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Abstract

The Fourier Transform is one of the basic concepts in the mathematical analysis of partial
differential equations in Physics. As is well-known, one of its most curious properties is
the fact that it converts derivatives into multiplications. This makes it a very useful tool,
as it transforms differential equations into algebraic ones. Naturally, it also has its limits.
Particularly, it is not evident that it can be applied to differential equations with variable
coefficients, that is, in the treatment of heterogeneous media.

In this Lecture, we show one possible way to generalize the ideas of Fourier Analysis, so
as to make them accessible to the study of non-homogeneous periodic media. We would like
to generate a new technique, oriented to understanding certain mathematical phenomena in
Homogenization Theory. To do so, we use a special class of functions, known as Bloch waves,
which are commonly used in Solid State Physics. The resulting methodology is illustrated
through two applications. We see how it applies in the classical problem of homogenization
of elliptic operators in arbitrary domains of ™ with periodically oscillating coefficients. We
also use it to study the asymptotic behaviour of the spectrum of some periodic structures,
and more precisely, we consider it in the context of the wave equation in a bounded periodic
heterogeneous medium.

This Lecture reviews and unifies recent joint works of the authors [3], [6], [7], [14].
KEYWORDS : homogenization, periodic structures, Bloch waves, spectral analysis, wave
equation.

AMS CLASSIFICATION : 35A25, 35B20, 42C30.

1 Introduction

Our starting point is the spectral analysis of the operator (—A) in RY which, as usual, is
considered as an unbounded operator acting in L?(R%) and domain D(—A) = HZ(RY). Tt
i1s well-known that the spectrum of this operator consists of the non-negative real axis and
that the plane waves ¢”Y with |n|> = A can be considered as “generalized eigenfunctions”
with “eigenvalue” A > 0. These functions are not elements of L%(R¥) but they span all
of L2(RY), since they provide the spectral resolution of the identity in the sense of Fourier
inversion:

1 ; iny
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(here, f denotes the classical Fourier-Plancherel transform of f). Indeed, by means of planes
waves and Fourier analysis one can derive the full spectral resolution of (—A) (see e.g. [12],
pp. 60-61).

In this example, the medium does not vary at all since it is represented by a differential
operator with constant coefficients. In contrast with this case, we are going to analyze media
which oscillate rapidly, i.e., the case where the coefficients representing the medium have a
small period. More precisely, let us consider the operator

A= —%(akﬁ(y)a_i)a (1)

where the coefficients ay, are assumed to satisfy

ape € LO#O(Y), where Y = [0,27[V, i.e., each az is a
Y -periodic bounded measurable function defined on RY,
(2)
Ja >0 such that age(y)éxée > alé]?  (ellipticity),
age = agr Vk,I=1,...)N (symmetry).

(As usual, summation with respect to the repeated indices is understood throughout this
paper, and the constants appearing in various estimates independent of ¢ are generically
denoted by ¢).

The functions that will now play the role of generalized eigenfunctions are known as
(classical) Bloch waves. These waves were originally introduced in Solid State Physics in
the context of propagation of electrons in a crystal, see [9]. Several questions and properties
of periodic media can be translated in terms of Bloch waves. The first mathematical result
in this topic is due to I.M. Gelfand [19]. In his paper, a proof is outlined of the so-called
Parseval’s Identity for functions in LZ(RY) (see below, Theorem 1.1). The reader may refer
to the book [12] for a wide variety of applications in the vibrations of fluid-solid structures
and to the works of Allaire and Conca [3], [4], [5] who have succeeded in using these waves
to study the asymptotic behaviour of the spectrum of some periodic structures. Additional
references on Bloch waves are [8], [27], [31], [33], [39].

We are interested in the spectral resolution of A in L?(R¥). For this purpose, the
classical method of Bloch is used and it consists of introducing a family of spectral problems
parameterized by € RY: Find A = A(n) € R and ¥ = ¥(y;7n) (not identically zero) such
that

AY(m) = M(5m) i RY,
(5 1n) is (n,Y)-periodic, i.e., (3)
1/)(3/ + 27Tm; 77) — eZﬂ'im cdotn,l/)(y) Vm c ZN, y c ]RN

First of all, it is clear that the above problem remains the same if 5 is replaced by n 4+ m,
m € Z". So, there is no loss of generality in confining 7 to the cell Y/ = [0, 1[V. (In what
follows, we shall take 5 in the translated cell Y/ = [—%, %[N, again without loss of generality).
We refer to Y’ as the reciprocal cell of Y (In the Physics literature, Y’ is known as the first
Brillouin zone). Solutions ¢ of (3) are usually called Bloch waves or Bloch eigenvectors; they
can be motivated in a couple of ways, see [12] or [14]. As already mentioned, if the medium
were homogeneous, then it is classical to use plane waves €Y to solve the problem. Bloch
waves are natural generalizations of plane waves to treat periodic media.

Periodic media in one dimension were studied by Floquet [18] prior to Bloch. Following
his ansatz, we look for solutions of (3) which are products of Y-periodic functions with
solutions in the homogenized media, i.e., plane waves:

U(y;n) = € ““(y;n),  6(5n) is V-periodic. )
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This transformation maps (3) into a new problem where the parameter » appears in the
operator rather than in the boundary condition: Find A = A(n) € R and ¢ = ¢(y;n) (not
identically zero) such that

A(UW =X¢ In RN, (5)
¢ 1s Y-periodic.
Here the operator A(n) is defined by
def d . 9, .
Aln) = - (@ + ”7/«) (akz(y)(a—yZ + ZW)), (6)

and it is referred to in the literature as the shifted operator.

