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Abstract

This paper deals with the homogenization of the Stokes or Navier-Stokes equations in a domain
containing periodically distributed obstacles, with a slip boundary condition (i.e., the normal component
of the velocity is equal to zero, while the tangential velocity is proportional to the tangential component
of the normal stress). We generalize our previous results (see {1]) established in the case of a Dirichlet
boundary condition; in particular, for a so-called critical size of the obstacles (equal to ¢* in the three-
dimensional case, ¢ being the inter-hole distance), we prove the convergence of the homogenization
process to a Brinkman-type law.

1. Introduction

In a recent article (see [1]) we addressed the problem of the homogenization
of the Stokes or Navier-Stokes equations, with a Dirichlet boundary condition, in
open sets perforated with tiny holes. The present paper is devoted to the general-
ization of that previous study to the case of a slip boundary condition (the normal
component of the velocity is equal to zero, but the tangential component is pro-
portional to the tangential component of the normal stress ). Roughly speaking, all
the results of [1] still hold true, including the construction of an extension of the
pressure, and the three different limit regimes ( Darcy, Brinkman, Stokes). In both
cases the critical size of the holes (leading to the homogenized Brinkman-type law)
is the same, but the matrix M which appears in the limit is different. From a
mathematical view point this paper shows that the same type of results are obtained
either if all the N components of the velocity are equal to zero on the boundary of
the obstacles (Dirichlet boundary condition in [1]), or if the single normal com-
ponent is equal to zero (slip boundary condition in the present case). From a
physical view point it shows that the slowing effect of the obstacles is mainiy due
to the fact that the fluid does not penetrate them (zero normal component of the
velocity ), rather than to the fact that it sticks to the obstacles because of the viscosity
(no-slip or Dirichlet boundary condition ). Though the results of the present paper
are similar to those of [1], the generalization of their proof is not trivial. Some new
technical lemmas are required in order to carry out the machinery of [1]. For
example, the extension of the velocity is no longer obvious, and we construct it
following an idea of C. Conca (see [11]), D. Cioranescu and J. Saint Jean Paulin
(see [10]), and L. Tartar (see [27]). Also, due to the presence of the symmetric
stress tensor in the boundary condition, the variational formulation of the Stokes
equations is different from that in [1], and its coercivity is proved through a Korn-
type inequality. Besides recovering the results of [1] for the more restrictive case of
a slip boundary condition, we present here a new result concerning the local problem
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in the two-dimensional case. As already pointed out in [1], the 2-D case is completely
different from the other ones. We complete our previous study [1] by introducing
the precise form of the local problem in the plane. This yields a clearer proof of
the paradoxical two-dimensional result which is linked to the well-known Stokes
paradox and to the Finn-Smith paradox; see [13]. Finally, the exposition is here
more simple (and less general) than in [1]; several technical lemmas are merely
quoted, and we refer to [1] for their proof. ,

We turn now to a brief survey of our main result. We represent solid obsta-
cles in a fluid flow by holes in the fluid domain: €, i1s obtained by removing
from a given set Q, included in R" a collection of periodically distributed holes
(T%)1 <i=n¢ (their number N(e) is of order of ¢ V). Each hole T is homothetic
with ratio a, to the same model hole T'. The hole size a, is assumed to be much
smaller than the inter-hole distance ¢ (i.e., a./¢ goes to zero as ¢ does). For a given
force /€ [L?(Q)]" and a constant positive viscosity u, denoting by 1, the velocity,
and by p, the pressure, the Stokes equations in £, are

Vp.—wpbu.=f inQ

(S) e
Vu, =0 mn Q,

We provide the Stokes equations with the so-called slip boundary condition

u,-n=20 on dT%
(BC) ! S, = 2(au€~n)n—(Vue+’Vus)n on 4T,

a, an

u, =0 on 00

where the slip coeflicient « is a positive constant. The first equation in (BC) expresses
that the fluid does not flow through the obstacle 7%. The second one is a balance
relation between the tangential components of the velocity and the infinitesimal
force exerted by the fluid on the obstacle. We define a ratio o, between the size of
the holes and the inter-hole distance

eV 172
g, = (;7\'——7) for Nz3

c

log(—@)
&

If the limit of ¢, is strictly positive and finite, then the size of the holes is said to
be critical. If the limit is zero (or infinite), then the size is larger (or smaller) than
the critical one. These three different limits of ¢, lead to three different homogenized
limits for (.S, ): a Darcy’s law, a Brinkman-type law, and the Stokes equations. More

precisely, using the so-called energy method introduced by L. Tartar in [27] and
adapted by D. Cioranescu and F. Murat in [9], we prove the following:

1/2
o, = ¢
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THEOREM 1.1. There exists an extension ( E.u,, P.) of the unique solution (u,,
p.) of (S,) — (BC), with the following properties.

