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SUMMARY

A model representing the vibrations of a coupled fluid-solid structure is considered. This structure consists
of a tube bundle immersed in a slightly compressible fluid. Assuming periodic distribution of tubes, this
article describes the asymptotic nature of the vibration frequencies when the number of tubes is large. Our
investigation shows that classical homogenization of the problem is not sufficient for this purpose. Indeed,
our end result proves that the limit spectrum consists of three parts: the macro-part which comes from
homogenization, the micro-part and the boundary layer part. The last two components are new. We describe
in detail both macro- and micro-parts using the so-called Bloch wave homogenization method. Copyright
© 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The subject matter of discussion in the present work is the behaviour of vibrations of a coupled
system of fluid—solid structures governed by the so-called Helmholtz model. This model along
with its physical motivation has been studied in some detail in [1]. For the purpose of this paper,
we recall it with necessary background. Following is the physical picture to be kept in mind.

A fluid of constant density p occupies a container. The fluid assumed to be non-viscous is
slightly compressible so that disturbances in it propagate with a finite speed cop. In particular, its
velocity potential up satisfies the usual wave equation:

o 27,00 in the fluid 1

FTa — cyAug = in the fluid part (1)
For simplicity, we impose Dirichlet boundary condition, i.e.

up=0 on the walls of the container (2)
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1464 G. ALLAIRE, C. CONCA, M. VANNINATHAN

A bundle of vibrating tubes is immersed into the fluid. Before immersion, each tube independently
executes a simple harmonic vibrating motion. After immersion, the movement of the tubes is
obviously constrained by the force exerted by the surrounding fluid. Assuming that the tubes and
the container are long enough, we can write down a two-dimensional model valid on the cross-
section of the tubes and the container. Indeed, denoting by ry;(¢) the transverse displacement vector
of the jth tube, we have
2

o kg = [rnar v 3)
where m, k are positive constants representing the mass per unit length and the stiffness of the
tubes and po= po(x,1) is the pressure in the fluid. The integral in the above equation is on the
boundary of the jth tube and n is the unit normal on the boundary directed outward from the fluid
region. Apart from (3), there is yet another coupling between the fluid and the tube movements
and it is the following:

(3?,{0

——=TN;-n on the boundary of the jth tube (4)
on

To complete the picture, we impose that py and uy are related by a Bernoulli-type equation,
namely

t° +¢(t) in the fluid part (5)

where ¢(7) is a function depending only on time . As usual, to get an eigenvalue problem, one
seeks solutions which are sinusoidal in time, that is

ou
Poy=—pP—
O

ug=u(x)e', po= p(x)e'”, 1y =r;e (6)
where @ denotes the frequency of the coupled structure.

To write down the resulting eigensystem, we describe first the geometry of the cross-section. Let
(2 be a connected and bounded open set in RV with a smooth boundary I'. We wish to perform
our analysis when the tubes are periodically arranged and their number is large. To this end, let
us introduce the unit cube ¥ =]0,1[Y and let H# be a smooth, connected, simply connected and
closed subset of Y. For each value of a small parameter ¢ > 0, let Y/ and H} be the translates
of the cell ¢¥ and the hole ¢H by the vector & (i € ZV), respectively. We denote the boundary
of Hf by I'}. For the analysis below, we need to assume that €2 is such that no hole H meets
the boundary I'. We are interested in those holes which are contained in . We denote them by
{Hf|i€ Q°} where Q° C Z". It is easily seen that their total number n(¢) (= cardinality of Q%) is
of the order &~V |Q|, || being the mea=ure of €. Let us finish the description of the geometry by
noting that the cross-section of the fluid part is given by

Q"’:Q\ | 4. FY (7
I (s
An example of a domain satisfying the above requirement is the rectangle
N
Q=TI110,L[, L;eN (8)
J=1

In such a case, we can take e=1/n, ne N.
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SPECTRAL ASYMPTOTICS OF THE HELMHOLTZ MODEL 1465

With these notations, we are in a position to formulate the eigenvalue problem corresponding
to (1)-(6) and it is as follows: Find w, € C for which there exists a non-zero function #° and
t° = {ti };co- € CM(®) satisfying

cAAU + ol =0 in QF

CO—‘ =—ti-n onlyj, i€(QF

9

(k — mo))tt = (pck /6N~ )w? / u'ndy VieQ*
Iy

u'=0 onT

The appearance of various factors involving powers of ¢ is due to the fact that the tubes are of size
O(e). Consequently, we have d/0x; =O(¢™") on I'} and the Lebesgue measure on I is O(zV~").
Let us also observe that w, # 0; for if not, we see easily that #°* =0 and t* =0. An existence
result concerning problem (9) which has already been proved in [1] will be recalled below.

For the moment, let us set

ot = “_l_
o}

Let o, be the set of limit points of subsequences drawn from ¢° as ¢ — 0 and we call ¢, the
limit spectrum. The main goal of this paper is to characterize o, in simple terms. More precisely,
we seek a characterization of g, in the spirit of the results of Allaire and Conca [2, 3]. In these
works just cited, a model similar to (9) (called Laplace model) has been considered wherein the
fluid is incompressible (i.e. the propagation speed ¢y = oc). This means that there is no vibration
at all in the fluid part. The compressibility of the fluid allows vibrations in the fluid region also
and there is an interaction between these fluid vibrations and the tube vibrations. This introduces
richness in the structure of the spectrum o and the purpose of this work is to analyse it as ¢ — 0
and highlight the new features. Arguing heuristically along the same lines, we see that there will
be further interaction between the e-periodic structure defined by the tubes and the fluid if we
vary co with ¢ and take ¢y = O(¢). This aspect which is not considered here will be the subject of
discussion of a future publication.

Now, we compare this type of results with other similar results found in the literature. Analysis
of (9) as ¢ — 0 can be termed as homogenization of eigenvalues, a topic which was treated
earlier in [4, 5]. In these works, point-wise convergence of the eigenvalues has been established
and the limits have been identified as the eigenvalues of the homogenized problem. This gives
a characterization of only a part of the limit spectrum (in the above sense) corresponding to the
class of problems considered in [4, 5]. A full characterization of the limit spectrum was missing.
Here, in this paper, a complete characterization of ¢, is given. Roughly speaking, it consists of
two parts (not necessarily disjoint): interior spectrum oy, and boundary layer spectrum Gpary. The
so-called boundary layer spectrum consists of limits of eigenvaiues whose ¢igenvectors concentrate
near the boundary I' as ¢ — 0; all other limits are included in the interior spectrum.

There are at least two ways of homogenization of spectral problems of type (9): the classical
method of Bensoussan et al. [6] which provides onomo (also called macro-part of the spectrum)
and the non-standard one [1] which gives opjocn (also referred to as micro-part of the spectrum).
They differ in the manner in which the original problem is scaled and consequently they provide
apparently contradictory conclusions regarding the limit spectrum [1]. This puzzle has been resolved

J(uh,t°) # (0,0); (w?,uf, ) solves (9)} (10)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 46, 1463-1504 (1999)
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in [2, 7, 8], where the authors introduce the limit set oo (instead of point-wise limit of the
cigenvalues) and combine the two previous methods and put forward what they call Bloch wave :
homogenization method. One of their conclusions is that oiy is made up of both Ghome aNd TBioch
in the case of Laplace model. In this paper, we plan to apply the method of [2] to the spectral
problem (9) with necessary modifications.

The plan of our paper is as follows: in Section 2, we carry out two-scale convergence analysis
to find Gpomo. In Section 3, Bloch wave homogenization is used to describe opioch. The final part
is reserved to establish that the limit spectrum is made up of Ghomo, TBlach and Gugry. Each section
contains heuristic arguments before the presentation of rigorous results.

2. CLASSICAL HOMOGENIZATION OF THE HELMHOLTZ MODEL

As mentioned previously, this work is aimed at the asymptotic analysis of the Helmholtz model
(particularly the eigenfrequencies described by it) introduced in the Introduction. This model has
been proposed and studied in detail in the book [1]. For convenience, we rewrite (9) in the
following form after trivial modifications in the notation (we set st =¢"~'t}): Find [w?,uf, {s{}] ER
x H'(§F) x RV, o # 0 satisfying

AW + ol =0 in

- T
50U .

1
0 A P
Oon &V

(k — mw})si = pciw? / u'ndy VieQ’
e

si-m on re, ie@’
(11)

=0 onT

Existence of a complete set of eigenfrequencies and eigenvectors to problem (11) is obtained
in the book cited above and we will recall it below. The goal of this article is to describe the
limiting behaviour of the eigenfrequencies {w?} as ¢ — 0 and to present a simplified picture of
the entire set oo of limit points. In this section, such a task is carried out to characterize a subset
of the limit set.

Let us now discuss the various issues and difficulties involved in the above process. Usually,
eigenvalue problems such as (11) are treated by considering the associated Green operator T* which
will be introduced below. The spectrum a(T*) consists of the reciprocal of the eigenfrequencies
w? and hence we direct all our future efforts to the study of the limiting behaviour of o(T*) as

¢ — 0. For this purpose, we introduce the limit spectrum by defining
0o ={AER | JA" e a(f’:") such that A" — A as &, — 0}

This is the same as the limit set defined in the Introduction. In this work, we try to give a ;
characterization of g in simple terms. The peculiarity of the problem on hand is that the Green :
operator T¢ is not self-adjoint with respect to the standard scalar product. However, it 1s self-
adjoint with respect to a weighted scalar product which depends on the sound speed co. This has
already been noted in [1]. Thus o(T*) and hence {w?} are subsets of R. This is why, we have
taken @2 to be real in (11) without loss of generality.
Our approach to analyse the asymptotic behaviour of a(%”) consists, as a first step, of studying
the convergence properties of the operators T¢ themselves. The first obstacle, in this regard, is

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 46, 14631504 (1999)
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the variable nature of the domain and the co-domain of T°. Hence we seek to change T¢ to
another operator T¢ with fixed domain and co-domain. Of course, in doing so, we should satisfy
the following conditions:

(a) Spectrum should not be disturbed.

(b) T" must converge strongly to an operator 7. In such a case, it follows that o(T') C o, since
the spectrum depends in a lower semi-continuous manner with respect to strong convergence of
operators. Weak convergence of operators is not sufficient as it does not have any implication on
the point-wise convergence of the spectrum.

(c) The definition of T¢ is desired to be such that homogenization techniques can be applied to
study its behaviour as ¢ — 0.

There is no unique way of carrying out the above task; indeed we will construct a sequence of
such operators of which the first one is constructed in this section. It is done by enlarging the state
spaces L2(£2%) and RM(®) of fluid potentials and tube displacements in a suitable way. In [2], the
space RM(®) is enlarged to L2(©2)" by identifying RV with the subspace of functions in L*(€2)"
which are piece-wise constants with respect to the mesh {¥};co.. Viewed in this manner, a
natural choice of the space enlarging L?(£)°) seems to be L*(9)) with the identification that L*(£2°)
coincides with the space of functions in L*(£2) vanishing on the holes {H;|i<€ Q°}. However,
as shown below, this does not satisfy our requirement (b). The reason is that the corresponding
eigenvectors oscillate on two-scales and the space L*(£2) is too small to capture them. The space
L*(€2) is therefore further enlarged to the following one

LA LAY)) = {ve L(% LE (RY)), v(x, y) is Y-periodic in y}

In this write-up, the symbol # is used to mean periodicity of the functions under consideration.
The important point is that we are able to satisfy conditions (a)—(c) with the above choice.