It is well-known that, due to ellipticity and symmetry hypothesis, the above problem (5)
admits a sequence of eigenvalues and eigenvectors (which are also referred to as Bloch eigen-
values and Bloch eigenvectors or Bloch waves, respectively) with the following properties:

M) << An(n) <0000,
{ém(;m)1e_, forms an orthonormal basis in Li(Y),
Vm > 1, An(n) defines a Lipschitz continuous function of 5 in Y.

Thanks to the above parameterized family of eigenvalues, one can completely describe the
spectral resolution of A as an unbounded, self-adjoint operator in LZ(R%). Roughly speaking,
the results are as follows: The spectrum of A, denoted ¢ (A), has a band structure and more
exactly, 1t coincides with the so-called Bloch spectrum which is defined as the union of the
images of all the mappings Ay, (+), i.e.,

def ~ .
7(A) = opioen = | [;Iel;n, Am(n),%%ﬁdm(ﬁ) : (7)
m=1

(Tt can be proved in some examples that the gaps in opjeep are not empty, see [17]). The
family
{e"Yom(y;n) [m>1, neY’}

forms a basis of L2(R”) in a generalized sense, and L?(IRY) can be identified with L2(Y”, (?(IN))
via Parseval’s Identity. This is the essence of how the spectral family of A can be constructed
(see [12]), and also the foundation of the following result, a proof of which can be found in

[8] or [12]:
Theorem 1.1. Let g € LZ(Rg). The mt® Bloch coefficient of g is defined as follows:

gm(n) = /g(y)e‘i”'yaf;m(y; ndy Ym>1 ney'
]RN

Then the following inverse formula holds:

oQ

9(y) :/Zﬁm(n)em'%m(y; n)d.
v m=1
Further, we have Parseval’s Identity:

[sar= [ 3 laminPan.

v m=1
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1.1 Classical periodic homogenization

As a first application of the Bloch decomposition method, we will show how one can reestab-
lish some of the classical results of the periodic homogenization theory in arbitrary domains.
The principal result is stated in Theorem 1.2. Although it is not new, the method sheds
new light and offers a non-traditional way of calculating the homogenized coefficients. There
are many ways to obtain these coefficients and there is a vast body of work in the literature
which justifies the limiting procedure. The basic reference is the book [8] which presents an
application of the method of multiple scale expansion to homogenization and this technique
seems to be the easiest way to obtain the homogenized medium. Justification of this method
is usually done by Tartar’s method which he developed in large part in association with
F. Murat, see [25], [36]. Their method is very general and it goes beyond the case of peri-
odically oscillating coefficients. However, if the medium is periodic, there is an alternative
procedure to pass to the limit by using the notion of two-scale weak convergence introduced
in [2] and [26].

Here we follow a different approach based on Fourier analysis and introduced in [14]. For
each ¢ > 0, let us consider the operator A°, where

X

¢ def 8 € 8 1 € =
A= g @z with k(o) = D). )

From the theory of homogenization, it is known that there is a corresponding homogenized
operator A” given by

At 3( 8). (9)

- —3xk ke 3—l‘z

The homogenized coefficients gg¢ are constants and their definition can be found, e.g., in [8]
p. 17; we will recall it later (see (19)). It is known that (gx¢) is a symmetric, positive definite
matrix: qreépée > alé)? V€ € RY, where a > 0 is the same constant appearing in (2).

Our main result regarding this subject is:
Theorem 1.2. Let Q be an arbitrary domain in RY. Let the coefficients ay; satisfy as-
sumptions (2). Suppose {u®} is a sequence in H(Q) and u* € HY(Q), f € L*(Q) are such

that
ut = u* in HY(Q)-weakly,
Afut =f in Q.
Then the stress vector o}, Lef aZz% converges weakly in L?(2) to the corresponding homog-
enized stress vector:
. ou* . 9
O — qke in L?(Q)-weakly Yk =1,..,N.

3l‘z

In particular, u* satisfies the homogenized equation, namely

Au*=f in Q.

In the above theorem, we have assumed the weak convergence of u*. This is because
a H! bound on uf is not guaranteed. However, if Q is a bounded domain and u® satisfies
certain boundary conditions (e.g. Dirichlet) on the boundary 92 in addition to the equation
Afu® = fin € such a priori estimate on u® will be a consequence of ellipticity and Poincaré
inequality. In case Q is unbounded, say Q = RY, then we do not have an estimate on u°
in HY(RY). However, if we consider A° + I instead of A°, then the bound in H!(RY) is
automatic. In these cases, we would be able to deduce the usual homogenization results. For
the sake of completeness, we announce them separately.
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Corollary 1.3. Let Q be a bounded domain in RY. Let (ay;) and f be as in Theorem 1.2.
Consider v¢ the unique solution of

A =f din Q, o° € Hi(Q).
Then
v* = 0" in HE(Q)-weakly,
ov* ov*

aiza—m - e Gy in L*(Q)-weakly Vk=1,...,N,

where v* is the unique solution satisfying
AV =§f in Q v €H;(Q). n
Corollary 1.4. Let (ag¢) and f be as in Theorem 1.2. Consider w® the unique solution of

Afwt fwt =f in BRY w e HYRY).

