# (Y )d × L2

#,0 (Y )× C,

A(ϕ, π, r) =




−div (µ∇ϕ) + ϕ +∇π + re− νφ
∇ · ϕ

e ·
∫

Y

ϕ.




By definition A is self-adjoint and R(A) = N(A)⊥ where N(A) is the eigenspace
associated to the eigenvalue ν of S(0).

In order to prove Theorem 3.7 we first prove that, if ν is an eigenvalue of mul-
tiplicity h, we can find a first set of eigenvalue ε → λε ∈ R, and eigenfunctions
ε −→ (φε, qε, qε

0) ∈ H1
# (Y )d×L2

#,0 (Y )×C for (12). To find the other h−1 branches
of eigenvalues and eigenfunctions, we shall apply later an iterative method.

Proposition 8.3. Assume that ν is an eigenvalue of multiplicity h of the problem
(10). Then there exists at least one function ε −→ (λε, φε, qε, qε

0) ∈ R×H1
# (Y )d ×

L2
#,0 (Y )× C, which is analytic in a neighborhood of ε = 0, such that
1. λε|(ε=0) = ν,
2. (φε, qε, qε

0) is a solution of (12) for ξ = εe, associated to the eigenvalue λε.

Proof of Proposition 8.3. Let ν be an eigenvalue of multiplicity h of the problem
(10) and let (uj , qj , q0,j), j = 1, . . . , h, be the associated eigenfunctions in H1

#(Y )d×
L2

#,0(Y ) × C such that u1, . . . , uh is orthonormal in L2
#(Y )d. By definition of the

operators S(ε) and T , (φε, qε, qε
0) is an eigenfunction associated to the eigenvalue

λε if
S(ε) (φε, qε, qε

0)− λεT (φε, qε, qε
0) = 0,

or, introducing Rε = S(0)− S(ε), equivalently if

[S(0)− νT ] (φε, qε, qε
0) = [Rε + (λε − ν)T ] (φε, qε, qε

0) . (36)

From Lemma 8.1 we know that the map A = S(0)−νT has a right inverse operator
K. Thus, in view of (36) we obtain that

(φε, qε, qε
0) = [K (Rε + (λε − ν)T )] (φε, qε, qε

0) + (ψε, πε, πε
0), (37)

where (ψε, πε, πε
0) ∈ N(A), that is,

(ψε, πε, πε
0) =

h∑

l=1

cl(ε)(ul, ql, q0,l). (38)

On the other hand, from (36)

[Rε + (λε − ν)T ] (φε, qε, qε
0) ∈ R(A) = N(A)⊥.
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Thus, introducing Qε = Rε + (λε − ν)T , we have that

0 = 〈Qε(φε, qε, qε
0), (uj , qj , q0,j)〉

=
〈
Qε [I −KQε]−1 (ψε, πε, πε

0), (uj , qj , q0,j)
〉

=

〈
Qε [I −KQε]−1

h∑

l=1

cl(ε)(ul, ql, q0,l), (uj , qj , q0,j)

〉

=
h∑

l=1

cl(ε)
〈
Qε [I −KQε]−1 (ul, ql, q0,l), (uj , qj , q0,j)

〉
,

(39)

for all j = 1, ..., h which is a linear system of equations on the unknowns cl(ε). This
system has a non trivial solution if and only if

det
(〈

Qε [I −KQε]−1 (ul, ql, q0,l), (uj , qj , q0,j)
〉)

= 0.

We replace λε − ν by α and we define R̂(ε, α) = Rε + αT,

flj(ε, α) =
〈[

R̂(ε, α)
] [

I −K
(
R̂(ε, α)

)]−1

(ul, ql, q0,l), (uj , qj , q0,j)
〉

, (40)

and
F (ε, α) = det (flj(ε, α)) . (41)

For ε small enough, the map ε −→
[
I −KR̂(ε, α)

]−1

is well defined. Indeed for

α = 0 and ε = 0 we have that
[
I −KR̂(0, 0)

]
= I and the map is analytic in a

neighborhood of ε = 0. On the other hand, as we mentioned above, if F (ε, α) = 0,
system (39) has a non trivial solution c1(ε), . . . , ch(ε), and then λε = ν + α is an
eigenvalue of (10). Moreover from (37) and (38) we deduce that

(φε, qε, qε
0) =

h∑

l=1

cl(ε) [I −K (Rε + (λε − λ)T )]−1 (ul, ql, q0,l) (42)

is an eigenfunction of (10) for ξ = εe, associated to the eigenvalue λε.

According to our previous discussion, for these values of α(ε) and setting λε =
ν+α(ε), system (39) admits a solution c1(ε), ..., ch(ε), not all the components being
zero. We have that

flj(0, α) =
〈
[αT ] [I − αKT ]−1 (ul, ql, q0,l), (uj , qj , q0,j)

〉
.

For α sufficiently small, the operator I − αKT is invertible and, moreover,

[I − αKT ]−1 =
∑

n≥0

(αKT )n = I +
∑

n≥1

αn(KT )n.

Therefore, for all l, j = 1, ..., h we have

flj(0, α) =
〈
[αT ] [I − αKT ]−1 (ul, ql, q0,l), (uj , qj , q0,j)

〉

= α 〈T (ul, ql, q0,l), (uj , qj , q0,j)〉+ α
∑

n≥1

αn 〈T (KT )n(ul, ql, q0,l), (uj , qj , q0,j)〉

= αδlj +
∑

n≥1

αn+1 〈T (KT )n(ul, ql, q0,l), (uj , qj , q0,j)〉 . (43)
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Thus
F (0, α) = αh +

∑

n≥1

snαn+h

for suitable coefficients sn, and F satisfies

∂rF

∂αr
(0, 0) = 0, r = 0, ..., h− 1;

∂hF

∂αh
(0, 0) 6= 0.