It is to be pointed out that the above enlarged state space has been used in [7, 8] in the context
of the so-called Bloch wave homogenization method applied to the wave equation. It is somewhat
surprising to know that such a relaxation is needed already in the case of the usual homogenization
of the present problem.

Remark 2.1. The iso-spectral property stated in condition (a) above is a wonderful property. It
provides an alternative way to view the spectrum of the Helmholtz model. As we see below, an
operator having this iso-spectral property is not unique. Indeed, we will construct a sequence of
such operators 75X, K €N in Section 3. In this section, we construct first of these operators
which corresponds to K = 1. Using homogenization techniques, one can analyse each one of these
operators and this will yield complementary information on the asymptotic behaviour of the original
spectrum. This step is a new input into the asymptotic analysis of eigenvalue problems when
compared with the classical works in this area [4, 5], which considered only the associated Green
operator. We recall that these Green operators converge unifc:miuy and tic eigenvectors converge
strongly in the classical work cited above and this is used to prove that the limit of the nth
eigenvalue is equal to the nth eigenvalue of the homogenized operator. In the present case, however,
there is no uniform convergence; indeed, as we shall see, the limit operator is not compact even
though each 75X is. Further, there is no strong convergence of the associated eigenvectors. The
main advantage of the new idea mentioned above is to take into account the oscillations of the
eigenvectors at various length scales.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 46, 1463-1504 (1999)
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After this long description of the ideas and methods, let us carry out the programme step
by step.

2.1. Green operator in the Helmholtz model

In this paragraph, we introduce the Green operator T¢ associated with the problem (11). We
state its properties and recall a result giving existence and characterization of all solutions of (11).
For the proof of all assertions made here, the reader is referred to [1]. Define ,

’j-'vc . LZ(QE) X RNn(.e:) _ LZ(QE) % RNn(n)

i 1,
T°Lf {si}]= [?u'-{ﬁi}] (12)
0
where
p £ m L £
i= 1y Tsi v
c N r?uncly+ks ieQ

and u® € H'(¥) is the unique solution of

—Au* = f in ¥

%zsrn on % ieQf (13)
on

w=0 onl

The motivation to introduce the operators T® comes from the fact that its spectrum describes the
vibration frequencies of the Helmholtz model. In fact, the spectrum of T° consists of reciprocals
of w?. More precisely, we have:

Theorem 2.2. (i) Let [0?, ", {s}] € R x H'(92°) x RM™® solve (11) with u* #0. Then w, #0
and (1)w?) is an eigenvalue of T and the pair [uf,(1/w?){s}] is a corresponding eigenvector.

(ii) Conversely, if [u?,{si}] € H'(Q) x RN} is an eigenvector of T° with eigenvalue J°, then
2 > 0 and [1)45,u%,(1/25){s{}] is a solution of (11).

Next, we mention some of the main properties of T¢. Since the trace map I-L'(Q) — L2(00)
is compact, it follows that T* is compact. It has been already noted in [1] that 7° is self-adjoint
with respect to the following weighted inner product on LX) x RN);

(U st} gy {t:} ) = [Q fodr+ o

9
OCr

S - t; (14)
In the above relation and in the sequel, the usual summation convention with respect to repeated

indices is adopted. Integrating by parts, it is easily verified that T° is positive definite in the
following sense

_ 1 o
(U s Ui e= [ ]n v ax + s s,]
0 14

Here, u* is the solution of (13) associated to f and {s;}.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 46, 1463-1504 (1999)
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These informations on T° are sufficient to apply the spectral theory of compact self-adjoint
operators and deduce the following existence result.

Theorem 2.3. There exists a sequence of triplets {[w} ,.u5,{s% }1}32, such that
(i) For each ¢ =1, [} ,.ub,{w} 8% }] is a solution of (11).
(ii) The ser {[u,{s; }1}52, forms a basis of L2(2) x RN which is orthonormal in the sense
that

: ke
f u}ufndx—i— Fsﬁ‘i.s:‘"’j:é{m W’,m?l
2 0

(i) 0<w? ,<wl, < — o0,

(iv) If [w?, b, {si}] is any solution of (11), then there exists ¢ =1 such that w? =w},. There
are only finitely many ¢ with this property. Further, the pair (u’,{s}}] can be written as
a linear combination of all pairs [u,{s ;}] for which o} =w?. Thus the above triplets

provide the entire set of solutions to (11).

As seen from definition (14), the weighted inner product depends on c¢o and this is very
inconvenient if we wish to do asymptotics with respect to co. This difficulty can be overcome
(see Remark 2.7 later on).

2.2. Modified Green operator-I

We present here the first canonical attempt to modify the Green operator of the Helmholtz
model defined in Section 2.1 so that it has fixed domain and co-domain which are both equal to
L2(SY) x L2 (). 1t is shown that it does not satisfy our condition (b) introduced at the begin-
ning of Section 2. Nevertheless, its analysis motivates yet another modification which meets our
requirements and it will be presented in the next paragraph. We seek the modified operator in the

form
EE 0\_ [P 0
ri=|° 7o’ (15)
0 E° 0 P

where Ej and E° are operators of identification discussed earlier
ES: LH(SY) — L*(Q), Eif =f (extension by zero outside ©2°)
B RV 13Q)Y,  Ef{si}= ¥ sty (x)
iege i

In order to make 7} self-adjoint, we need to take Pj and P° to be operators dual to Ej and E%,
respectively. This leads us to define

Pi LA Q)= LA(¥), Pif=/la

P L2(Q)Y — RMO) pi(s(x)) = ]E-/s(x)d:c
771 Sy o

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 46, 1463-1504 (1999)
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It is then easily seen that
(E5y =P; and (E°) =¢'P* (16)

provided that the underlying spaces concerned are equipped with the usual inner products.
By using the definition of 7°, we can make the definition of 77 more explicit as follows:

T L) x LAY — LH() % e

ot g [
L) = | S|
c'a
where ¢¢ € RM®) is defined by

2 . m. . .
6, = Ei—v ]r“ un d'} + I(P‘i), Vie Q

and u* € H'(2) is the unique solution of
A =Fif in QF

au

=(Ps);-n onTIj, i€Qf (17)
u*=0 onl.
Some of the properties of the operators T} are given in our next result.

Theorem 2.4. (i) T{ is a compact operator.
(i) Tf is self-adjoint with respect to the following weighted inner product on L*(£2) x R 4

g . k[
(Lf:s], (9.t = [ Sfgdx+ — s(x) - t(x)dx (18)
JQ pcy Ja
(iii) 77 is positive definite; indeed we have
ET i / l £ /e mHN 13 Eg !
(TELAsLLSs Dw= > Vu‘-Vu‘-{-—p—P‘s-P's (19)
Cy LJor

where u* and u'* are solution of (17) with data [ f,8'] and [ f',s'], respectively.
(iv) T¢ and T have same spectra.

Proof. (1) The compactness of T} follows from that of T¢ and (15) as E° E},P* Py are all

continuous. B

(ii) The self-adjointness of 7} with respect to the scalar product (18) results from that of T} with
respect to the scalar product (14).

(iii) To prove (19), we multiply system (17) by «'° and the system satisfied by «'* by «* and we
integrate by parts. We also use (16).

(iv) Since 77 and T¢ are compact, 0 is always an element of their spectra. Thus, it is enough
to consider non-zero elements in their spectra. By compactness, they are eigenvalues of the
respective operators. Using the relations

PiEE=1 on LXQ), PE‘=I on R™" (20)

Copyright © 1999 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Engng. 46, 1463-1504 (1999)




SPECTRAL ASYMPTOT'ZS OF THE HELMHOLTZ MODEL 1471

we see that if [ £, {s;}] € L2(Q2°) x RM() is an eigenvector of T¢ with eigenvalue 4, then it is easily
verified that [ESf, E°{s;}] € L*(Q) x L*(Q)" is an eigenvector of 7}’ with the same eigenvalue /.
In the reverse direction, let [f;s] € L*(92) x L*(2)V be an eigenvector of 7} with eigenvalue 4.

If we apply the operator
P; 0
0o P

to the eigenvalue relation for 7}, we get an eigenvalue relation for T° with the same eigenvalue A
and with eigenvector [P¢ f, P’s]. Now, it is required to know that this vector is non-zero. Indeed,
since A # 0, it follows, from the definition of 7}, that [£,s] is in the image of

Ei 0
0 EF:
and so can be written as [f,s]=[ELg’, E*{t:}] for some [g¢°, {t{}]€ L*(Q") x RV Hence

[Ps f,P's]=1[g", {tj}] which is non-zero. d

Even though the modified Green operator 7} satisfies our primary requirement (a) (see the
introduction of Section 2), it does not enjoy property (b). Indeed, taking s =0, we show that

TF[£,0] does not converge strongly in L*(€2) x L*(€2)" (21)
To this end, let us denote the corresponding solution of (17) by uf, ie.
A =F;f in ¥
ou|
on
up =0 onT

—0 onl¥, ieC (22)

The convergence property of Ti[£,0] is then governed by the behaviour of uj. This is a classical
problem of homogenization with periodically perforated holes studied by Cioranescu and Saint
Jean Paulin [9]. In order to present their results, let us first introduce the so-called homogenized
matrix 4 = [Au]

Ak :/ (VW +en) (Vwy +e)dy 1<m, k<N
where w,,, | <m<N is the unique solution (defined up to an additive constant) of the following
cell-problem

—AyW, =0 in ¥*

OWy

on,

=—n, on dH (23)

wp 18 Y*-periodic

We are now in a position to announce the homogenization result for problem (22).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 46, 1463-1504 (1999)
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Theorem 2.5. There exists an extension operator X*¢ such that X°u' € HJ()) and X uf —uy
in H}(S2) weak where u, satisfies the homogenized problem

—div(4Vuy) =0f in Q
(24)
U = 0 on r
Here, 0=|Y*| is the volume of the fluid region in the unit cell Y.

In the above notation, we have Eiut = (X°$)y,.(3) and so Efyf — Qu, in L*(2) weak.
01 1 y*‘& 01

However,
/|E8u'ﬂzdx=/ Xt Py, . (5) dx — 0 [ W dx
Ja Ja r=\e Ja

Thus the convergence of Ejuj in L2(f2) is only weak and not strong. Thus we reach con-
clusion (21).