(i) If lim,_ g0, = +oo, then (E.u,, P,) converges strongly to (u, p) in
[HYDTY X [L*(Q)/R], where (u, p) is the unique solution of the Stokes
equations

Vp— ulAu=f in Q
V-u=90 inQ
u=0 on 99
(In this case the holes are too small, and nothing happens when passing
to the limit.)
(ii) If im, g0, = o > 0, then (E,u., P,) converges weakly to (u, p) in

[HS(DIY X [L2(Q)/R], where (u, p) is the unique solution of the Brink-
man-type law

Vp—whu+EMu=f ing
ag

V-u=0 inQ
u=90 on 99
( For this critical size of the holes, an additional term appears when passing
to the limit.)
(iii) If lim, o0, = 0, then (Eu. /o2, P.) converges strongly to (u, p) in

[L2(D)]Y X [L*(Q)/R], where (u, p) is the unique solution of Darcy’s
law

M*l
u=——-~y (_—-V9p) nQ
u
Vu=0 inQ
u-n=20 on 99

(Thus, if the holes are too large, the Stokes flow degenerates to a Darcy
Sflow when passing to the limit.)

The matrix M appearing in the Brinkman-type law and in the Darcy’s law is
the same, and it depends only on the model hole T and on the slip coefficient «.
Moreover, we can compute A thanks to the following

THEOREM 1.2. In the homogenization of the Stokes equations (S,), for any
limit value of o, the so-called local problem is
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Vg — Aw, = 0 inRYN—T
V-w, =0 inRYN-T
wirn=20 on 0T
(LP) awy = 2(%%)11 —e(wy)n ondT ’
W, = € at infinity, for Nz3
L wi(x) =log| x| e at infinity, for N=2

where e, is the k-th unit basis vector in R™. For any dimension N, the matrix M is
defined in terms of the drag force of the above Stokes flow, i.e.,

1
Me, = 28 LT(qkn —e(w)n),

where n is the normal interior vector of 3T . Furthermore it turns out that

11
> ! L= | Z . i cw | e
for N = 3, e Me; 2N[2J;N_Te(wk).e(w,)+ aLT Wy w,] ;

Sfor N = 2, whatever the size and shape of the model hole T and the value of the
slip coefficient o are, M is always equal to 7ld.

All other possible scalings of the slip coefficient are examined in Section 3; they
yield the same homogenized equations as before. We emphasize that the permeability
tensor M ! in the above Darcy’s law is completely different from that obtained by
the two-scale expansions method when the holes size a, is exactly of order ¢ (see
[2], {15], [19],[25], [26]). However, in a forthcoming paper (see [4]), we shall
prove that they coincide in the so-called low volume fraction limit.

We conclude this introduction by referring to C. Conca in [11] and R. Lipton
and M. Avellaneda in [20] for the homogenization of the Stokes equations with
other types of mixed boundary conditions (different from our slip boundary con-
dition). We also refer to [1], [6], [18], [21], [23], and [24] for the derivation of
Brinkman’s law through homogenization of the Stokes equations with a Dirichlet
boundary condition (see the introduction to [1] for a brief survey of these works).
Finally we mention that in [7] A. Brillard has addressed a similar problem for the
Laplacian with a mixed boundary condition. For a general introduction to the
homogenization theory, one could see [5], [25], and the references therein. The
results of the present paper have been announced in [3].

Notation

Throughout this paper, C denotes various real positive constants which never
depend on e. The duality products between H{(Q) and H!(Q), and between
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[H{(2))" and [H~(Q)]", are both denoted by <, > -1 yyq). The canonical basis
of R is denoted by (€)=« < n. If #(x) is a vector-valued function from R" to R",
then

e The gradient of u is an N X N tensor: Vu = (0u;/0x))1 <. ;= n-

e We denote by e(u) the N X N symmetric tensor defined by: e(u) = (Vu +
Vu) = (3%/3)9 +0u;/0x: ) <i =N

e The tensorial product of u by v (two vectors in R") is denoted by: u ® v =
(U1 =ij=sn-

e The inner product of two N X N tensors A = (a;) and B = (b;) is denoted
by:

A: B=t('AB)= 2 a;b;.