Then
w' = w* on HYRN)-weakly,
. ouw® Jw™
ayp s = qre Oz, in  L2(RN)-weakly Vk=1,..,N,

where w* 1is the unique solution of

Aw* +w = f in BY w* € HY(RY). a

L. Tartar proved these results using his method of homogenization and a proof is available
in [8], see also [32]. His proof handles even non-symmetric coefficients (ags). We are going
to re-prove Theorem 1.2 using the so-called Bloch-wave method. Even though we treat here
only the case of symmetric coefficients, our method has recently been enlarged to cover the
case of non-symmetric coefficients. We thus recover fully Tartar’s theorem (see [37]). Since
this is a spectral method, we are naturally led to suppose the symmetry of the coefficients
(are). The method, a version of which appeared in [34], works in the following way: the
original problem is first transformed into a set of algebraic equations in the Bloch space.
Next, it 1s shown that all Bloch harmonics corresponding to m > 2 can be neglected in the
homogenization process. This explains why oscillations present in the solution are not well
approximated by the homogenized one. Finally, we pass to the limit as ¢ tends to zero in the
first harmonic and establish that the Bloch waves representing the periodic medium approach
Fourier waves representing the homogenized medium. The latter step 1s quite straightforward
if we work in the entire space (in the case of an arbitrary domain, localization is involved and
this complicates the analysis a little bit), but it demands certain regularity of the dominant
Bloch eigenvalue near the origin. This is a technical result which is proven in [14], §2. After
passage to the limit, the limiting equation is easily interpreted as a result of homogenization
in the Fourier space. To conclude this paragraph regarding Fourier analytic approaches to
classical homogenization problems; let us mention the work by R. Morgan and I. Babusgka

[24].

1.2 Spectral asymptotic analysis

In our second application, we show how the Bloch wave method can be used to study the
asymptotic behaviour of the spectrum of some periodic structures. To simplify the expo-
sition, we present this method in the context of the wave equation in a bounded periodic

ESAIM: Proc., VoL. 3, 1998, 65-84



70

heterogeneous medium. We study the asymptotic behaviour of its spectrum as the structure
period goes to zero. As is easily inferred, the physical motivation of such a study 1s to bet-
ter understand wave propagation in periodic media, and it is well-known that this problem
often relies on the analysis of the vibrations modes of the medium. The wave equation is
just a model, in truth, our original motivation comes from more complicated models describ-
ing the vibrations of fluid-solid structures. These more physical models were proposed by
J. Planchard in the early 80’s (see e.g. [16], or [29], [30]) and extensively studied using the
Bloch-wave method in [4], [5], [12], [13], [15].

To review part of these works, let us consider an arbitrary bounded domain © in R? and,
for each & > 0, let A® be the operator defined by (8). Associated with A® we consider the
following spectral problem for the wave equation in Q: Find all couples (A*,v¥) € R x H}(Q),
v # 0, such that

ASv® = X0° in Q, o € Hy(Q). (10)

At this point, allow us a word of warning regarding the notation. In the articles just quoted,
instead of working on the eigenvalue problem associated with A°, as we do here, work is done
on the eigenvalues of (A°)~!. The only consequence of this change of convention is that the
eigen-variable A° in (10) corresponds in these references to )\—15, but of course, results in both
cases are equivalent, qualitatively.

With that in mind, let us denote by ¢° the set of eigenvalues of (10). As is well-known,
is made of a countable sequence of eigenvalues which converge to +oo and each of them
is of finite multiplicity, 1.e.,

O.E

o= [J ) with 0<Af < <A <o o0, (11)
m>1

To each Xf, is associated a normalized eigenfunction v, € L*(€2) such that ||v5, || 2(q) = 1,
and the family {vZ, }m is an orthonormal basis of L?(2). It is further well-known that, as
the period ¢ tends to zero, o° converges to the spectrum o* of the homogenized problem (see

e.g. [10], [21], [28], [38]):
Av =X v in Q, quadv € H} (),
where A* is the homogenized operator defined in (9). This is, for all m > 1,
A, — A (12)

and the corresponding eigenfunction vi, converges strongly to vy, in L?(Q), as € — 0. Here,
A is the mt* eigenvalue of the homogenized problem associated with v,,. Recall that A~ is
strictly elliptic (with the same constant appearing in (2)) and that therefore has a compact
inverse in L2(2) (see e.g. [8]). Its spectrum, denoted ¢*, is also made of a countable sequence
of eigenvalues of finite multiplicity.

Although it seems comprehensive, this convergence result does not completely describe
the asymptotic behaviour of all the sequences of eigenvalues A® that converge to +oo. In
particular, letting ¢ — 0 and m — 400 it i1s possible to construct sequences of eigenval-
ues /\jn(a) which converge to +0o and whose corresponding eigenfunctions do not converge

strongly in L?(Q). In fact, they converge to 0 weakly in L?(Q) (see [3], or [4] for a similar
case). It is therefore interesting to consider suitable renormalizations of the set ¢° and study
their asymptotic behaviour. More exactly, our goal in the remainder part of this section is
to characterize the renormalized limits of the spectrum lim,_,ge%0° where « is a positive
number. This situation is called a low frequency limat, while the classical convergence result
(12) and the strong convergence of the corresponding eigenvectors gives a high frequency
limit (It is also called macroscopic limit).
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Let us first consider the case of eigenvalues of the order of e=2 (o = 2) that, as we will see,
correspond to a critical size in the sense that the asymptotic behaviour of e?¢¢ is particular
regarding the case o # 2. First of all, let us begin by pinpointing the definition of this limit
set: By lim. 0 e?0° we mean the following set of cluster points:

lim 20 =
e—=0

\en+t ‘ 3 a subsequence, still denoted by ¢ and 3 (A%, v%),
€ solutions of (10), such that X* — A ’

The main characterization result for this renormalized limit makes use of the Bloch spec-
trum, that we define in (7) using the Bloch waves and the Bloch eigenvalues. To announce
this result, we also need to define a so-called boundary layer spectrum Gpoundary. Let us
consider a sequence of eigenvalues and eigenvectors (A, v°) solutions of (10). If, for a subse-
quence still denoted by ¢, there exists a limit A such that

||| L2y =1 and  lime?A® = X
e—0 (13)

lim [Jv*|z2(e) = 0,

for any subset w with & C €, then A is said to belong to ¢poundary. In other words, the
boundary layer spectrum 1s defined by

Cboundary = {/\ erRt |3 (A%, v°) solutions of (10) satisfying (13) } . (14)

From a physical point of view, 0youndary corresponds to sequences of eigenvectors concentrat-
ing near the boundary of 2. Comparing its definition with that of the macroscopic spectrum
O Bloch, We see that opoundary Mmay depend on the choice of the sequence e.