2.3. Modified Green operator-II

Since the modification of the Green operator suggested in the previous paragraph is not satisfac-
tory, we now seek yet another modification. In order to get motivated, we consider the two-scale
behaviour of Eju where uj is defined by (22). For the concept of two-scale convergence and its
properties, we refer to Allaire [10]. We have

Egu§ —*ul(x)xy_(y) weakly in [*(Q) in the sense of two scales

More precisely, we have

[ Evicos (=) 45— [ w0 dedy
Q £ JOxY

for all test functions ¢ € Z(£); Cg°(Y)). Furthermore, we have

_[(Efjupi)zdxﬁ’/ Uu%dx:_[ (). (V) dx dy
Q %] axY ¥

Thus we conclude that there is strong convergence of Eiui if we consider two scales. In this
paragraph, we exploit the above property to our advantage. Since u1(x)x,.(¥) € LA L3(Y)), the
right choice for the state space of the fluid potential seems to be L*(; L3(Y)) (and not L* ().
The correct choice for the tube displacements was already made in Section 2.1 and it is L2()V.
From the definition of E, it might look natural to consider L?(£)) as a subspace of L3S LA(Y))
by identifying f(x) as a function independent of y. Since eigenvectors oscillate on scales finer
than Q, the above identification will not be useful. That is why the following identification map
Ej ¢ (first introduced in [8]) is considered. It operates entirely in a different way.

8 L2 () — LASLLA(Y))

(B 0f 0o )= X 2GS G+ 69) &

Copyright © 1999 John Wiley & Sons, Ltd.
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where y;(x) is the characteristic function of the cell ¥ whose origin is x¢. Thus, when x varies in
Yf, E} of(x,y) depends only on y and it is a rescaled version of f on Y/. The associated dual

operator is also useful and it is defined as

Po: (5 LE(Y)) = LA(Q)

(Pad)0)= 3 z?(x)% /Y B(E)ar

Summation in (25) and (26) is taken over all those cells ¥7 which provide a covering of Q. If

there is any need, we will take f and ¢ to be zero outside §2. The expression given in (25) for

Ef o is valid for x € Q2 and y € Y. Its definition is then extended Y-periodically throughout RY.
Using these operators, we are now ready to introduce the following modification of the Green

operator and this will be the object of main concern in this section. Define

T¢: L(Q; Li(Y)) x LX) — L3 LA(Y)) x LAY

T*= Eiofy 0 T PiPig 0
0 E" 0 pe

More explicitly, we have, for [f,s] € L3(%; L2(Y)) x LX)V,

(26)

. 1 .
T°[f;s]= [2 f,5253“£~5'“}
€o

where u° is the unique solution of
—Au* = FjPi of in Q°
ou’
én
u"=0 onT

=(P’s);-n onlI}, ieQf 27)

and

: m 5 -
cﬁ:EgﬁLuﬂndHE(Pﬂs)f VieQ

Having introduced 7°, it is our task to verify that it enjoys all the properties i.e. (a)—(c)
introduced in the beginning of this section. In this paragraph, we verify (a) leaving the rest to the
next one.

Theorem 2.6. (i) T* is a compact operator.
2(ii) T*® is self-adjoint with respect to the following weighted inner product on L*(%; L3(Y)) x
LAV

k
Ushlont)= [ fadxdy+ 5 [ s tmas (28)
axy PCy Ja
(iil) T* is positive definite; indeed we have
ISl s = lz [ Vu' - V't + @(P”s)i : (Pes’),-] (29)
€o Qe p
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where u® and u'® are solutions of (27) with data | f.8] and [ f',8], respectively.
(iv) T* and T* have same spectra.

Proof. The proof proceeds along the lines of the proof of Theorem 2.4. In addition to (16) and
(20), we have to use the following properties:

(Ef,n)* = P?,sza (Pf,n)* :ET,Q

o ) (30)
Pf_nE']‘,Q =/ on L ()

which are easily checked. O

Since a(7T*) coincides with Helmholtz spectrum, we are motivated to study the asymptotic
behaviour of T* themselves and thereby establish conditions (b) and (c). Since the definition of
T* involves problem (27), our main concern will be the analysis of (27) as ¢— 0. By means
of this, we will be able to establish the strong convergence of T° towards a certain operator T
by passing to the limit in the bilinear form (29). In order to facilitate matters, in the remainder
of this paragraph, we will present a description of T* decoupling the contribution coming from
the fluid part, the solid part and the interaction between them. By linearity, problem (27) can be
decomposed into two sub-problems: u*=uj + u5 where u; and u5 are the solutions of

—Auj = PP of in
out :
P00 onr?, icg (31)
on
ui =0 onTl

—Au; =0 in
b =(Ps);-n onT?, icQ’ (32)
on

u; =0on T

Exploiting the above decomposition, it will be convenient to represent 7° in the form of a
matrix of operators. More precisely, we write

TF. Ti:
e [ ! ”} (33)
), Ty

with

Tf LA LY(Y)) — LA LY(Y)), Thf = EZ—EI‘,QEdul’
0

| -
Ty LAY — LA L3(Y)), Thys = S ELoFo

0
T : LA LY(Y)) - LA(Q)Y, T5f =E° {kri'”/ u“{ndy}
o 1"::
T : LAY - 13Q), Ts = £ -2 f uindy + 7 (P's), (34)
22 - ’ 22 kEN e 2 k 1
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It can be remarked that the operators 7Y, and T%, are Green Operators representing pure fluid
and solid vibrations, respectively, whereas the operators T}, and Ty, represent interaction between
them.

The bilinear form of 7* can also be split as follows:

(T"[f,S],[f',S'])IfQ Y(Tf’[f)f'dxder]” . J'(Tiys)dxdy

k ‘
tod [/(Tflf)'s'dX+/(Tz"zS)-s’de (35)
PCy Lo o
Each of the integral in (35) can be expressed in terms of (W, 15), (uf,ulf) and (8,8}, Indeed,
; 1
f (T{'If)f’dxdy:_zf Vil - Vi’ dx o)
OxY ¢y Joe
: i l &
/ (T1y8) f"dxdy = — Vids - Viu!® dx
Qxy ¢y Jar
0 (37)
[, T ax = L, [ounar=2 [ v e
L k IT‘ k (90
3 4 p £ ”’IEN X .
f (Ts)-s'de=F | Vg - Vg dx+ ——(P's); - (P's') (38)
Q o

Remark 2.7. 1t was already observed that 7* is self-adjoint with respect to the weighted inner
product (28) on L2((%; L3(Y)) x L*(Q)". Since this inner product depends on co, it will be very
inconvenient to work with it in case we wish to carry out asymptotics when ¢y varies with &.
Thus the question arises as to whether it is possible to work with standard inner product on
DALY N x LX)V, In general, if we change the inner product, then the self-adjointness is
lost. In the present context, it turns out that we can change 7° to T? such that 7¢ is self-adjoint

5 A

with respect to the standard inner product and 7¥ also satisfies our requirements (a)—(c) introduced

§

at the start of Section 2. In fact, such an operator 77 can be explicitly given, in matrix form, by
i p\1/2 .
Iy (f) coTy,
Tl: —

g k 112 1 e €
(;) & el Ty

Indeed, it follows from relations (36)—(38) that

14 £ k
(Tlﬁl)*:Tlel’ (Tz'z)*:Trfz and (le)*:“ozirzcl
0

when L*(; 22(Y)) and LX)V are equipped with the standard scalar products. Furthermore, it is
easily verified that 7° and 7 are similar and so they have same spectra. More precisely, we have

S

P='T!P=T* where P is the operator defined by

1 0
0 ()"
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In spite of the above considerations, throughout this article, we fix ¢y and continue to work with
the weighted scalar product (28). O

2.4. Homogenization of problem (31) “

Our main goal in Section 2 is to establish the strong convergence of T¢ and identify the limit
operator T. Since T* is defined in terms of solutions of problems (31) and (32), our main concern
will be to pass to the limit in these problems.

Because of self-adjointness of 7%, it is sufficient to pass to the limit in the quadratic form
of T*, namely (T*[f;s),[f;s]), to identify the limit operator T. This will also establish the weak
convergence of T° towards T. To prove the strong convergence, we have to pass to the limit in the
bilinear form associated with T¢, namely (T°[f,s],[f*,s"]) against weakly convergent sequences
[f°,s°]. It is then clear, from formula (29), that we will need the two-scale behaviour of the
gradients of solutions of problems (31) and (32). Problem (32) was studied in detail in [2] and
their results will be recalled in Section 2.5. For the moment, let us concentrate on the analysis of
problem (31). As mentioned above, we will need a description of the behaviour of problem (31)
as ¢ — 0 when [ varies in L2(§%; L}(Y)). For convenience, we rewrite the problem:

—Al =FPiof* in QF

%4 _0 on ré, iedf (39)
on
uj =0 onT

Comparing this problem with the one treated in [9] we see that the right-hand side in (39) is
more complicated and indeed simple weak convergence method developed in [9] does not seem
to be adequate to handle (39). As seen below, it is convenient to apply the concept of two-scale
convergence to the present situation. The crucial property needed in this process is given in our
next result which is stronger than saying that Py o —/ weakly as operators.

Proposition 2.8. Let [*— [ weakly in LG L3(Y)). Then P ft(x)— f(x,y) weakly in the
sense of two scales, i.e., we have

[ @arven(st)a [ dsdy (40)

Qx¥
for all x € 2(Q; C(Y)).
Proof. First of all, it is straightforward to show
1Pf o f ey < I lzaxry Vf € LA L(Y))

Because of this, applying the usual density arguments, it is enough to take f*(x, y) in the form of
a tensor product: [(x,y)=¢*(x)y*(y) with ¢* — ¢ in L*(Q) weak and yY* —y in Li(Y) weak.
By the same token, we can take x(x, )= 11(x)x2(y) in (40).

Next, we observe that

Plo(d ® ¥)@) =EP ) ()
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where E° and P? are defined in Section 2.2. (Strictly speaking, they are defined on vector functions.
However, the same definition holds for scalar functions as well.) Thus, we are reduced to showing
that

& DE L€ & x
e (3)una— [ IO dxdy

for all y € ().
One more reduction is possible and it consists of using the following estimate of the commutator:

E°PY(x¢°) — xE°P*¢° = O(e) in L3(N)

Owing to the above estimate, it is sufficient to show

JLEr e (Z)a— [ sepoacs ay

whenever ¢° — ¢ in L?(2) weak and y* — Y in L3(Y) weak. Since E°P*¢* is piece-wise constant,
Wwe can express

JEreron (2= [ mrewa [ v

To complete the proo, we notice that

f EP'@*(x)dx = / ¢°(x)dx
0 )
Thus we can pass to the limit easily and this proves (41) and hence the proposition. a

Before we move on to the application of the above result, let us record the following consequence
which follows immediately from the duality (30). Indeed, if f© — f in L2(S; L3(Y)) weak, then
for all x € L*(2) we have

[ 5 YXEL ), y) dx dy ] 705 Y0y dx dy
OxY QxY

Applying the above proposition to (31), we will be in a position to describe its two-scale limit.
Before announcing the result, let us write down the two-scale homogenized problem corresponding
to (31).