IZ2Lj=EN

2. Formulation of the Problem

Let Q be a bounded, connected, open set in RY (N = 2), with Lipschitz boundary
9, © being locally located on one side of its boundary. Let ¢ be a sequence of
strictly positive reals which tends to zero. The set @ is covered with a regular mesh
of size 2¢, each cell being a cube P%, identical to (—e, +¢)". At the center of each
cube P:entirely included in € we make a hole T of size a,. Every hole T is similar
to the same model obstacle T rescaled to size a,. We assume that 7 is a smooth
closed set, which contains a small open ball B, (with strictly positive radius 7p), is
strictly included in the unit open ball B|, and is such that ( B; — T') is connected.
Throughout the present paper, the main assumption is that the size of the holes a,
is smaller than the inter-hole distance ¢, i.e.,

(2.1) lim % = 0.

In this section, we do not specify the relation between a, and ¢, but we define a
ratio o, between a, and what will turn out to be the critical size in Section 3.

I3

a,
log ( — )

€
To be precise, if the limit of ¢,, as ¢ tends to zero, is strictly positive and finite, then

the hole size is called critical. An elementary geometrical consideration gives the
number of holes

CN 1/2
g, = (Em) for Nz3
(2.2)

1/2
6, =¢

[
(2e)"

(2.3) N(e) = [1 +o(1)].
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The open set Q, is obtained by removing from Q all the holes (7%)M% : Q. = Q —
UM T2, Because only the cells entirely included in Q are perforated, it follows that
no hole meets the boundary dQ2. Thus €, is also a bounded connected open set,
with a smooth boundary 69,. This boundary is made of two disconnected parts 39
and T,

N(e)

(2.4) 00, =9QUT, with T,=WU a7

i=1

The flow of an incompressible viscous fluid in the domain , under the action of
an exterior force f is described by the following Stokes equations (see Remark 3.4
for the case of the Navier-Stokes equations)

2. = —pld + pe(u,)
(2.5) -v-Z.=f in Q,
Veu,=0 ingQ,

where the stress 2, is an N X N symmetric tensor, the velocity u, is a vector in RY,
the pressure p, is a scalar, and the viscosity u of the fluid is a strictly positive
constant. The Stokes equations (2.5) are endowed with the so-called “slip” boundary
condition, which, loosely speaking, allows the fluid to slip on the obstacles, but not
to go through them. More precisely, the normal component of the velocity is equal
to zero on the obstacles, while the tangential velocity is proportional to the tangential
component of the force exerted by the flow on each point of the obstacle’s boundary.
As is well known in fluid mechanics, this force is equal to the opposite of the normal
stress, i.e., to — 2,1, where # is the normal vector outward from the fluid domain.
Denoting by { a,u) a sequence of strictly positive shp coefficients, the slip boundary
condition on T, is

un=0 onT,
(2.6)

(Zn+ auu,) = (nZn+ auu-n)n onT,

In the end, as is well known in homogenization, the type of the homogeneous
boundary condition on the “large” boundary 49 is irrelevant; we therefore choose
for simplicity a Dirichlet boundary condition

(2.7) u, =0 on dQ.

Regrouping (2.5) to (2.7), and taking into account that V-, = 0 implies V-2, =
ulu,, we obtain the Stokes system under consideration in this paper
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([ Vp.—wldu, = f in €,
V-u, =0 in Q,
u-n=20 onT,

(2.8)

a U, = 2(6—14‘%))1 —e(u)n on T,
on

u, =0 on 0

8

We emphasize that we shall never use the Dirichlet boundary condition on d{ in
the technical lemmas (including Korn’s and Poincaré’s inequality) which prove
the coercivity of this Stokes system. Thus there is no loss of generality in our choice,
and all the results of this paper are also valid for any other boundary condition on
89 (unless otherwise stated ).

Now, we define a set H, of admissible functions for the velocity

(2.9) H,={ve[H"(Q)]"/v-n=00nT,and v = 0 on Q}.

For a given force f € [L2(2)]", the Stokes system (2.8) has the following variational
formulation

( Find (u,, p.) € H, X [L*(Q,)/R] such that

Ef e(ue):e(v)—f p,V'U-f-p,acf uc-v:f f‘U
2 & Q, T, Q
(210) ) l foreach vEH,

f gV-u, =0 for each q € L*(Q,)/R.
Q,

\

Remark 2.1. In [1] the Stokes equations (2.5) were considered with a Dirichlet
boundary condition on the obstacles

(2.11) u, =0 on 94,.