Our main result (announced in [6], [7]) is
Theorem 1.5.

: 2 &
lime“o® = Oboundary U o Bioch -
=0

The proof of Theorem 1.5 is sketched in §3. It relies on a notion of Bloch limiting measures
which play, more or less, the role of semi-classical (or Wigner) measures in the context of
Schrodinger equation (see e.g. [20], [22], [23], [35]). Here, as already mentioned, the scaling
€72 of the eigenvalues can be interpreted as a critical size. Indeed, for any other scaling, we
find a simpler result since there is no interaction between the period size £ and the frequency
size:

Theorem 1.6. Let a. € R be a sequence converging to 0 with € and such that, either

a. a

lim — =0, or lim = = +o0.
e—=0 € e=0 ¢

Then,

Theorem 1.6 is consistent with Weyl’s asymptotic distribution of eigenvalues for the Lapla-
cian. Indeed, if there were no periodic heterogeneities (i.e. if the coefficients ag,(y) were
constant), then Weyl’s result would imply that the renormalized limit of the spectrum is
always the entire positive half line. The reader can find a proof of Theorem 1.6 in the
forthcoming paper [3].

With Theorem 1.5 we still have the important question of how to characterize explicitly
the boundary layer spectrum. Indeed, this definition of Gpoundary is not very enlightening,
because it does not characterize this part of the limit of ¢, as the spectrum of an operator
associated with the boundary 92 of ©. In particular, it is not clear whether poundary 18
empty or included in ogjocp. There is a subtle point here : the answer depends on the choice
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of the sequence €. A striking result has recently been obtained by C. Castro and E. Zuazua
[11] when the sequence ¢ takes all real values close to 0.
Theorem 1.7. Let € be the sequence of all real numbers in the interval (0,e0) with ¢g > 0.
Then
lime?s, = RT,
=0

which means that the boundary layer spectrum Cpoundary Mmust necessarily fill the gaps of the
Bloch spectrum ogioch -
In Theorem 1.7. it is crucial that the sequence ¢ takes all possible values near 0. For a
general domain €2 and a general sequence of periods ¢, we do not know how to characterize
Tboundary- ON the contrary, if € is a discrete sequence and €2 has a piecewise flat boundary,
we obtain a complete characterization of opsundary Which may not any longer fill the gaps of
0 Bloch- The reader is referred to [3], where is considered the case where €2 is a rectangle with
integer dimensions and the sequence ¢ is given exactly by e, = 1/n, n € N*, which means
that Q is always a union of entire periodic cells of size ¢,. Suitable generalizations of the
above methods led in this case to a complete characterization of opoundary. In particular, we
generalize the two-scale convergence for treating the case of boundary layers.

Concluding this Introduction, let us mention that the Bloch wave approach has already
been applied to other spectral problems. The interested reader can find a systematic pre-
sentation of the method as well as several applications in [12]; see also [4], [5], [13], [15].

2 Classical Homogenization Results

Our plan to prove Theorem 1.2 is as follows: in §2.1, we introduce Bloch waves at e-scale and
Bloch transforms and we analyze their behaviour as ¢ — 0. Though it is not strictly rigorous,
it will be instructive to begin by considering the special case where Q@ = RV, The differential
equation Au® = f in RN can be easily transformed to a set of algebraic equations for the
Bloch transforms (see equation (17)). We show next that the energy of u° contained in all
Bloch modes except the first one goes to zero (Proposition 2.2). Our next aim is to pass
to the limit in the equation (17) corresponding to the first Bloch mode. We prove that the
first Bloch transform tends to the usual Fourier transform (Proposition 2.3). Thus, we see
that the Bloch waves representing periodic medium tend to Fourier waves representing the
homogenized medium.

As will be evident from the analysis below, the passage to the limit in equation (17)
requires smoothness of the first Bloch mode and also of the first Bloch eigenvalue when 5
is in a neighbourhood of the origin. These results have been established in [14], §2, so we
will assume that for small values of 1 one can choose ¢1(y;n) in a smooth way, and that this
choice is done in such a way that

$1(y;0) = Y72,

% is dictated by the normalization condition that the norm in

Note that the constant |Y|~
Li(Y) Is unity.

A natural question which arises in the limiting-passage step is to know what happens
to periodic oscillations if we work in the Fourier space. Without going into details let us
see this heuristically. Denote by & and 5 the variables dual to  and y in the Fourier sense.
Since the Fourier transform of a function depending on «/¢ is a function of £, we have the
relation n = ¢£. Thus, if we replace each derivative 9/0z;, as is usual in Fourier analysis,
by &; which is equal to e~';, we see that we accumulate negative powers of . In order
to overcome this, we use Taylor expansion of A1(5). We know already that A;(0) = 0. To
compensate the negative powers of ¢ and have a finite limit as ¢ — 0, we need to show that
A1 (0) also vanishes. We do this in Proposition 2.4. Once done, this shows (not rigorously
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though) that the homogenized matrix obtained in this method is nothing but £A/(0), i.e.,
% times the Hessien matrix of A; at the origin, which is already shown to be a critical point
for A1. Another purpose of Proposition 2.4 is to calculate the Hessien of A; and identify the
homogenized matrix obtained in this method with the one obtained via classical means in
[8].

In order to make the passage to the limit in (17) more rigorous, we must localize the
equation A‘u® = f in Q by means of a cut-off function, as demanded by Proposition 2.3.
This reduces the problem in Q to another one in RY for which our foregoing arguments
apply. The details are presented in §2.3.