Find [u}, 4] € Hy () x LA H'(Y*)/R) such that

—Ayi(x,y)=0 in Qx¥*

~dive [ (Vi) + Ga(e, ) dy = [ rane na
) A ) ]

ui(x)=0 onT
[Vui(x) + Vi (x, )] -n, =0 on Q x 0H

(42)

yeY* —iy(x,y) is Y-periodic
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That the above system admits a unique solution can be seen via Lax—Milgram lemma. Further,
the two components of the solution decouple. More precisely, u; is characterized as the solution
of the following homogenized problem:

—div(AVul)zf f(x,y)dy inQ
” (43)

up =0 onT

The second component 7; is then expressed in terms of u;, separating the variables x and y, as
follows:

% o aul *
m(x,y)= 2. Wm(y’)gx—(x), x€Q, yel’, (44)

m=1

where w,, is the test function defined by the cell problem (23).

With these notations, we can now state the main result on the two-scale convergence of the
gradient of uj. We will be using, of course, the H I_prolongation operator X* of [9] which was
already used in Theorem 2.5.

Theorem 2.9. Let f°— f weakly in L*(;Li(Y)). Then the solution & of (31) has the fol-
lowing behaviour:
(i) X*ut —u weakly in Hy(SY) where uy is the solution of (43).
(ii) The gradient of u} extended by zero outside §¥, denoted Vs, converges to ZY‘( y)(Vui(x)
+ Vi (x, ) strongly in the sense of two-scales where [uy,1) solves (42).

Proof. First of all, it follows that [|Va] || 2y is bounded independent of & Thus, for a sub-
sequence, X “u] —up in H}(£?) weak. Since ’Vv'uﬁ x)= me(f)V(X ‘u?), the two-scale convergence
theory shows that Vu{(x) converges weakly to xy,( PV (x) + G (x, y)) in the sense of two
scales. The first task is to identify [u;, %] with the solution of (42).

To this end, following the method of Allaire [10], we multiply (31) by v(x) + &b(x,x/¢) with
ve @(N) and 6 € D(; C°(Y)) and integrate by parts. Passage to the limit in the left-hand side
of the resulting equation is classical. Owing to Proposition 2.8, we can pass t0 the limit in the
right side also and obtain

/ﬂ (Vuy(x) + Gyitr (x, ¥)) - (Vo(x) + Vi(x, y)) dx dy = fl f(x, y)o(x)dxdy (45)
x¥Y* Qxy*

It suffices to note that this is nothing but the variational formulation of (42).
To show that Vi converges strongly in two-scales, we have to verify

f | V5 |* dx — |'\7’u](x)+Vy1§t|()\7,y)l2 dxdy (46)
Q Qxy*

In fact, it follows from (31) that [, |Vac |2 dx = [, 1y GNP ££)(X*u%)dx and so once again
using Proposition 2.8, we get

lim / ]6’u‘{|2dx:/ f(x, y)ui(x)dxdy
e—=0 Jo QxyY=
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That the above limit coincides with the limit in (46) can be seen by taking [v, ] = [uy,4;] in (45).
Thus the verification of (46) is over. O

According to the theory developed in [10], the strong convergence of 6u',’ implies
Corollary 2.10. For any sequence {¢*} bounded in L*(Q)N and converging weakly to ¢o(x, y) €
LX QY x Y)W in the sense of two scales, we have
Vi g = [ (V) + B, )) ol )y
Jye

in the space L'(Q) with respect to the weak topology o(L',L>).

2.5. Homogenization of problem (32)

For reasons explained in the beginning of Section 2.4, we seek to describe the two-scale
behaviour of problem (32). This has already been done in [2]. Our aim in this paragraph is
to merely recall their results and cast them in our notation.

For the sake of proving strong convergence, we need to consider (32) with varying s in L2(2)V.
For convenience of the reader, we rewrite the system below.

Au; =0 in Q

g _

SZ=(P’s')m on T, e’ (47)
;=0 onT

Let us start by noting down the associated two-scale homogenized system
Find [u, ;] € Hy(Q) x LA H' (Y*)/R) satisfying
—A,f(x,y)=0 in Qxr*
—div, (Vua(x) + Via(x, y))dy = |H|div,s  in
- (48)
u(x)=0 onT
[Via(x) + Vo (x, y) — s(x)]-my, =0 on Q x 6H

yeY* sin(x, y) is Y-periodic

A weak formulation of (48) can also be given and it is as follows

[ (Vua(x) + Gy, ) - (Volx) + G (x, y)) dx dy
JOxY*

== [ s (Vo) + B y) drdy (49)
OxH

for all ve Hj(2) and 6 € 9(Q; C°(Y)).
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In a classical way, the existence and the uniqueness of solution for (48) can be established
via Lax—Milgram lemma. The structure of (48) is such that the two components (uz,12] can be
decoupled. Indeed, 2 is characterized as the solution of the homogenized system

—div(AVup) = div((] — 4)s) in Q
(50)
u =0 on D

The second component is then expressed as follows in which the yariables x and y are separated:

N 0
f(x,y)= 2 wm(y)(é—i‘z(x) —sm(x)) xeQ, yeY* (51)

m=1
We are now ready to state the main results concerning problem (47).

Theorem 2.11. Let s°—$ in LA(Q)Y weak. Then the solution u; of (47) has the following
behaviour:
(i) X'uh— w2 weakly in H}(SY) where w2 is the solution of (50).
(ii) The gradient of w5 extended by zero outside QF, namely %g, converges 1o ¥ y~( Y)Y (Vua(x)
+ iia(x, ¥)) weakly in the sense of two-scales where iy is given by (51).
(iii) If s* —sin L2V strongly, then Vi, converges 1o x},_(Y)(Vuz(x)-i— iz (%, ¥)) strongly

in the sense of two scales. In particular, we have the convergence of energies.

/ |V |? dx — ; |Vu2(x)+v,,&g(x,y)]2dxdy
& XY-

Corollary 2.12. If s" —s in LX)V strongly, then for any sequence {¢°} bounded in L)Y
and converging weakly to dolx, y)€ L x Y)V in the sense of two-scales, we have

it~ [ (Vo) + a1 »)dy

in the space L'(SY) with respect 1o the weak topology o(L',L>). a

Let us end this paragraph with the following observations. Even though s° occurred only on
the boundary of tubes in (47), the oscillation of the domain is such that at the limit we have
contribution from § in the interior of the domain as a source term (cf. (48), (50) and (51)).
Secondly, we underline the difference in the behaviour of (39) and (47): weak convergence of
data implies strong convergence of the solution in (39) whereas it implies merely weak convergence

of the solution in (47).

2.6. Description of the macroscopic limit operator

In this concluding paragraph of Section 2, we identify the limit operator T' and show that T — T
strongly as operators on L2 L3(Y)) % L2(1)Y. Having analysed the problems (31) and (32) as
¢ — 0 in the previous paragraphs, we are well equipped to carry out this task. We remark that it
is enough to pass to the limit in the bilinear form associated with T°.
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Thus, we are led to consider (T°[f,s],[f’%,s'"]) where [f;s] belongs to L3(€2: L2(Y)) x L)Y
and

LF,8 1= [f",s'] in LA LAY)) x LH)Y weak
Our task will be accomplished if we pass to the limit and express

lim (T°[£,s],[f",8"1) = (TLfisL[/"-8]) (52)

for a suitably defined operator T'.

To this end, let us denote by uf, uj, the solutions of problems (31) and (32) associated with
[/.s]. Let u{", u}’ be the corresponding solutions associated with [f’®,s'*]. Our task is to pass to
the limit in formulae (36)—(38). For this purpose, it is important to realize that the gradients of
uj, 5 converge strongly in the sense of two scales. Let [u;,u;], (2], ﬁj,-'], j=1,2 be the limits of
us, u}’:, J=1,2 as per Theorems 2.9 and 2.11. In other words, they are solutionc of (42) and (48)
with data [f,s] and [f”,s'], respectively.

Using these facts, it is easy to establish the strong convergence of T°. Indeed, we use the
expression (35) and pass to the limit in individual terms on the right side. Thus, we will be
computing the strong limits of T7,, T},, T3, T%, and hence T*. For instance, taking ¢*(x) = Vit (x)
and applying Corollary 2.10, we can pass to the limit in (36) and this gives

. € 1 ~ ’ ~

[ a@ins == [ S+ it ) (V) + s ) dxdy
QxY Cy Jaxy+

which, owing to (45), is equal to

1 .
= f 0 yYu(x) dr dy
OxY*

Co

This motivates us to define the operator T;; as follows:

it L)~ AR L), Tif = u),.() (53)
0

where u; is the solution of (43). The above arguments establish that
Tf, — T, strongly as operators on L*(€); L3(Y))

In the same manner, we can demonstrate the strong convergence of T7j,, 75, and T3, and their
limits, denoted as Ty,, Ty and Ts,, respectively, are defined as follows:

T Q)Y — LYY, Tis = w0z, 0) (54)
0

The strong limit of T3, is computed as follows: Passing to the limit in (37), we obtain

lirrg,/(Tflf)S’”dx = % (Vu(x) + Vyii(x, y)) - (Vuj(x) + Vyisy(x, y)) dedy
A0 Qxy*
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which, because of (49), is equal to

:_E/ s'(x) - (Vi (x) + Vyiis(x, y)) dxdy
k Jaxu

=2 [—(1 —0) f §(x) - Vin(x) dx + [ §(x)- a.(x,y)n(y)dy(y)dx}
k Q Q JéH

where we recall that the normal n is directed inwards H. This expression can further be simplified

using (44) and the definition of the homogenized coefficients 4. After some algebra, we find

limf(T;;’lf)s'"dx: Efs’(x)-(A — )V (x)dx
e—0 /o k 0

{

Thus the strong limit of 75, is described as
I+ Q) — QY. Tnf = 24 =DV (55)

The calculation of the strong limit of T5, is analogous. Instead of (44), we use (51). This yields
: ; p o omeY -,
hn}] (T5,s)s" dx = E ] §(x)-{(4-DHVu — (4 - OI)s} dx + lm?] —k——(P*'s),- - (P%s"%);
E— 1] 9] E—+

The above limit can be calculated because we have &Y P* = (E®)* (cf. (16)) and
Eep 1 strongly in ZL(LA()Y)

Using these, we obtain
lirra eV (P’s); - (P's*)i = / s(x) - s'(x)dx
st 0

All these computations show that the strong limit of T3, is given by

Ty : L)Y — LAY
p m (56)
Tys = I{(A — )Vuy(x) — (4 — OI)s} + 8

Here u, is the solution of problem (50).
Gathering all the information obtained above, we are now in a position to obtain (52). Indeed,
passing to the limit in (35), we get

1
lim (U5 U ™8°D = 2 ([ 7m0

xY*

g / §/(x) - {(4 — [)Vu(x) — (4 — 0Ds(x)} dx + % f s'(x) - s(x)dx]
Y] Q

where we have u = u; +u. The right hand side can be expressed as (T[£.s],[ f',s']) in terms of
the weighted inner product (28) on the product space L*(§2; L{(Y)) x L2(Q)Y where T is given by

T @ L2 L3(Y)) x L)Y — LA L3(Y)) x L)Y

1 (57)
T(f.s] = [?uxy_,%{(fl —1)Vu—(A—0I)s} + %s]
0
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In the above definition, we recall that ¥ = u; + u, is the unique solution of

—div(4Vu) = ./y S, y)dy +div((f —A)s) in (58}

u=0 onT
We have thus proved:

Theorem 2.13. The operators T}, Tf,, TS, T%, and T° defined by (33) and (34) converge
strongly and their limits are given, respectively, by (53), (54), (55), (56) and (57). O

As an easy consequence of the above result, we reach the following main conclusion of this
section:

Theorem 2.14. Given A€ a(T), there exists a sequence A" € a(T™) such that A" — i. In other
words, o(T)C 0.