In that case, because (2.11) does not involve the stress Z,, the Stokes system (2.5)—
(2.11) is equivalent to the following variational formulation

Find (u,, p,) € [H§(Q)]" X [L*(2,)/R] such that

,uf Vuc-Vv—f pev'v=ff~v for each v E[HNQ)TY.
(2.12) 9, Q, Q,

f gv-u, =0 for each g € L*(R,)/R.
Q,

c
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The fundamental difference between (2.10) and (2.12) is the presence in (2.10) of
the symmetric stress tensor in the boundary condition. As a consequence, in this
paper there are two additional difficulties, beyond those of {1]. First, the extension
of the velocity is no longer obvious: in [1] we extended it by zero in the holes, and
this extension was continuous because of the Dirichlet boundary condition. Here,
we need another kind of extension (see Lemma 2.2). Second, the coercivity of the
variational formulation (2.10) (and thus a uniform estimate of the solution) is
proved here through a Korn-type inequality (see Lemma 2.4).

PROPOSITION 2.1.  If the slip coefficient «, is strictly positive, there exists a
unique solution of the variational formulation (2.10), and thus of the equivalent
Stokes system (2.8). (Moreover this result does not use the boundary condition
on dQ).

Proposition 2.1 is proved at the end of this section. Before that we prove several
technical lemmas which will also be used in Sections 3 and 4. We recall that, in
the present section, the hole size is not specified. First, let us introduce an extension
operator for the velocity.

LEMMA 2.2. There exists a continuous linear map E, from [H'(Q)1" into
[HY (DY, such that, for each v € [H' ()], we have

(i) Ev=v inQ,
(2.13)
(i) le(Ev) ey = Clle(v) 120y

where C is a positive constant, which depends only on Q and T, and not on «.
Furthermore, if v is defined in the whole Q, i.e., v € [H (Q)]", then e(Ew)
converges strongly to e(v) in [LA()]V.

Proof: This lemma is classical in the homogenization literature (see Conca
[11], Cioranescu and Saint Jean Paulin [10], Tartar [27]), so we only sketch its
proof. Each hole T75 is included in a ball Bf of radius a,. We define the closed set
W(B%—T:) = {vE[H(B%*— T%)]"/e(v)=0in B% — T:}. It is easy to check
that W (B% — T%) is also equal to the set {v = Ax + bwith‘'4=—-A4} Eachv &€
[HY(B% — T%)]" can be decomposed in

v=v,+ 1, with v, EW(B%:—-TY) and v, € W(B% — TH*.

The function v, is continuously extended in T% by its linear value Ax + b. Now,
Jet F be any continuous extension from [H' (B, — T)]Vto[H'(B,)]". By rescaling
F, we obtain an extension F: operating on (B% — T%). Finally we define the ex-
tension E, by

Ev =10+ Fiv, in each B

Ev=v elsewhere in ..
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Because [|v]| 5, and |le(v) || .2(s,) are two equivalent norms in W (B,)*, and be-
cause the set B; — T is connected, we obtain the desired estimate (2.13) for E,.
Before proving the last statement of Lemma 2.2, let us explain what it means: if v
happens to be defined in the whole , then the extension E,v is indeed very “close”
to v in the sense that the sequence e(E,v) converges strongly to e(v) in
[LZ(Q)]NZ, as e goes to zero. To see that, we write

i

le(v) — e(Ev)| il(n) le(v) — e(EeU)”b(Q—Q,)

N(e)
> el 2cry + le(Ev) 21

i=1

liA

(2.14)

N(e)
2 lle) iz + Clle(v) | 22az

i=1

A

liA

Clx.e(v) | 220),

where X, is the characteristic function of the set vas(ﬂ) B, which has the property

that its measure tends to zero. Then, applying the Lebesgue theorem of dominated
convergence, the right-hand side of (2.14) goes to zero with ¢, and the lemma is
proved.

The next lemma is about a trace result on the boundary T,.

LEMMA 2.3. There exists a constant C which does not depend on ¢ such that,
for any v € H'(Q,), we have

N
€
P vl Z2r,y = ClIvI 720, + al|| vl 22(90)]

where o, is defined in (2.2).

Proof: Let v € D({,). As the model hole T is included in the unit ball B,,
each hole T% is also included in a ball B¢ of radius .. In a first step, by using radial
coordinates, we establish an estimate for the trace of v on dB¢. In a second step,
we take the trace of v on 7%, by using a simple trace lemma in B — 7%.