2.1 Preliminaries for the proof of Theorem 1.2

The first step is to consider the case Q = R and express the equation A*u® = f in RV
in an equivalent way in terms of the Bloch coefficients of u® and f. In order to do this, we
introduce Bloch eigenvalues {A;, (&) }or_; and eigenvectors {¢5,(x; &) tor_; in the e-scale. By
homothecy we have:

X&) =72 An(m), 05 (25 €)=bm (s ),
where Ap, (1), ¢m (y; 1) were already introduced in §1.1 and (x,€) and (y, ) are related by

it
y=—, n=¢&k.
&

1

Hence £ € 1Y/ = [-&; [ The

Recall that y € Y = [0,2ef* and n € Y =) — £ 4[¥. SaE

following fundamental result regarding Bloch waves is proved in [12]:
Theorem 2.1. Let g € L2(RY), m € N and € € e71Y" be given. The m'* Bloch coefficient
of g (at the e-scale) is defined as follows:

Gl = [ gt e (15)
RN
Then the following inverse formula holds:
E z§x €
g(z) =€ Z Gm (8" o, (w0 €)dE.
e—1Y/ m=1

Further, we have Parseval’s Identity:

N [p@ra= [ ere

RN e-1yr M=l

More generally, Plancherel Identity holds:

E_N/ (x)h(zx)d / Z &)dé Vg,h € L*(RY). a

BN e—1yr M= 1

Thanks to the above result and the relation

A (675, (25€6)) = A5, (€)™ 75, (x5 €), (16)
we see that the equation A%u® = f in RY is equivalent to
Fn©) = X (€)a5,(6) Ym>1, VEee™ Y. (17)
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Our goal is to pass to the limit in this system. Our first claim is that one can neglect all
the equations corresponding to m > 2.
Proposition 2.2. Let

SEEE N I SEACEL AT

-1y’ m=2

Then [|v®[| 2@~y < ce.

Proof. We have
/Afufaa = /faf
RN RN

By Plancherel Identity, we deduce that

8 / Vu? > €N / N AGTAGLS
RN e—1y! m=1
_ / Zx i (€)|de.
=1y m=1

where the constant 3 is equal to maxy ¢ ||ax e||L=(v). As asimple consequence of the min-max
principle, it can be proved that
An(m) > Ao () 2 MY >0 ym>2, Wpey’,

where /\(ZN) i1s the second eigenvalue of the eigenvalue problem for A in the cell Y with

Neumann boundary condition on Y. Then

oQ

Z &)|?de < ce?.

e—1yr M=

By Parseval’s Identity, the left side is equal to ||v€||%2(]RN). This finishes the proof. =

With the aim of passing to the limit in (17) with m = 1, we now prove
Proposition 2.3. Let {¢°} be a sequence in L*(RY) and g be an element of L2(RY).
Assume that there is a fizred compact set K such that suppg® C K, Ve. Thus, if ¢ — g
in L*(RN)-weakly then eN?g5 — ¢ in LE (BN)-weakly, where g5 denotes the first Bloch
transform of ¢° and g is the usual Fourier-Plancherel transform of g.
Proof. It is understood that ¢5(£) which is apriori defined for & € e=1Y’ =] — %, %[N is
extended by zero outside e 1Y/, We write

M) = [ @l o Ei0da+ [ g @e (0122 auFi0) de (19

Since ¢ (y;0) = |V|71/% = (2m)~N2, we see that the first term is nothing but the Fourier
transform of g° and so it converges weakly to §(¢) in L2(R¥). The second term is bounded
by

1/2
lollescem [ [ 1on(5326) = on(Zi0)Pda] " < cliénie6) = 62003 )l
K

Here is where some regularity of the first Bloch mode n — ¢1(-, ) € Li (V') is required when
7 is near 0. Analyticity of this map is established in [14], but here we simply use the fact
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that the above map is Lipschitz. Thus we conclude that the second term in the right side of
(18) is bounded above by cef. Thus if || < M, we see that it is bounded above by ¢Me and
so, in particular, it converges to zero in LP° (R¥), completing the proof of Proposition 2.3.

2.2 Identification of the homogenized coefficients

The aim of this paragraph is to give a different expression for the homogenized matrix (gx¢)
in terms of the first Bloch eigenvalue A1(n). Let us recall the classical expression for (gxs)

from [8]:

1 1 Ixe
= — d — m——d k,t=1,..,N. 1
Gkl |Y|Jakz Y+ |Y|Jak Dy y v (19)

where yy, is the unique solution (defined up to an additive constant) of the following problem
with periodic boundary conditions:

Axr = % in BNy, Y-periodic, Yk =1,...,N. (20)
Ye

We then have
Proposition 2.4. The origin is a critical point of the first Bloch eigenvalue:

%(0):0 Vk=1,., N. (21)

Further, the Hessien of Ay at 1 = 0 is gwen by

l EDY
2 Ony One

(0) = Gk Vk’,gz 1, ...,N. (22)

The derivatives of the first Bloch mode can also be calculated and they are as follows:

0 gL
a;él(y; 0)=¢Y | 7xk(y) Vk=1,..,N. (23)
Mk

Proof. Given the fact that n — A1() and n — ¢1(y;n) are smooth, it is straightforward
to compute their derivatives at n = 0. Indeed, it is enough to differentiate the eigenvalue
equation A(n)e1(;n) = A (n)¢1(-;n) with respect to n twice and evaluate at n = 0. Since
the computations are classical, we only present the essential steps. We obtain

L) = (o, o)

Ok
dA(m) O\
Ok 377k

(Alm) = M(m) 5~ Cm + ——=()]1(n) =

%8?71@;7z(77) = (ared1(:5m), ¢1(+5m))
+ S5 - Gt e
* S - Gl o).