For the proof of the above theorem, we refer the reader to Proposition 2.1.11 of [2]. The above
result says that the spectrum is lower semi-continuous in the operator when operator space is
equipped with strong convergence. T, being the (strong) limit of self-adjoint operators 7%, is itself
self-adjoint with respect to the inner product (28). However, T is non-compact, as is easily seen
from (57). Unlike T# (or T‘) the definition of 7 does not involve any inhomogeneities and a(T)
is easy to calculate. In this sense, the above result presents a simplified picture of a subset of
0. Since T is obtained via classical homogenization techniques, its spectrum o(7') is sometimes
denoted as Gpome-

3. BLOCH WAVE HOMOGENIZATION OF THE HELMHOLTZ MODEL

The conclusion a(7T)C 6., that is reached in the last section has its advantages. It shows that a
part (defined by o(T)) of the complicated set g, admits rather a simple description. Indeed, the
problem (57), defining 7, is straight forward to solve (unlike the problem (12) defining 7°) as
the domain on which it is posed does not involve any complicated geometry. On the other hand,
the result 6(7') C oo is not entirely satisfactory because it is, in general, a strict inclusion (as the
heuristics given below show) and so it does not provide a simplified picture of the entire set o, .
The task ahead is to get simple characterizations of other elements of o, if possible. In other
words, we are especially interested in 1 € oo, but not in (7). Of course, by definition, there
exists a sequence A" € (7" ) which converges to . When A ¢ o(T), the normalized eigenvectors
[/™,s"] of T* associated with A" should converge to zero weakly in L2(€%; L2(Y)) x L2(2)¥. (For
otherwise, -as T converges strongly, we can pass to the limit in the eigenvalue equation of T
and we see that A is an eigenvalue for 7.) This means that these eigenvectors, representing the
vibrations of fluid-solid structure, exhibit oscillations which are not captured by problem (57).
On closer examination of problem (57), we infer that the oscillations captured by it are in the
space L*(£2; LZ(Y)) and their effects can be seen in the definition of the homogenized matrix A
via the test functions w,, defined by the cell problem (23). This, in particular, shows that the only
oscillating motion that is accounted for in (57) is the one in which the fluid-solid portions in
various cells Y in the domain move ‘in phase’. Heuristically, one can imagine also configurations
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in which these portions exhibit motions ‘out of phase’. One can distinguish three types of such
motions.

Case (A). There is a possibility of grouping the (interior) cells in such a way that portions
inside each group may perform motions ‘out of phase’ but different groups exhibit motions ‘in
phase’. It is possible that all portions oscillate “out of phase’ in which case the number of groups
is just one. There is also another extreme case in which all portions move ‘in phase’ and in such
a case, the number of groups is large and equal to the number of cells Y. We realize, in no time,
that this extreme case was treated in Section 2.

Case (B). Oscillations entirely concentrate near the boundary I'.

Case (C). A mixture of configurations allowed by Cases (A) and (B) above.

It turns out that the frequencies of vibrations described in Case (C) are not needed to characterize
0o the oscillations described in Cases (A) and (B) are sufficient and they already exhaust 0.
The above statements will be confirmed rigorously in the form of a Completeness Theorem which
is proved in Section 4. Deferring a thorough study of Case (B) to a subsequent paper, it is the
goal of the present section to implement mathematically the heuristic idea involved in Case (A).

Assuming, without loss of generality, that each group is a big cube of size Ke consisting of KV
cells ¥/ (K is a given integer = 1), the above idea amounts to allowing independent movements
for the fluid—solid portions inside each Y} and work with the reference cell KY = HL]O,K [. (The
study completed is Section 2 corresponds to K = 1). Once this is accepted in principle, the analysis
parallels, to a certain extent, that of Section 2. However, there are important changes which we
wish to highlight in this section.

N Conclusion that is reached here can be roughly stated as follows: there exists a ‘simple’ operator
TK (whose structure can be made more explicit) such that 6(T¥)C 0. We then vary K eN to get

co .
Ua(T*)Cox
K=1

This is precisely the set of frequencies described in Case (A) above.

This task has been accomplished by [2] in the case of the Laplace model. We have to generalize
their method by making provisions for the vibrations of the fluid which are incorporated in the
Helmholtz model apart from the tube vibrations.

3.1. Notations

Given an integer K € N, we introduce a reference cell KY = Hfjl]O,K [ in which there are K Ay
tubes {H;} indexed by multi-integers j = (j1,j2,---»Jjn) such that each j, satisfies 0 < je<K —1.
All these tubes are identical to H introduced in the introduction and they are periodically distributed
inside KY. To each tube H;, we associate the subcell ¥; and fluid subcell Y/ analogous to ¥ and

*, respectively. We now regard our container € as a periodic domain with period &(KY). With
regard to cells &(K Y),Q is assumed to satisfy the conditions analogous to the ones introduced
carlier when K =1 in Section 1. Let {veX,¢ € 0%} be a listing of those cells &(KY) which are
completely contained in €. Let ng(e) = |0%| be the number of such cells.

For other notations and assumptions, we follow [2] as closely as possible and use them freely

as and when necessary.
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3.2. The operator T5X

The purpose of the present paragraph is to introduce the spaces containing fluid—solid movements
described in Case (A) above. Subsequent step would be to define the corresponding generalized
Green operator. While doing this exercise, let us keep in mind conditions (a)~(c) introduced at
the start of the previous section.

It is intuitively clear that independent movements of fluid-solid portions can be accommodated
only if we enlarge suitably the corresponding state spaces. Let us first take up the fluid part. Recall
that the original state space L?(£)°) for the fluid potential was enlarged to L?($2;L3(Y)) for the
analysis of Section 2. We could prove strong convergence of the fluid potential in this space (see
Theorem 2.9). Heuristically, the right choice for the state space in Case (A) seems to be

LA LE(KY)) = {v(x, y) € LA L, (RY)); v(x, -) is KY-periodic}

loc

The inner product in this space is the usual one, namely

1
u, v) = — M(.x, )’)U(Iv y) d'xdy
{ IKY| Jaxky

The corresponding extension and projection operators can be defined analogous to (25) and (26):
Ef o : LH(Q) — L} (Q; LY(KY))

. . 9
(B af)x,p) =3 22(x)f (% +ep) (59)

Pi ot LA} LY(KY)) — L2 ()

) 1 ' 4
(P qu)(x) = Zm: x,';,(x)m ]Y;,K ' (x %) &

Summation in the above definitions is taken over all cells Y%X providing a cover for . (f,v are
assumed to be extended by zero outside §2). % (x) is the characteristic function of the cell ¥=X
whose origin is x},. The following important relations are easily verified:

(60)

(Ef(,ﬂ)* = P,EK',QL» P;‘(‘”Ekn =/ on Lz(ﬂ)

Let us now turn our attention to the choice of the state space for tube displacements. Originally,
the state space was RY™®) which was enlarged to L2(2)" in Section 2 to treat a single tube in the
reference cell Y. Since now there are KV tubes, the following space suggests itself as a natural
choice: §=(L2()Y¥)X". Its elements are denoted as {s;(x)}. The corresponding extension and
projection operators are defined by

E; : RNnE) _, g Ex{si} ={s;(x)}
with

si(x)= ; 17 (x)si

Pi : S—R¥™®) Pt lsi(x)} = {s;}
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where

: /
Si=—% s;(x)dx
IY;‘Kl . Y;"K J'( )

Here, i is related to (£,)) according to formula (49) in [2], wherein the following relations are
also established:

(EL)' = 'L, PiEy=1 on R™® (61) l

The usual scalar products on S and RV are understood here. N ]
After the enlargement of the state spaces, it is now time to extend the operator T° such that ’
conditions (a)—(c) of the Section 2 are verified. Thus we introduce

oK - 12 LA(KY)) x S — LX(Q; LY(KY)) x S (62)

e (FhoB6 O\ g (FiPka 0
0 E; 0 Py

or more explicitly, let f € L*(§; LY(KY)) and {s;(x)} €S be given. We can solve the following
boundary value problem uniquely

—AuX = PPy of in (¥

auC,K £ £ . & (63)
-— =Plsf@)}-n onlp el
wK =0 onT

Then by definition, we have
e, K 1 £ e, 6K 5t &
T £ {si)H) = | ZEkafor” JEx{si}
0
where {o} € RV being associated to {s;} by

i p K m . =
= — whndy + —s; Vie
% ke ~/r“v. t k i€Q

where we have posed {s;} = Pi{s;(x)}-
The following result giving some of the desired properties of 75K is analogous to Theorem 2.6
and is derived along similar lines.

Theorem 3.1. (i) T*X is a compact operator.
(i) T>K is self-adjoint with respect to the weighted inner product

1 k
(L {s;00} L [g: {ti(0)}]) = IKY]| ./nxxy fgdxdy + ;C—% /nsj(x)‘tj(x)d-x (64)
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(iti) T%K is positive definite: indeed we have

: . ! l E. e ‘N £ ! £
(TL'K[_/, {sj_(x)}],{f” {Sj(X)}]) =3 f VH"K -Vu nK dx + %PK{S}(x)} : Pk{sf(x)}
cg Jo Py
(65)
where 15X, W*X correspond to [ f, {s;(x)}], Lf {sj(x)}] respectively via (63).

(iv) T*X and T* have same spectra.

The above result shows, in particular, that condition (a) holds, i.e. that a( 75K} is identical with
Helmholtz spectrum and so we are motivated to study the asymptotic behaviour of 75K fixing K
and letting ¢ — 0 and thereby establish conditions (b) and (c). Since the definition of 7% involves
problem (63), the main step is to analyse (63) as g£— 0. As in Section 2, we will establish that
75K converges strongly to a certain limit operator TX by passing to the limit in the bilinear form
(65). In order to simplify matters, we decompose the operators 75K by writing u5X = uo% +u5®

where ui,u3* are solutions of

~AuK = PiPyof in
au‘i‘K
on

e, K
it =0 onT

=0 onI} icQf (66)

—AutX =0 in @

e, K
du;
aon

u;‘KZO on I

=Py{sj(x)}-n onTj, i€ [0} (67)

Based on the variables (uﬁ"K,ug’K), we can express the operator 75K in the matrix form:

e, K e, K
TU’K . |:T]F] ’ TrZ }

e, K e, K
T21 s T22

where the various entries are given by the rules below:
TiK - LS5 Li(KY)) — (% Ly(KY))

1 14
TﬁKf: 75}2,950”?1(
<o
TH* 8 — L(Q; L(KY))
. 1
Th {s/(x)} = S Ek o3
0

75K L2(Q; LI(KY))— S

Tzc‘lezEf( {I(SLN Lu?xndy}
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T3 8>S

K e 5 m
Té; {Sf(x)} =Eg {}'\ZV ﬂr Hzxnd}’ + ?Si}
with {s;} = P5{s;(x)}.