Let B¢ be the ball of radius ¢ with the same center as Bf. Let r be the distance
between the center of B¢ and a point x € B¢, and let ¢, be the associated unit radial
vector. In B — Bf we have

v(x) —ov(x+(a.—re)= frgg [x+(t—r)e]dt.
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Then

2

" v
U;g; [x+(t—1r)e] dl]

€
‘a‘N—_T ”v"i%aafﬂ = ”v"iz(Bf~Bf') + ’

&

LB}~ B

But the Schwarz inequality gives

" 9o 2 _[([ov ’ "t
[Lé;[xnt(z—r)e,]dz] é[L[E[X+(I—V)€r]]lN-lleLt_N‘Tx]‘

Thus

H [fr@[x-i— {(t—nel dt]
a, Or

2

LB~ B}

codr 1 ool -
= [f ﬁ]f — Nl dr £ 62|V iz(B;._Bg.).
Q, t a. ar LZ(BE,'* sz,)
Hence
e” 2 2
(2.15) a1 (0122082 = 0l Fupi-po + oL {VUl T2 B2
£

Now, consider the following trace estimate in B, — T, which obviously holds true
because B, — T is a smooth connected set

o)l L20m = CLIVI L8y + 1VOl 28, - 1]
Rescaling it yields
loll L2ars) = CLIVY L2y + @l VOl L - 9]

Recalling that g, < ¢ < ¢,, and combining the above estimate with (2.15), we obtain
eV 2 2 2 2
(2.16) P ol Z2 o7y = CLNVNZ28i- 5y + o2 IVOl 208 1]

Summing (2.16) for i = 1 to N (¢) leads to the desired result for any function v €
D(9,). By the density of D(£,) in H'(%,), the result holds true also in H'(£,).

The following lemma is concerned with a Korn-type inequality which allows
us to prove the coercivity of the variational formulation (see the proof of Proposition
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2.1 below) and to establish an a priori estimate for the velocity in Sections 3
and 4.

LEMMA 2.4. There exists a positive constant C, which depends only on Q@ and
T, such that for each v € [H' ()"

I3

81\«' 1/2
(90llner = €1+ ollec) i + [ 5] ot |

Proof: Let W(Q) be the closed set {v & [H'(2)]"/e(v) = 01in €}, which is
also equal to {v = Ax + b with ‘4 = —A4 }. We denote by W (Q)* its orthogonal
complement with respect to the usual inner product in [H'(Q)]"¥. Each v €
[H'(Q2)]Y can be decomposed in

v=1v + 0, with v, € W(Q) and v, € W(Q)L.

It is well known that || V| 120y and [le(v) || 12q) are two equivalent norms in W(Q)*.
Thus, for v, € W(2)*, we have

(2.17) V2l 120y = Cle(v) | Lg)s

where the constant C depends only on Q. For v, = (4x + b), with ‘4 = — A4, we
compute

“VU!H%}(Q): 41719

al~'|oT|

(20)F [ Ax + bl 7xa)[1 + o(1)].

ol iz(r,) =

Thus
N

(2.18) 19010120 = € 3= Ioul by

where the constant C does not depend on ¢, nor on v,. Summing (2.17) and (2.18)
leads to

190l 320, = c[ le() 3+~ I im}
(2.19) ‘

2 e 2 eV 2
< [ et 2am + 2 o320+~ sl m,)J .
ac af
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Using the trace Lemma 2.3 we get

SN

(2.20) F ”1’2”%_2(1‘,) < ol %2(9) + a2||Vv,| izmy
€

Because v, belongs to the orthogonal complement of W () (which contains the
constants), its average over { is equal to zero. Thus, the Poincaré-Wirtinger in-
equality gives

"Uz”LZ(Q) = C||V1)2”L2(9)-

Thanks to (2.17) we deduce from (2.20)

N
€

pra lvall 22y = (1 + 02) [e(v2) | Z20)-
&

Plugging the above estimate in (2.19) concludes the proof.

Remark 2.2. Lemmas 2.2, 2.3, and 2.4 do not use any assumptions on the
type of the boundary condition on T, and on 4Q. In particular, the fact that the
normal component of the velocity is equal to zero on T, is never used. Therefore
those lemmas hold true in a more general context. However, Lemma 2.5 below
relies upon our choice of the boundary condition on T, for the velocity.

Now, we establish a Poincaré inequality in H,, which will be used in Sections
3 and 4 for obtaining an a priori estimate for the velocity.