75
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We know already that A;(0) = 0 and by our choice ¢1(y;0) = |Y|_%. If we use this informa-
tion in the above relations and evaluate them at n = 0, we get successively (21), (23) and
(22). w

Before taking up the rigorous proof of Theorem 1.2, we pass to the limit in relation (17)

in a heuristic manner to see the homogenized equation obtained via Bloch-wave method. Let
us take m = 1 in (17) and multiply both sides by ¥/2:

e M ()M P ui () = <M fi (), (24)
Expanding A1 (¢€) by Taylor’s Formula around £ = 0, and using Proposition 2.4, we get

1 0%)
2 OnOne

(0)éx&e + O(e€®) | eN2us5 (€) = N2 £5 (€). (25)

A simple passage to the limit yields

1 97N

33 (Ot 1°(6) = 1(6) (26)

where, we recall, 4* is the LZ-weak limit of u®.

Thanks to (22), the above equation is nothing but the homogenized equation in the
Fourier space, 1.e., it is just the Fourier transform of the usual homogenized equation. It can
be noted that the passage to the limit here is more direct than in Tartar’s method because no
derivatives are involved in (24). However, there is one flaw in our argument of letting ¢ — 0
n (24). Strictly speaking, we cannot apply Proposition 2.3 since u® need not have uniform
compact support. A natural way to overcome this difficulty is to use the cut-off function
technique to localize the equation. This is what we carry out in the next paragraph.

2.3 Proof of Theorem 1.2
Let ¢ € D(Q) be arbitrary. If u® satisfies A°u® = f in £ then its localization ¢u® satisfies

A (¢puf) = ¢f + g5+ h° in RV, (27)
where
S T PR Sy [ S .l R
9= akﬁ@l‘z 3l‘k akz@l‘kﬁl‘zu - Uk@l‘k akz@xkﬁl‘zu’
0as., O¢
hée = — kt ¥V <
3l‘k 3l‘zu

Using the arguments outlined above leading to (26), we can pass to the limit in (27): since
¢u® is bounded in H!(RY) we can neglect all the harmonics corresponding to m > 2. The
component corresponding to m = 1 yields at the limit

1 0%)
2 OnOne

JE— N
2

(0)€€e (9u)(€) = (9)(€) + lim e

41(€) + lim = ¥ b5 (), (28)

e d

where g5, ili are the first Bloch transform of ¢° and h® respectively. The sequence {o}}
is bounded in L%(Q), we can therefore extract a subsequence (still denoted by ¢) which is
weakly convergent in L*(2). Let o} denote its limit as well as its extension by zero outside
. Using this convergence and the definition of ¢° we see that

0¢ 0%¢

ge _Yve 2mN
. M(au)ﬁxkﬁxzu in  L*(RY) weakly,

def
¢ =g = —20;
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where M(ay,) is the average of ag; on Y. From Proposition 2.3, it follows that
91(€) = g7 (&) in leoc(ﬂ%?f) weakly.

Concerning the sequence {ili}, we cannot apply Proposition 2.3 directly because A® is
not bounded in L?(R¥Y). However, following the idea of Proposition 2.3, we decompose

. - T ’ - -z
Fhie) = / B (2)e™ €61 (2, 0)da + / hE ()e~ o€ (¢1(g;5g) —61(%s 0)) dr.  (29)
RN RN
The proof of Proposition 2.3 shows that the second term in the right hand of (29) tends to

zero if the sequence is bounded in L?(R™). In fact, using the Taylor expansion of ¢1(y;7)
at 1 = 0, we see that the second term is equal to

1 [ dawe w09

3yk 2 31‘4
RN

(J:)ua(a:)e_”f {6%(;, 0)&; + 0(6252) dx

—&

which evidently converges in L{?, (Rév) strongly to

_M(ﬁau 3;&1

—3yk a; (y; 0))57 aMu e dx

RN
On the other hand, the first term of the right side of (29), after an integration by parts,

becomes / . [ 8% €+3_¢8u5 iy J¢ g} —ive (f'O)d
et 3l‘k3xzu 3l‘z 3l‘k ! k@l‘zu c ! 6’ e

RN

Since ¢1(y;0) = |Y|_%, it is easily seen that the above integral converges weakly in L?(RY)
to

-1 62¢ x —ir-€ * 3¢> —ix-€ . 3¢> x —ir-€
Y| [M(au) 3xk3xzu e dx —1—/ oy 3_m6 de — & M(age) /a—mu e dx
]RN

RN RN

Using (28) and Proposition 2.4, we arrive at

e . ) o . 1 19} .
arebrbe(Gu) () = (91)(€) — V] / Uzﬁe‘”fdx - iwrw/ a—¢ wreT e,
RN ®RN
This can be rewritten as
e e ) a . 1 5, .
AT = RN~ 1+ [ oiLemsmcas — iyt [ Soeemioia
RN RN

We can call this localized homogenized equation in the Fourier space. The conclusions of
Theorem 1.2 are easy consequences of this equation. In fact, taking inverse Fourier transform

of (30) we obtain

“(gut) = .00 0 (08 N\ i pN
A (ou") = ¢ f — o}, Era L (amu ) in RY. (31)
On the other hand, we can calculate A™(¢u*) directly:
A (pu*) = —qkzaxkamu — QqM%@xz + ¢A u* in RN (32)

77
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A simple comparison between (31) and (32) yields

oA = 1) = (g — o)

— 1 RNV,
B2y n

Since the above relation is true for all ¢ in D(Q), the desired conclusions follow. a

3 Asymptotics of the wave equation spectrum

This section is devoted to the proof of Theorem 1.5. For a better organization of the expo-
sition, we shall divide the proof into two main steps.