The bilinear form of 7** can also be split as follows:

(T Lf (s, L {si0)}]) = (15K ) f dxedy

KY| Jaxkr

1

&, K ~f
+|KY| QxKY(TIz {Sf(x)})./ dXdy
k e, K o !
5 [T ) A8} d
Py Ja

k

o | (T s - {5} ds (68)
0 -
It will be useful if we express each of the above integrals in terms of u®, u™* and {s;(x)},
{sj(x)}:
] £,
— rrRE A dxdyf—/ vk vy  dx (69)
IKY| Joxky
1 , ! 1 ;
— (Tf';K{Sj(x)})f'dxdy=7/ Vuﬂi'K VusX dx
IKY| Joxky cg Jar

/ (T5* £) - {sj(x)} dx = % [ VX . vuPX dx,
JQ Lle

me"

[ sen - swar=4 2 [ gt o

—— Pi{s;(x)} - P {sj(x)}
(70)
Remark 3.2. Analogous to Remark 2.7, we can introduce the operator
e, K / e, K
7oK _ Ty (F)eoTy
s (g)uzLTs,K 5K
. 22
on L2(; L3(KY)) x S. One can easily verify that 74X and T} K are similar (and hence their spectra
coincide). Further 75X is self-adjoint with respect to the standard inner product

(U {5,001 [g: {00} = fgdrdy + / §,(x) - () dx

lKYl OxKY
In other words, we can remove co from the definition (64) of the inner product and transfer it
to the operator T>X. This has advantages in case we wish to do asymptotics when ¢q also varies
with &.
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‘ 3.3, Homogenization of problem (66)

(69) shows that this will be necessary to pass to the limit in the bilinear form

VANV OREADN)

TK which will bring out its structure clearly in ‘simple’ terms.
Let us therefore rewrite equation (66) with varying right side f*€ LA LAKY)):

—AuK =PiPiof" in

au(l:.K

= 1"1 : &
= 0 onl¥, i€Q

k u‘;’K =0 onT
Proposition 2.8.

sense of two-scales on defined by the cell KY. More precisely,

functions z(x, y). However, the proof remains same and so will not be repeated here.
Owing to the above result, it is straightforward to obtain the two-scale limit of (71
arguments indicated in Theorem 2.9.

In order to pass to the limit in (71), we need the following proposition which is analo

NN . . (O O
/Q(PK‘Qf W (5.3) de= e [, S ME ) dD vy € 2(% CP(KY)).

1489

The purpose of this paragraph is similar to that of Section 2.4; indeed we seek to describe the
two-scale behaviour of the gradient of solution of problem (66). A look at expressions (68) and

with weakly convergent sequences Lf", {s}*’(x)}]. (Of course, a similar analysis of problem (67) is
also necessary, but this will be done later). Once done, this will establish the strong convergence
of T{:‘,K towards a limit 7K as e —0. Ina subsequent paragraph, we will present a description of

(71)

gous to

Proposition 3.3. Let f*— f weakly in L2(2 LA(KY)). Then Piol® — f(x,y) weakly in the

The subtle difference between the above result and Proposition 2.8 lies in the choice of the test

) using the

Theorem 3.4. Let f¢— f weakly in L2(S%; L3(KY)). Then the solution u>* of (11) has the

following behaviour:

() X"~ weakly in Fy(E)

(ii) e’uTK, the gradient of u'j‘K extended by zero outside Q°, converges 10 x”_( YY) Vut (x)+

AVA iif (x,y)) strongly in the sense of two-scales. In particular, we have

1
tim | Ve P dx= = |Vl + Vi [ dxdy
e—0 ne.L ! lKY' OxKY* I B
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(iii) The couple [u¥, iff]€ Hj () x L2 HY(KY*)/R) is characterized as the solution of the

following system:

—div, [ (Vul (x)
JKY*

~A, i (x,y)=0 in QxKY"

+ Vi (x, y))dy = j fx,y)dy in Q2
.9 e

(Vi (x) + %, i (x, )] -m, =0 on Qx 3Hj, Vj (72)

uK(x) =0 onT

yeKY* — iX (x,y) is KY*-periodic

A weak formulation of (72) is useful and it is as follows:

[+ T ) (T + By dxdy= [ rndxay
OxKY* JOXKY*

(73)

for all ve H)(Q) and b€ LA HY(KY™)/R).
It is clear from (73) that we have existence and uniqueness of a solution to (72) via Lax—

Milgram Lemma. It is in the next
finish the present paragraph, let us
Vu?® in the sense of two scales.

Corollary 3.5. For any sequence

paragraph that we analyse the structure of this solution. To
draw the following consequence of the strong convergence of

{¢} C LX) converging weakly in the sense of two-scales

to ¢o(x, y) € LX(Q x KY)V, we have

Turk gt — [ (V) + % 2 (6 9)) - dolx ) dy

KY=

in the space L'(Y) provided with the weak topology o(L',L>).

3.4. Structure of the homogenized

In this paragraph, we study the s

problem (72)

tructure of the solution (15, &} ) of problem (72) obtained as

the two-scale limit of problem (71). Even though system (72) looks deceptively similar to (42),
the structure of the solution is very different. Indeed, the periodic boundary condition in (72)
does not allow us to easily separate the variables x and y via the introduction of test functions

such as wn (cf. (23), (43) and (44
followed in Section 2 and the one

)). That is where the crucial difference between the approach
to be proposed here appears. Since ﬁf is KY*-periodic, the

idea is to decompose it in terms of Bloch waves to be introduced below. This justifies the title

of this section. This method which
be briefly taken up here. Working
separate the variables x and y. The

has been applied to a class of problems in the book [1] will
in Bloch space has its own advantages; we will be able to
basic result underlying this method is the following result on

Bloch decomposition according to which any function that is KY*-periodic can be decomposed
into functions which satisfy the so-called (e*m//K; Y*) periodicity condition. More generally, let us

introduce

Copyright © 1999 John Wiley & Sons, Ltd.
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Definition 3.6. Let 0€ RY. A function we Ly (RY) is said to be (€™ Y)-periodic, or more

simply (0; Y )-periodic if
w(y +j)=e""w(y) VjezV

alternatively, if €™ Yw(y) is Y-periodic.

Such a class of functions is denoted by ~2(e?™?; ¥). Observe that this space coincides with the
class of periodic functions L(Y) when 0—0. Analogous to H,(Y), we define

Hy (™ Y) = {we H (R") | w is (e*™°; Y )-periodic}

With these notations, let us cite the result irom [1].

Lemma 3.7. We have the orthogonal decompositions

LiKY*) = @ L™K y*)
I<j<K-1

Hy(KY*) = @ H)(VK v%)
0<j<K-1

More precisely, given we Ly(KY*) (resp. H\(KY*)), there exist unique {w;} C LI(Y*) (resp.
H}(Y*) such that

wy)= 3 wiy)eiKy
0<j<K-1

Further the following Parseval’s equality holds:

1
v [ wPdy= ¥ [wi(¥)I*dy
kY~ 0<j<k—1Jy-

The interest in the above result is obvious. We will be able to reduce KY*-periodic problems
such as (72) to problems on Y*. Indeed, treating x € {) as a parameter, we decompose

&-l‘f(x, y)= Z ﬂf’j(x, y)GZJTij/K-y (74) |
0<j<Kk-1

fey)= 3 flxy)e™iKy (75)
0<j<K-1

where ﬁK‘f(x,-)EH,}(Y* ), f7(x,-)€L{(Y*). Since the above decomposition is orthogonal, the
system decouples into sub-systems for various J-components. Another observation is that when we
substitute (74), (75) into (72), the terms corresponding to ; # 0 have integrals zero. Thus we
can rewrite (72) in the Bloch space separating the components corresponding to j=0 and # 0 as
follows:

A, %%, ») =0 in Qx ¥*

—div, (vuf(x)+v;,&’f°(x,y))dy:/ fx,y)dy inQ |
& ¥ A

[Vaf () + % x, )] -n, =0 on Q x oH 7o) ﬁJ
uf(x) =0 onT 1

yeY* — if%, ) is Y*-periodic 1
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; i
—A (@ (x, ) K Y)=0 in QxY*
V(i (x, y)e?™ /Ky .n, =0 on Qx 0H (77)

yE ¥ = ﬂf‘j(x, y) is Y *-periodic

Following our usual practice (see (42), (43) and (44)), we can separate the variables x and y in
(76). We can assert that uX solves the homogenized equation:

il ko= [ £ . -
dvaviden = [ Pent=gy [ Sy ng .

u’f(x) =0 onl

Further #X'° can be expressed as
. N ol
#0x, )= 3 wa(P) 7 ()
m=1 OXm
where, we recall, w,, are solutions of the cell problems (23).
On the other hand, multiplying (77) by i (x, y)e?™U/K)7 and integrating by parts, we deduce
easily that

i, y)=0 if j#0 (79)
Thus (74) becomes

5 . bl ok
i (v, )= 806 p) = Lwm() - ()
m=1 m

Thus, in the above description, the parameter K appears only at one place and it is in the
right side of equation (78). We realize that this dependence is very weak. The crucial thing is to
observe from (79) that the oscillations are reduced to that of system (42), (43) and (44) which
corresponds to the case K =1. This is somewhat surprising: even though, we give a forcing in
(71) which admits KY -oscillations, the gradient of the solution url"K oscillates only on Y-scale.
These later oscillations, are already captured and described by our framework in Section 2. So, it
does not seem to be necessary to consider the state space L*(; LA(KY)) for the fluid potential
with K =2. (However, as will be seen in the next paragraph, the state space S =(L2()Y Y
is needed to describe tube vibrations.) Reason for this phenomenon may be that the speed of
propagation in the fluid region is co which is independent of & and hence is of O(1) as £¢—0.
Any disturbance created in the fluid region will travel fast and will not be felt in the e-scale. (The
case K = 1 seems to be an exception to this interpretation). If, however, co = O(g), then there will
be further interaction between fluid and the tubes and the whole scenario will change. This will
be investigated in a future work.