LEMMA 2.5. There exists a positive constant C, which depends only on Q, such
that

(i) for eachv € [H'(Q)1", satisfyingv-n=00nT,
(2.21) ol e,y £ Co. VOl L2q,)-
(ii) for each v € [H' ()], satisfyingv-n =0o0nT,

(2.22) v]l 20y = Co VO] L2g)-

Proof: The same arguments as in the previous Lemma 2.3 lead to an inequality
similar to (2.15)

N
e

(2.23) o]l lzﬂ(si—sﬁ“) = __aN*‘ [[vfl iZ(aB:’f) + a2||Vo| %,2(35— By
[
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Recall that the model hole T contains a ball B,, (with radius ry > 0). Thus, the
following Poincaré inequality holds for any v € [H'(B, — T)]1" such that v-n =
OondT

lvlezs, = CIVOllL2p,- 1

Besides, we also have the following trace property for any v € [H'(B, — T)]" such
thatv-n=0o0n 4T

HU”LZ(aB.) = C“VU”L2(5.~ -

Rescaling to size a, the two previous inequalities give

vl 12,2(3,4*— 9 = Call|vvl %2(3?» T
(224) vl %2(68}”) = Ca, ||V %Z(B?'— 9

forany v € [H'(B% — T%)]¥ suchthat v-n=0 ondT%.
Recalling that 2, <€ ¢ < g, and combining (2.23) and (2.24) yields
(2.25) ol iz(Bf— 79 = Cal Vo] %2(37- T9-
From (2.25), it is not difficult to obtain an equivalent inequality in P; — T;. Then,
summing these inequalities for all cells P¢ gives inequality (2.21). In order to obtain

(2.22), we just need to add to the above ingredients the following Poincaré inequality
in T, which holds for any v € [H'(T)]" such that v-n = 0 on T

”v”LZ(T) = ”VU”LZ(T)~
Rescaling it to size a,, and adding it to (2.25) gives (2.22).

We recall, without proofs, two crucial, but rather technical, results from [1]
which are concerned with the extension of the pressure to the whole domain .
First, we define a restriction operator R, from [H(2)]" into [H}(2,)]”. Then,
following an idea of L. Tartar (see [26]), we extend the gradient of the pressure,
by duality in [H ' (Q)]".

LEMMA 2.6. There exists a linear map R, operating from [H{(Q)1" into
[HY Q)Y such that

() uE€[HNQ)N HYDI = Ru=u inQ,
(1) Viu=0 inQ=V-(Ru)=0 in4Q,
(i) |V(Ru) ey = CLIVUllLxe) + (V) o Mull ey and C does not depend
one.
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LEMMA 2.7.  Let p, be a function in L*(R,)/R. There exists a unique function
P, € L*(Q)/R which satisfies the following equality

(2.26) <VP“ U>H_I,H(l)(9) = <Vp“ Rcv>H’l,Hé(Qt) for each v E [H(l)(Q)]N.

Thanks to Lemma 2.6, P, is an extension of p,, but in addition, because of the
explicit construction of R,, we obtain the precise value of P, in the holes

227y P, =p, inQ, and P =

1
ICo] f P, in each hole T%,
il JCi

where C5 is a control volume around the hole T, defined as the part outside T¢ of
the ball of radius e with same center as T%.

(See Section 2.2 and Proposition 3.4.10 in [1] for proofs of Lemmas 2.6
and 2.7.)

Proof of Proposition 2.1: Thanks to the Korn-type inequality obtained in
Lemma 2.4, the variational formulation (2.10) is coercive as soon as the slip coef-
ficient «, is strictly positive

KlVu,l %2(9,) = KIV(Eu) | %.2(9) = Cllle(u,)| %2(95) + o] %Rm]

with

N—1
. a.a
Ke=m1n[ — ]

1+a2° &Y

Then a variant of the Lax-Milgram theorem asserts that the variational formulation
(2.10) has a unique solution (see, e.g., Girault Raviart [14]). Finally, integrating
by parts in (2.10) it is easy to show that a solution of (2.10) is also a weak solution
of the Stokes system (2.8), and vice-versa.

3. The Critical Scaling: Main Results

In this section we prove the convergence of the homogenization process, when
the hole size and the slip coefficient scale as follows:

Iim a0 = a

e—=>0

(3.1)

lim o, = o,

e—=0

where o and ¢ are strictly positive constants. In the sequel, we will refer to those
relations (3.1) as the critical scaling. For example, the latter relation in (3.1) is
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satisfied by a hole size a, equal to Coe™ V=2 for N 2 3, or exp{—Cy/e?} for N =
2 with C; > 0,and s given by ¢ = 1/CY P for N= 3, 0r ¢ = C{/* for N = 2.
Using the lemmas of the first section, we obtain some a priori estimates for the
solution of the variational formulation (2.10), without making essential use of the
Dirichlet boundary condition on the “large” boundary 9€.

PROPOSITION 3.1. Let (u,, p.) be the solution of (2.10), and (E.(u,), P,) its
extension in Q, as defined in Lemmas 2.2 and 2.7. Then we have

| Eae )l Lxay + IV(E ) | L3ey = Cllf |l 2oy
” Pe”LZ(m/R = C“f“LZ(SZ)

where the constant C depends only on @ and T (and not on ¢).