Applying Weierstrass Preparation Theorem we deduce that

F (ε, α) =
(
αh + a1(ε)αh−1 + . . . + ah(ε)

)
E(ε, α)

with E(ε, α) 6= 0 in a neighborhood of (0, 0). Then for (ε, α) small enough we have
that E(ε, α) 6= 0 and the functions aj(ε) are analytic in a neighborhood of ε = 0.
Consequently, F (ε, α) = 0 if and only if

αh + a1(ε)αh−1 + . . . + ah(ε) = 0. (44)

Let αj(ε), j = 1, . . . , h, be the complex roots of (44). According to (42) λε =
ν + α1(ε) is an eigenvalue of (10).

Note that if cj(ε) is complex, it is enough to consider the real part Rcj(ε) to get
a real eigenfunction. Since the Stokes operator is self-adjoint we have that αj(ε) is
real, which completes the proof of Proposition 8.3. ¤

Remark 8.4. Proposition 8.3 yields the existence of one branch of eigenpairs as-
sociated to the root α(ε) of (44). We do not use the eigenpairs associated to the
other roots αj by now since, so far, we do not know whether they coincide or not
with the eigenpair associated to α1(ε).

We are now equiped to finish the proof of Theorem 3.7.
Proof of Theorem 3.7. By using an iterative argument on h we prove the exis-
tence of the h analytic functions ε → (

λε
j , φ

ε
j , q

ε
j , q

ε
0,j

)
, j = 1, . . . , h, which are the

eigenvalues and eigenfunctions of (10). From Proposition 8.3 there exists at least
one analytic function ε → (

λε
1, φ

ε
1, q

ε
1, q

ε
0,1

)
defined in a neighborhood of ε = 0 with

values in R × H1
# (Y )d × L2

#,0 (Y ) × R, λε
1 being an eigenvalue of the Stokes sys-

tem, (φε
1, q

ε
1, q

ε
0,1) the corresponding eigenfunction. Therefore, Theorem 3.7 holds

for h = 1. We must prove it for h ≥ 2.
Let Π1(ε) : Vε −→ Vε be the orthogonal projection on the eigenspace generated

by φε
1. Then we define the map

B(ε) = P (ε)−Π1(ε),

where P (ε) is the composition of the Stokes operator with the projection operator
from L2

#(Y )d into Hεe. Then

B(0)uj = (P (0)−Π1(0)) uj = νuj − δ1juj ,

that is,
B(0)uj = νuj , j = 2, . . . , h,

and
B(0)u1 = (ν − 1)u1.

In other words, ν is an eigenvalue of multiplicity h−1 of the operator B = B(0) with
eigenfunctions u2, . . . , uh. There are no other linearly independent eigenfunctions
of B associated to ν. Indeed, if u is another eigenfunction of B associated to the
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eigenvalue ν such that 〈u, uj〉 = 0, j = 2, . . . , h, then 〈u, u1〉 = 0 (because u1 is an
eigenfunction associated to the eigenvalue ν − 1) and Bu = νu. Then

Pu = Bu + Π1u = Bu + 〈u, u1〉u1 = νu,

that is, u is an eigenfunction of P associated to ν and thus, ν is an eigenvalue of
multiplicity h + 1, which is impossible because the multiplicity of ν is h.

It is not difficult to see that B(ε) satisfies the same conditions of the Stokes prob-
lem (12) to apply the Lyapunov-Schmidt Method used in the proof of Proposition
8.3. Applying this method in an iterative form we obtain h − 1 analytic functions
in a neighborhood of ε = 0, ε −→ λε

j and ε −→ (
φε

j , q
ε
j , q

ε
0,j

)
, with j = 2, . . . , h such

that

B(ε)φε
j = λε

jφ
ε
j .

Moreover, the functions φε
2, . . . , φ

ε
h form an orthonormal set in Hεe. This shows us

the existence of the h branches of eigenpairs.

We now prove the last part of the theorem. Since the eigenvalues ε → λε
j are

analytic in a neighborhood of ε = 0, there exist constants ci such that
∣∣∣λε

j − λε′
j

∣∣∣ ≤ cj |ε− ε′| .

Let ν1 ≤ ν2 ≤ . . . ≤ νn . . . be the eigenvalues of the Stokes problem at ε = 0 and
assume that

. . . ≤ νn−1 < ν = νn = . . . = νn+h−1 < νn+h ≤ . . . .

Let I ⊂ R be an interval such that ν is the unique eigenvalue contained in I. Then
there exists δ > 0 such that

I ⊂ (νn−1 + δ, νn+h − δ) .

Let ε ∈ B

(
0,

δ

c

)
, with c = max {cj : j = 1, . . . , n + h}. Then

∣∣λε
n−1 − νn−1

∣∣ ≤ cn−1|ε| < cn−1
δ

c
≤ δ,

and
∣∣λε

n+h − νn+h

∣∣ ≤ cn+h|ε| < cn+h
δ

c
≤ δ.

Therefore λε
n−1 6∈ I and λε

n+h 6∈ I, that is, (11) has at most h eigenvalues contained
in I counting multiplicity. This completes the proof of Theorem 3.7. ¤
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