3.5. Homogenization of problem (67)

As the next step in passing to the limit in the bilinear form associated with 75K let us study

the asymptotic behaviour of (67). We will rewrite it with the data {si(x)}eS= (LAY " which
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varies with ¢

= Pi{sj(x)}-n on i, iegf (80)
u"é_’K =0 onTl

Two-scale analysis of the above system has been carried out in [2]. We briefly recall their results
in our notation. The main point is to note that, unlike (66), the system (80) exhibits oscillations on
KY-scale. These are described by the following two-scale system: Find [uf, &g] € Hy () x LAY
HY(KY*)/R) satisfying

~A, i (x,y) =0 in QxKY*
_dive | (Vi) + Vi (x, p))dy = [H| L divysj(x) in
KY* J
X 81
(Vs (x)+V, u‘;_((x,y) —s;j(x)]-my =0 on Q x 0H;,Yj (81)
uh(x) =0 onT
yeKY* — &f(x, y) is KY*-periodic

The above problem admits a variational formulation which can be written as follows:

[ O+ D) (V609 + Gy drdy

_l [ 40 T dvs@act [ X s Lﬂé(x,y)nydvdx (82)

Q 0<j<k—1 Qo< j<Kk—1

for all [, $] € HL(S2) x LA HY(KY*)/R).
One of the main results proved in [2] is the following:

Theorem 3.8. Assume the data in (80) satisfies {six)}— {sj(x)} in S weak. Then the solution
u5® has the following behaviour:

(i) XeusX —uf weakly in Hy().
(ii) Vu;;'K, the gradient of uf_‘;K extended by zero outside )°, converges (o Ly ( PVl (x)+
4 ik (x,y)) weakly in the sense of two-scales.
(i) If {sj(x)} — {sj(x)} strongly in S, then VuZ’K converges 1o xKy_(y)(Vu‘;"(x)-i-Vy i (x,9))
strongly in the sense of two-scales. In particular, we have
1
lim [ |ViEX)Pdx= = \Vik + Vi | dxdy
=0 e IKY| Jaxky
Corollary 3.9. If {s}(x)} — {s;j(x)} strongly in S, then for any sequence {¢*} — dolx,¥)€
[2(Q x KY ) weakly in the sense of two-scales, the following holds:

Vugk - ¢° — H_(Vlff(X) + Va5 (x, ) - ¢o(x, y)dy

in the space (L'(2),a(L',L>)).
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3.6. Structure of the homogenized problem (81)

Following [2], we bring out, in this paragraph, the main feature of the solution of (81). The
essential characteristic is the presence of KY-oscillations which were absent in the problem (82).
To obtain them we need to separate the variables x and y in (81). Though the system un-
der consideration resembles very much (48), the technique applied to (48) (see Section 2.5)
does not generalize to the present context. Indeed, the test functions wp(y), introduced in (23),
which are very useful in describing the oscillations in Y-scale are not enough to describe KY-
oscillations.

To overcome this difficulty, the idea is the same as in Section 3.4 and it consists of transforming
system (81) from the physical space to Bloch space. It will then be seen that the variables x and
y can be separated. Further, the method naturally introduces new test functions (wﬁ” to be defined
below) required to describe the new oscillations.

To this end, let us apply Lemma 3.7 and decompose the solution ik (x, y) of (81) (which is
KY*-periodic) in the form

T WU g el ) (83)
0<j<K-1

where 43 € L*(; H}(Y*)/R). The task before us is to identify the coefficients 43/, The canonical
idea is to expand the data {s;j(x)} in the same fashion as in (83) and substitute it in (81) to
obtain equations for ﬁf "/ This technique is successful because the decomposition in Lemma 3.7
is given in terms of orthogonal subspaces, each one of them is left invariant under differential
operators.

Since {s;(x)} is independent of y, it is natural to consider constant vectors s; eCV, for0<j
<K — 1. Associated with this set is the piece-wise constant function:

s=_ X st y€EKY

0<j<K-1
Applying Lemma 3.7 to this function, we arrive at the following discrete Bloch decomposition.

Lemma 3.10. Givens;eCV, 0<j<K-1, there is a unique set of vectors tj € cN,0<j'<
K — 1 such that

S ospO)= L temdmoro vyeky
ociek—t U 0<j/ <K-1
1
— Y IsiP= Y P (Parseval’s identity)
KN o< j<k-1 0<j <K~1

(Here, E(y) denotes the integer part of y). Indeed vectors t; are explicitly given by

1
KV o< k-

0<

5;e~ 2UIKYS
1

tj' =

The above result defines a unitary isomorphism from (CM)X" into itself, defined by the map
{s;} = {tjr}. It is denoted by # (Bloch transform) and it will be used later to describe the limit
operator.
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For the moment, denoting the image of {s;(x)} under # by {t;(x)], we obtain the following

systems for [u} ,ix%] and Lizx J . j # 0, respectively.
~Air(x,y)=0 in Qx ¥*

—div, f(vu';(x) + V@80, y))dy =|H|divte(x) in Q2
Q

[Vus (x) + V,420(x, y) — to(x)] -n, =0 on O x 0H (84)
| u¥(x)=0 onT

yeY*— ﬁ§'0(x,y) is Y*-periodic.
| LA (e )Y in 2 x Y
| Vy{ﬁf'j(x,y)ez"i(f/’()'y} -my=t;(x)-m, on x oH (85)

yE y* —>ﬁ§‘j(x,y) is Y*-periodic

: The advantage of working in Bloch space is now clear. The above systems are posed on the

single cell Y* and consequently they are easily resolved. Indeed, system (84) is identical to (86)

and so u} is the solution of the following homogenized system (cf. (88)):
—div (AViE) = div(( — A)tg) in &

uy =0 onT

(86)

Further, ﬁf‘n is expressed as (cf. (89)):
i ¥ o
iy °(x, ) = El Wm(¥) (-6;2—(16) = tUm(x))

where wy(y) are the test functions defined by the problem (23) and fom(x) is the mth component

of the vector tp(x).
To solve (85), we are naturally led to consider, for 0 # j<K —1 and m= Vs 2Ny

~A WK =0 inY*

aw,f -
on

wki(y) is (% Y*)-periodic

=n, On oH (87)

These are parametrized cell problems which generalize (23) with a newly introduced periodic
condition. These are solved in the same manner as (23).
5 Thanks to these functions, we obtain

y . N .
ﬁ;(».r(x’y)ehl(ﬂk)'y = E tjm(x)W£"'(y), d :/__ 0
m=1
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where j,(x), m=1,2,...,N are the components of t;(x). Finally, we are in a position to give a
complete resolution of (81). We announce it in the form of the following

Theorem 3.11. Let {t;(x)} be the discrete Bloch transform of {s;(x)} given by the Bloch

isomorphism . Then the solution [y ,uX] of (81) is characterized as follows:

(i) uX is the solution of (86). _
(ii) 5(x, )= TN w2 () — ton(6)} + Toet X0 lim W (7). i_

We conclude this paragraph by introducing a family of parametrized cell problems which include
(87) as a special case. For 0 RY, let wl, m=1,2,...,N be the solution of

~Aw) =0 in Y*

a 0
% =n, onoH (88)

wl is (0; Y*)-periodic

3.7. Description of the microscopic limit operator

After sufficient amount of preparation carried out in earlier paragraphs, let us turn our attention
to the central issue of Section 3. Recall that we have introduced the operator 75X in (62) whose
spectrum coincides with Helmholtz spectrum. Thus our study about the behaviour of the Helmholtz
spectrum is reduced to the asymptotics of a( 74Ky as £ — 0. Since 75X is defined in terms of the
solution u*X of problem (63), the first step is to analyze the behaviour of u>K as £ —0. In the
preceding paragraph, we have not only obtained the limit of (63) but also described the structure
of the limit in detail. The next step is to use this information to define the (weak) limit operator
TK . To this end, it is necessary to pass the limit in the quadratic form associated with 7%%. Since
weak convergence is not sufficient to assert anything worthwhile on the behaviour of the spectrum,
the third step is to establish the strong convergence 75X — TX In the present paragraph, we carry
out the last two steps in one stroke by passing to the limit in the bilinear form defined by T%K.
More precisely, we take f, f'° € L*(Q; L3(KY)) and {s;(x)}, {s}’(x)} €S such that

£ — £ weakly in L2(; LI(KY)) (59
{s](x)} — {sj(x)} weakly in §

and consider the bilinear form

(TS5 As;ON L As 01D

Our goal here is to pass to the limit in this scalar produ~t < ! svnress the limit in the form
(TELA s} U {sj (03

for a suitable linear operator TX.

To achieve this, we denote by u** and u'“X the solutions of (63) corresponding to data
[f.{s;(x)}] and [f", {s}(x)}] respectively and use the expressions (68)—(70) for the bilinear
form. Using the results established in earlier sections, we see that we can pass to the limit in
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each individual term and thereby compute the (strong) limits of Tij Vi, j=1,2. The main point
we wish to highlight in the above process is the following: We need to pass to the limit in the
intzgrals involving products of gradients of X and w*K. Since the gradient of u“X converges
strongly in two-scales, there is absolutely no problem in the passage to the limit.

For instance, let us start with TﬁK. Taking d)‘“'(x):Vuﬁ’K(x) and applying Corollary 3.5, we
can pass to the limit in (69) and we obtain

1 e, K o e 1 K
—_— (17" ) f“dxdy — —/ (Vuy(x)
K] Joar 17 a9 WL

+V,@5(x, ) - (V¥ (x) + Vi (x, y)) dx dy
which is equal, by (73), to
1

— £,y (x)dxdy
Cy JaxKr=

Thus, if we define the operator T by

TK « [2(Q; LA(KY)) — LS5 Li(KY))
N (90)

K
koK ki,
Tllf_?g_“l(x)lky.(y)

where u’,‘ is the solution of (78), then the above steps demonstrate that
5% - Tf  strongly
Using similar arguments, we can find out the strong limits of T3k, 755 and T5". Without
entering into detail, we give below the expressions for the corresponding limit operators.
TE : 8 LG LUKTY))
T {s;(0)} = %uf () ey (¥) on

where uf is the solution of (86).

TX L2 LYKY ) — S
K p K (2)
Inf= E{(A — Vi (x)}o<j<k-1
where ¥ is the solution (78). We observe that the components of the above vector are independent
of j.
In the computation of the limit of T 2':'2K, we use the duality relation (61) and the fact that
EyP; —1 strongly on §

the proof of which can be found in [2]. Indeed, these informations are needed to assert that

P s, ()} - PLAS ()} — ]ﬂ{s,-(x)} {800} dx
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It is now easy to compute the limit of TZ';’ZK and it is as follows:

Th S 8=5%8
93)
. Pk M (
TR =8+ —
S X + k]
where SX is an operator introduced in [2]:
§k.8-8
o (94)
S¥{s;(x)} = {—|H|Vu§(x)+f u?(x,y)n}.dy}
o 0<j<k-1

where [uf,45] is the solution of (81). We note that the above vector is a sum of two vectors, the
first of which has components independent of ;.
Finally, the limit of 7%¥ is expressed in the form of a matrix of operators:

TK : L2 L2(KY)) x § — LA Lg(KY)) x S
e [Th T (95)
Ty I
This operator is referred to as the microscopic limit operator associated with the Helmholtz model.

In order to bring out its structure more clearly, we make a linear change of variables in the
space S given by the Bloch isomorphism #. We have

B{s;(x)} = {t;(x)}

We obtain below the expression of TX in the variables {t;(x)} instead of {s;(x)}. First of all, i
is transformed to #SX#~!. The structure of the later has been well described in [2] and we recall
their result below.