Proof: Introducing v = u, in (2.10) leads to

(32) e Lttt 4w [ = [ rou

Because u, € [H'(9,)]" and satisfies «,-n = 0 on T,, Poincaré’s inequality (2.21)
(see Lemma 2.5) furnishes an upper bound of the right-hand side of (3.2)

(3.3) Ussz'u”

Thanks to the properties of the extension F, and to the scaling (3.1), the Korn-
type inequality of Lemma 2.4 gives a lower bound of the left-hand side of (3.2)

i
2 tei? + e [ luf?
Q, T,

é C[L |e(Eeuc)|2 + aﬁJ; |Ec(u£)|2} ; C"v(Eeuc)” %,2(9)'

= C||f“L2(Q) ”V%”Lz(n,) = “f“Lz(Sl)"V(Eeuc)”Lz(ﬂ)-

(3.4)

Finally, (3.3) and (3.4) yield
(V(E.u.) ”LZ(Q) = C”f"LZ(Q),
and Poincaré’s inequality (2.22) gives

”Ecuc“Lz(Q) = C”f"LZ(sz)-
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Now we turn to an estimate for the pressure. Recall the definition (2.26) of the
extension P,

<VPC, v>H—l’Hé(Q) = <Vpu REU>H—1,H(I)(QJ for each vE [H(])(Q)]N.
Introducing the Stokes equation, and integrating by parts, leads to

I<VPN U>| = ”vut”Lz(Q,)“v(Rev)”Lz(ﬂ,) + ”f”l_z(n) ”RJ’”LZ(Q,)-

Thanks to the properties of R, in Lemma 2.6, and to the previous estimate on the
velocity u,, we obtain

(3-5) HVPz ”H"(SZ) = C"fNLZ(n)-

But a well-known lemma of functional analysis claims that, because of (3.5), P,
belongs to L2(Q), and we have

|| P:"LZ(Q)/R = C(Q) IIVPcllH_I(SZ)'

Hence (3.5) gives the result.

Because of the estimates in Proposition 3.1, one can extract a subsequence of
extensions of the solutions, still denoted (E,u,, P.),-o and there exists some (u,
p) € [HY{TY X L*(Q)/R such that (E,u,, P,) converges weakly to (u, p) in
[H§(2)]Y X L*(Q)/R. The problem is now to find which equation is satisfied by
the limit (or homogenized) velocity u and pressure p. For that purpose we use the
energy method introduced by L. Tartar in [27] (see also F. Murat [22]). The main
idea is to compute in a unit cell the solutions of the “local” problem corresponding
to the Stokes system (2.8). Then, by rescaling and extending by periodicity these
local solutions, we construct so-called test functions (which can be interpreted as
boundary layers around the holes 7). After multiplication by a fixed smooth func-
tion, they are introduced in the variational formulation. Finally, integrating by
parts, we can pass to the limit in the variational formulation, and obtain the limit
equation. The following lemma gives the so-called local problem.

LEMMA 3.2. For N 2 3 the local problem is
rV(];c—AW](:O inRN—T
Vewe=0 inRN—-T

(3.6) ) we-n =10 on oT

on

L Wi = € at oo.

aw, = 2(%-n)n—e(wk)n on oT
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There exists a unique solution of (3.6) such that gl 2@v-1) < +oo and
VWil L2my— ) < +00. Moreover, denoting by F, the drag force applied on T, i.e.,
F, = f or (@it — e(wy)n), where n is the interior normal vector of dT, we have

(3.7) Fk-e,-=[lf e(wk)-e(w,-)+af wk-w,] foreach i€][l; N].
2 JrvoT T

For N = 2 the local problem is

(Vg — Aw, =0 inRYN-T
V‘Wk:O inIRN—T

(3.8) J ween =0 ondT

i}
aw, = 2(ﬂ~n)n —e(w)n on 4T
don

w, = (log r)e; at oo.

\

There exists a unique solution of (3.8), and still denoting by F; = f o (Qun —
e(wy)n) the drag force applied on T, we obtain a paradoxical result: whatever the
size and the shape of T, and for any value of the slip coefficient o, we have

(39) Fk:4ﬂ'€k fOV k= 1,2
(See Section 5 for the proof.)
DEFINITION 3.1. Let us define a matrix A by

1
Mé’k = 2_N Fk,

where F is the drag force introduced in the above Lemma 3.2. In the two-dimen-
sional case, we always have M = wld, but in the other cases (N = 3), the matrix
M is given by formula (3.7) and depends on the slip coefficient «. In any case, M
is a symmetric positive definite matrix.