3.1 Bloch wave homogenization

Studying a specific spectral problem which arises in fluid-solid interactions, G. Allaire and
C. Conca recently introduced in [5] a new method of homogenization, the so-called Bloch-
wave homogenization method (which is a merge of two-scale convergence and Bloch-wave
decomposition), which has been very useful for tacking the asymptotic behaviour of the
spectrum of periodic structures. By means of this Bloch-wave homogenization, we prove in
this paragraph that

OBloch C 0. (33)

where 0™ is used as a shorthand of lim._,oz?0°. To this end, let us rewrite the spectral

problem (10) as follows: Find (pf,v%),v® # 0, such that

1
ATV 4ot = —v° in Q, o € HYD). (34)
ﬂ&'
Observe that passing from (10) to (34) leaves the eigenfunctions invariant and changes the
eigenvalues A\°, into pf, = 1/(14 ¢?X%)) and hence, pu® ~ 1 iff A* ~ =2,
To resolve (34), it is a classical technique to introduce the so-called Green’s operator
5S¢ € L(L?*(Q)) which is defined as S° f = u®, where u® is the unique solution of

SA Fut = f in Q w € HYHD). (35)

The starting point in order to characterize ¢ is to pass to the limit in (35). Well now,
it is an easy exercise in perturbation’s theory to show that u® converges weakly in L?(Q)
to f. This implies that S° converges weakly to the identity operator, which is a useless
result concerning its spectrum. This appeals to obtain a strong convergence for S* and
the main idea in obtaining this is to extend the operator S¢ by embedding L?(Q) into a
larger space of two-scale functions. Of course, the extension of S®* must be done in such
a way as to essentially maintain the same spectrum as S°. With this in mind, for any
positive integer K > 1, denoting by K'Y the cube [0, K]V, we define an extension operator
Ss € L(LA (S Li(KY))) by

Sy = E%S® P,

where P§ and E% are respectively a projection from Lz(Q;L%&(KY)) into L?(Q) and an
extension from L?(Q) into L?(; Li(KY)). To insure that S% is still self-adjoint, we ask
Pj and L% to be adjoint one from the other. To insure that S° and S% have the same
spectrum, denoted by &°, we ask the product P§ E% to be equal to the identity in L?().
Such conditions are satisfied by

n(e)
Vo € L LL(KY)),  (Piy) (z) = ;x?(x) wew [ ela!, )da,
n(e)
VfeL*(Q), (Exf)(x,y)= ; X () (x5 +ey),
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where the family (Y;")1<i<n(e) of non-overlapping cells of the type [0; KelN covers Q (x5 is
the characteristic function of Y;® and ¢ its origin).

Proposition 3.1. The sequence Sy converges strongly to a limit operator Sk in the sense
that, for any ¢(x,y) € L*(<; Li(KY)), S¢-¢ converges strongly to Sk in L*(£; Li(KY))
and Sk ¢ = ug 1is the unique solution in L*(; H#(KY)) of

Aug +ug = ¢ in Qx KY. (36)

Moreover, Sk is a self-adjoint non-compact operator in L?(; Li(KY)).
The convergence of S% to Sk cannot be uniform since S% is compact, but not Sg. Thus, from
Proposition 2.1.11 in [5] (or Proposition 1.4.10 in [12]), we deduce the lower semi-continuity
of the spectrum, i.e.,
Corollary 3.2. Let o denote the spectrum of Sk . Since S% converges strongly to Sy, we
have

ocx C limo..

=0

The key ingredient in the proof of Proposition 3.1 is the notion of two-scale convergence
introduced in [2], [26], that we briefly recall in the sequel.

Lemma 3.3. Let u® be a bounded sequence in L*(Q). Then there exists a subsequence, which
we still denote by ¢, and a limit function u®(z,y) € L*(Q x Y) such that

e—0
Q

1
lim | «®(2)p(x, g)dx = m//uo(x,y)go(x,y)dxdy
Qv
for all functions o(x,y) € L*(Q; (‘30#(Y)).
Proof of Proposition 3.1. Let ¢°(x,y) be a sequence converging weakly to ¢(z,y) in the
space L?(; Li(KY)). For any ¢ € L?(; Li(KY)), we need to show that

im [ [(Scowdnty= [ [ (swpvdsay

Q KY Q KY

By definition of S}, one has

ALN/ /(S%go)wadxdy:/(SfPf(go)(E%)*l/)adl‘:/Ua(Pfd/)a)dl‘a (37)

Q KY Q Q

where u® is the solution of (35) with right hand side f = Pj¢. Using Lemma 3.3 one can
show that u® two-scale converges “strongly” to the solution ug of (36), while the sequence
Pi4p® two-scale converges “weakly” to . Then, passing to the limit in (37) yields

ALN/ / ugdedy = ALN/ /(SKgo)lz)dxdy,

Q KY Q KY

which concludes the proof (see [5] for a more detailed proof in a similar case). =

To compute the spectrum of o, we use a discrete Bloch-wave decomposition in Li (KY)
(see [1], or Theorem 1.1 for the continuous case). This Bloch decomposition allows to diag-
onalize Sk .
Lemma 3.4. ([1]) For any function ¢(y) € Li(KY) there exists a unique family {¢;(y)} €

Li(Y)KN, indexed by a multi-index j whose N components belong to {0,..., K — 1}, such
that

)= Y ey ®,

0<j<K -1
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and

1
o [ lefas= > [l
KY

0<j<K -1

This decomposition, denoted by B, defines a unitary isometry from Li(KY) into Li(Y)KN.
From the above lemma, we easily deduce the following:
Proposition 3.5. The operator Sk can be diagonalized as

SK = (B*TK(B with TK = diag[(Tj/K)OSjSK—l]

where, for each Bloch frequency n = j/K, T, is defined in L(LZ(Q;L;Z#E(Y))) as Typ = u°,
where u® = u®(x,y) is the unique solution in L*(; H#(Y)) of