Theorem 3.12. The operators BSX#~" acting on (L*(Q)" " decomposes into
#SK B = diag{S¥,0<j <K -1}, SfeL2L(Q").
For j=0, the operator S§ is given by
SKto=(A4 —1)Vis — (4 -0ty Vo

where u¥ is the solution of (86).
For j # 0, the operator Sf is given by a numerical matrix in the sense that

SK4(x) =4%t(x)
where the matrix A%/ is defined by

e f,, VWAV dy

wil being the solution of (87).
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Next, we turn our attention to T%. This operator is transformed to TK%~'. Since Tf; involves
only uX (see (91)), which in turn depends only on ty(x), we see that TK A~ deperds only on to
and independent of t;(x), j # 0.

With regard to TX, we see that this is transformed to BTX. When s; =s, indeperdent of j, we
have from Lemma 3.10, that

Bs,...,s}={s,0,0...0}.
Using the above property, we get

BT = %{(A ~ Vi (x),0,...,0}

where u¥ is the solution of (78).
In conclusion therefore, the operator TK is transformed to the following operator:

TK . LHOL3(KY)) x § — LA LEKY)) x S
- { 8 1887 } (96)

TK =
BTE BTHR™

with

K ¢ KN K
T f = i 1. )
0

N

Y K
TE# ™ {4(x)} = —7 1 (). ()
0

hence dependent only on to(x) and

BTK f = %{(A ~ DViE(x),0.,...,0}

BTEB " = diag{%ij,O < Fld K 1} o %1

Final remarks on the structure of the transformed operator TK are as follows: Apart from
the usual homogenized matrix A, the generalized homogenized matrices A%/ (defined in Theo-
rem 3.12) appear. Further, we need to compute uf and uX which are solutions of the homoge-
nized problems (78) and (86) respectively. The dependence on the parameter K mainly appears
in the transformation # — B% and in the definition of the test functions wﬁ'j . The oscillations
represented by these new test functions contribute through the matrices 4%/ which appear in
rather simple algebraic fashion in TK This is in contrast to the contributions of the test func-
tions w,, through the homogenized matrix A which appear in terms of the solutions of differential
equations.

Let us now summarize our main arguments in the form of the following.

Theorem 3.13. The operators 7K defined in (62) converge strongly as € — 0 to the operator
TK defined in (95) (or equivalently to TK of (96)).

Int. J. Numer. Meth. Engng. 46, 1463-1504 (1999)
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Since the spectrum is lower semi-continuous with respect to the strong convergence of the
operators (see Proposition 2.1.11 of [2]), it follows that:

Corollary 3.14. Given A€ a(?"‘ )=a( TX), there exists a sequence A" € o( TeKY such that
A" — A In other words, we have o(TX)=a(T*)C 0.

Since the above conclusion is true for all K € N, we deduce that

o0
U a(T*)C 000
K=1
This is the main assertion of this section which shows that we are able to characterize a large
part of the limit spectrum o in terms of the operators TX or TX. Their definitions (unlike that
of T*) do not involve any inhomogeneities and their spectra are straightforward to compute.
Our next result gives an important subset of a( TK) and hence contained in 0.

Theorem 3.15. Let us consider the matrix A% defined in Theorem 3.12. Then we have

BRI
0

ol

0<;
J

is a subset of the set of eigenvalues of TX and hence contained in 6.
Proof. Indeed, let us consider the eigenvalue equation associated with TX:
TELA, () = AL {0 N o}
@3 #0,0,  [f{ti(x)}] € LA LIKY)) x S

Using the definition of TX. the above system is found to be equivalent to the following three
equations:

KN

C—%[uf () y () + 85 (Ot . (D) = AS (%, ) (98)

f[(A — IV (x) + Vi (x)) — (4 — 0])to(x)] + %to(x)z Ato(x) (99)
p

i m

kAK”'tj(x) e Etj(x)zﬂ.tj(x) 0<j<K-1, j#0

The above formulation clearly shows that the each one of the variables [fto(x)], £;(x), 0 < j < K-1,
j#0 is decoupled from others. To complete the proof, it is enough to note that foreach 0 < j < K—
1, j #0, t;(x) (when it is non-zero) is an eigenvector associated with the matrix (p/k)A%/ +(m/k)I
with eigenvalue A.

Remark 3.16. Before passing on to our next point, let us make a couple of observations on (97).
Firstly, if 10, then it follows from (98) that f € L*(;L3(Y)) and so

fwndy=k* [ fey)dy

KY*

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 46, 1463-1504 (1999)




SPECTRAL ASYMPTOTICS OF THE HELMHOLTZ MODEL 15C!

With this information, equation (78) becomes

Adiv(AVuf):/ f(x,y)dy in B
re (10C)

ut =0 onT
In particular, »f is independent of K.
Secondly, if to(x)=0, then it follows from (86) that u; =0. Equation (99) then implies that

uf =0. It now follows from (98) that =0 provided A5 0. Thus to(x), in a sense, determines
uniquely f in the equation (97).

We will now refine the above result. Indeed, for [0, 1[" introduce the matrix A= (42 ) by

e f vwl . Vit dy
Y-

where w!, are defined by the cell problems (88). Let us remark that when 0= /K, 0<j<K-1,
the matrix A° coincides with 45/, Since oo is closed, it is an easy consequence of Theorem 3.15
that

IC 0 N
-_— +_ ( v

Denoting by {4 p(())}i‘,’:1 the eigenvalues of (p/k)A? + (m/k)I, we introduce

= inf A,(0 = An(0
aP ﬂEl]%,l[N P( )’ bp 0:]‘;5’[N A'p( )

We recall from [2] that A,(-) is a bounded continuous function on ]0, 1[¥. We define

N

oBloch = U [ap bp]
p=1

Since g is closed, we easily reach the conclusion that

OBloch € 0o

We name the above part micro-spectrum or Bloch spectrum.

4. COMPLETENESS OF THE LIMIT SPECTRUM

Having described the two subsets (macro-part and micro-part) of the limit spectrum oo in the
last two sections, we are now in a position to characterize it completely. It turns out that these
two components do not exhaust o; there is another one called boundary layer part which cor-
responds to the limit sequence of eigenvalues whose associated eigenvectors concentrate near the
boundary of the domain. It is important to realize that these sequences are captured neither by
the homogenization method nor by the Bloch wave method since they do not take into account a
possible interaction between the boundary and the network of the tubes. More precisely, the aim
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of this section is to establish the following completeness result:

T o0 = Thomo U TBloch U Tbdry
where Ghomo and opjocn Were defined in preceding sections and Gpqry is defined as follows:
ooy = {AER|INER, IS, 5]€ LA LA(Y)) x LAY
10581 =1, £5—0 in LP(Q;LE(Y)) weak
¢ —0 in LA weak, Yo C CQ, |Is°[l12w) — 0
and T°[f%,8"]=A"[/",s°]}

We refer to opary as the boundary layer spectrum. We notice that as in the case of Ggioch, Tbdry 1S
also defined in terms of the behaviour of the tube displacements near the boundary. Fluid vibrations
do not play a crucial role here.

(101)

Theorem 4.1. The limit spectrum in the case of Helmholtz model is made up of three parts:
the homogenized, the Bloch and the boundary layer spectra, Le.

050 = Ohomo \ TBloch U Tbdry (102)

Proof. The results of the previous sections and the very definition of @ugry imply that the right-
hand side of (102) is a subset of d. The proof of the reverse inclusion consists in passing to
the limit in the spectral equation of the Helmholtz model:

oL s = A58 ISl =1 (103)
Extracting a subsequence, we can assume that
ff—f in LYH(Q; LA(Y)) weak
s* —s in L} ()Y weak
A= A€o0

Several cases have to be considered. Since 0 € Opomo, WE can, without loss of generality, suppose
that A #0.

Case (i). Assume s# 0. Since 7° converges to T strongly and T° and T are self-adjoint, we
can easily pass to the limit in (103) and obtain

T[f.s]=AL/s] (104)

Since s # 0, this implies that /4 is an eigenvalue of T. In particular, A € Ohomo-
Case (ii). Assume s=0. Owing to the specific nature of the problem, we will now show that

f=0 (105)
Furthermore, we have strong convergence, i.e.

£5—0 in LA LEY)) (106)
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With s =0, the second component of equation (104) can be rewritten as (see (57))
(A = I)Vlh =0

where 1y is solution (41). It is well known from the classical estimates on the homogenized matrix
that 4 and (/ — A) are both positive definite matrices. As a consequence, we get Vu; =0 and
hence u; =0. Now, applying the definition of T3, we have
4 o1
Af=Tuf= ;j“l(x)xy,(y):()
0
whence f =0. This proves (105).
Next, we move on to prove the strong convergence (106). To this end, let us consider the first
component of (103):

TII:l.f'!: + T{‘.ZSJ: — Aﬁf'ﬂ

Using the definitions of T}, and TT, the above equation can be recast as follows:

1, e e

?El‘_QE{;[u‘,’ +u5]=4fF (107)
0

Since f¢—0 in L34 L3(Y)) weak, owing to Theorem 2.9, we get X¢ué —0 in Hy(2) weak.
Since s — 0 in LX(£2)V weak, using Theorem 2.11, we get X — 0 in Hg(€) weak. If we use
these convergence properties in (107) and the fact that E g is an isometry, we immediately get
(106).

The above analysis shows that f* does not oscillate at all. This suggests that we must consider
subcases depending on the behaviour of s°. Following two subcases arise according to whether the
energy of s° concentrates near the boundary I' or not.

Case (ii)(a). In addition to s=0 and f =0, we suppose further that

lll’!(l) HS{;H[}(w) :0 Vw CC Q
E—

In this case, by the very definition of Gpary, We get A € Obdry-
Case (ii)(b). In addition to s=0, f=0 and (106), we suppose that there exists @ C C §2 such
that

}l_% HSE“U(M):“ >0

Here, we conclude that 4 € OBioch- Indeed, let us consider the second component of (103):
Ths' = A's" — T5, f° (108)

Since T}, is bounded, it follows that T3, f ¢_,0 in LA()". Thus the last term can be neglected
in the convergence analysis. The operator T3, acts on tube displacements only and thus the study
of (108) is done in [2]. Applying their analysis (see step 3 of the proof of Theorem 3.2.9), we
conclude that 4 € Gpjoch. This completes the proof of our theorem. O
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5. FINAL CONCLUSION

In this article, we described the asymptotic behaviour of the vibration frequencies of a periodic
tube-bundle immersed in a slightly compressible fluid when the number of tubes is large (or
equivalently, the period is small). Indeed, as the period goes to zero, an asymptotic analysis of
the spectrum of such a coupled structure was performed with the help of a new method, the
so-called Bloch-wave homogenization method which is a blend of two-scale convergence, Bloch
wave decomposition, and classical homogenization techniques. Our main result proves that the
limiting spectrum is made of three parts; each one having a very clear engineering meaning: the
macroscopic or homogenized spectrum, the microscopic or Bloch spectrum, and the boundary-layer
spectrum.
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