Au’ +u® = eV in Qx KY. (38)

We recognize in the operators 7;, a simple transformation of the Green’s operators asso-
ciated with the Bloch spectral problems (3) or (5). To conclude the proof of (33), it suffices
to remark that, as K goes to infinity, the discrete set of the Bloch frequencies j/K becomes
dense in Y’ (see [3] for more details). =

3.2 Completeness of the Bloch spectrum

We now address the question of whether the Bloch spectrum is enough to completely char-
acterize the limit set ¢°°. In other words, we seek for what we call a result of completeness.
Well now, it turns out in this case that the Bloch spectrum is usually not enough to describe
0 because there is another source of limiting spectrum which is not taken into account
in our analysis. This source corresponds to sequences of eigenvectors of (10) concentrating
near the boundary 99 of Q. They behave as boundary layers in the sense that they con-
verge strongly to zero inside the domain. It is therefore clear that the oscillations of these
sequences of eigenvectors cannot be captured by a usual homogenization method, neither are
they filtered in o pjocp since the Bloch waves are insensitive to the boundary.
Following this line of reasoning, we prove in this paragraph that

oo : 2 &
g = 11_13(1)6 0~ C Oboundary U o Bioch, (39)
e

where Gpoundary 15 the so-called boundary layer spectrum, which is defined in §1.2 (see (14)).
To prove (39), we consider any sequence (A°,v°) € R¥ x H} (), solutions of the spectral
problem (10), such that (up to a subsequence) there exists a limit A satisfying

€ _ : 2ye _
|v*]|L2(y =1 and 611_1366 A=A
If, for any subset w such that & C Q,
lim o 20 = 0. (40)

then, by definition, the limit eigenvalue A belongs to the boundary layer spectrum. Therefore,
to complete the proof of Theorem 1.5, it remains to prove that, if there exists a subset w
and a subsequence, still denoted by ¢, such that

lim |||y = ¢ > 0, (41)

then A belongs to the Bloch spectrum.
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Now, if assumption (41) is fulfilled, then there exists a smooth cut-off function ¢ € D(£2)
such that ¢ =1 in w, and defining a sequence
c_ v
llpvellzz(a)’

1t is easily seen that u® is a sequence of quasi-eigenvectors in the sense that it has compact
support in €, [[u®]| 2w~y = 1, and it satisfies

ATu® = Xuf +7° in RY, (42)
where ¢ € L2(R¥) is a negligible remainder term satisfying

3 = € _
Yimn (%, w%) s pye) = 0,

for any sequence w* such that ||w®||z2(q) + €| Vw®|| L2y < C.
The equation (42) in terms of the Bloch transforms reduces to

Am ()2, (ﬁ) — 2N (ﬁ) telE Y,
2 2

for all m > 1, where Jf; is the m™ Bloch coefficient of u®. Let us multiply these equations

by ¥ (n)us, (n/€), where 1, (n) is a given continuous function in (‘30#(?). Adding up on m
and integrating in 7, thanks to Plancherel Identity, we obtain the following key relation

S [ O = 201, (1) Pan = 0(e), (43)

ley,

where O(g) tends to zero with e.
For each m > 1, we associate to u® a function h¢, defined for n € Y’ by

Bi(n) = 1, (2) 2

£

Since u¢ has a unit norm in L?(R¥), by Parseval’s Identity we have

S Ml = X [ 1 (2) Pdn = [l um = 1

m>1 m2ly,

Each k¢, is therefore bounded in L!'(Y’) and the sum of their norms is equal to 1. Up to
a subsequence, there exists a family of limit Radon measures {vy,(1)}m>1 such that each
hi, converges to v, in the sense of vague measures. Of course, the limit measures are all
non-negative, but they may well be zero. We can call these Bloch-limiting measures. Let us
show that they satisfy

Z / dvp(n) = 1, (44)

m2>1ly,

which would prove that at least one of them is not identically zero. To prove (44), we use
the following discrete version of the classical dominated convergence theorem.
Lemma 3.6. For each ¢ > 0, let {aZ,}m be a sequence of real numbers such that the series

>° ag, is convergent. Assume that the following alternative couple of conditions hold:
m>1

(i) Ym>1, Jan eRY; @&, — am, ase =0,
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3 a convergent series Y. (m; laS,| < Cm VM, or
m>1

(if) V6>0, Jarankms >1; Y a5, <8 Ve

m>ms
Then the series Y aF, converges as € goes to zero and its limit is the series of the limits of
m>1
its general terms, i.e., Y dm.
m>1
Let us apply this lemma to the sequence a}, = fy, he. (n)dn. First, for each fixed m we
have

lim hin(n)dnz/dvm(n)

=0
y! y!
Next, let us assume that the second condition in (ii) is not satisfied. Then there exists § > 0,
a subsequence, still denoted by ¢, and a sequence of integers m(e), going to +oo, such that

> [ty >

m>m(e)y
Thanks to the boundedness of eVu®, by Parseval’s Identity we have

J

1 } .
M2 IV 2 5 3 [ An ) dn 2 G min A (),
6 m>1y, 6 ney

where 3 = maxy ¢ ||ax,e||Lo(v). But, this is a contradiction, since for any n € Y’

This completes the proof of (44).
Since the test function 7 and the Bloch eigenvalues A, are continuous in 7, again with
the help of Lemma 3.6 it is easily seen that one can pass to the limit in the relation (43):

5™ [ o) 3) = N o) = 0.

ley,

Since at least one of the Bloch limiting measures vy, is not trivial, there exists an energy
level m > 1 and a Bloch frequency 7 such that

A= An(n),

which finishes the proof of Theorem 1.5. =
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