Remark 3.1. There are two fundamental differences between the local problem
in two and three (or more) dimensions. First, the profile of the velocity at infinity
is uniform for the three (or more) dimensional case, while it is logarithmic for the
two-dimensional case. Actually the celebrated Stokes paradox asserts that, in the
plane, there is no solution of (3.8) which remains bounded at infinity, except the
zero solution (see, e.g., Finn [12]). That is why there is loganthmic growth at
infinity in (3.8). Second, although in the three (or more) dimensional case the
drag force F; heavily depends both on the size and shape of the obstacle 7', and on
the slip coeflicient «, in two dimensions it does not, and actually is equal to the
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drag force obtained with a Dirichlet boundary condition. This paradox has already
been pointed out by R. Finn and D. Smith in [13].

PROPOSITION 3.3.  With the help of the local solutions (wy, qi)i<i =N, We can
construct test functions (w5, q%), which satisfy the following properties:

(1) g5 = 0in L*(Q)/R weakly.
(i) wi = ep in [H' ()]} weakly, and V-wi, = 0 in Q.
(i) wi-n = 0and(a/a)wi = 2[(dw}/dn) -nln — e(wi)n on T,.
(iv) Let ui = Vgi — Awy € [H YR, Then ui has compact support in 9,.

Moreover, extending ui by 0 in Q — Q, we have

i
ui = —5 Mey in [H'(D1Y  strongly.
o

Remark 3.2. Let us explain in more detail property (iv) of Proposition 2.5.
A priori the distribution (Vg; — Aw%) is defined in the whole of Q; because of (1)
and (ii) it is bounded (but not necessarily compact) in [H~'(Q)]", and its weak
limit is zero. But if we restrict it to [H(Q,)]”, that is, if we skip the contributions
coming from the obstacles and their boundaries, then it becomes a compact sequence
with a non-zero limit. From a technical view point, in the process of extending
ui by 0in © — €,, the main ingredient is that it has compact support in Q,, i.e., it
is equal to zero in a vicinity of the boundary 49,.

Proposition 3.3 is proved in Section 5. Let us explain roughly what is the
connection between Lemma 3.2 and Proposition 3.3. The test functions
(W%, g5)1= k< » are obtained by rescaling the local solutions ( Wy, ), <« <~ in €ach
cell P:. Let C be the ball of radius ¢/2 whose center coincides with that of P¢. In
C we define

1
wi(x) = wk(zc_) and ¢} =— qk(ﬁ) for Nz 3
a a a

€ € €

1

————qk(-zc-) for N=2.
e ) a,

1
Wi(X)=——wk(£) and gqi =
¢ a alog(
¢ 2a,

1
8 2a,

In the remaining part P¢ — C%* of each cell, we match the above expression with
the value w§ = ¢, on the boundary dP%, in order to insure that wj belongs
to [H'(D)]V.

We are now in a position to state our main result

THEOREM 3.4. Let M be the matrix defined in Definition 3.1. Let (u,, p,) be
the unique solution of the Stokes system (2.8). Then its extension (Eu,, P,) converges
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weakly in [H{(1Y X [L3(Q)/R] to (u, p), which is the unigue solution of the
homogenized system (3.10)

Find (u, p) € [HN DY X [L2(D)/R] such that:
(3.10) Vp—ubutMu=f inQ
g
V-u=0 in Q.

Remark 3.3. The homogenized system (3.10) is a law of Brinkman type (sce
the original paper of Brinkman [8]). The new term Mu in (3.10) expresses the
presence of the holes which have otherwise disappeared after passing to the limit.
We already obtained in [!]} a Brinkman type law as the limit system of the Stokes
equations with a Dirichlet boundary condition. Although the size of the holes is
the same in both cases, the local problem and therefore the matrix A are different,
except in two dimensions. The dependence of the matrix M on « is not obvious.
However, we can compare the value of M for two different values of «

0<a) £ a,= EM(a)) < EM(ay)E  forany £ ERV.

Moreover, the limit of M(«), when « tends to infinity, is the matrix A obtained
with a Dirichlet boundary condition (see Section 5). Finally, in order to illustrate
the dependence of « on M, we give its value when the obstacle T is the unit ball

_SyN(N=-2)2+a

SN TN N+aId for Nz3

M

(S, is the area of the unit sphere in RY).

Proof: We apply the energy method (introduced by L. Tartar in [27], and
adapted to the case of domains perforated with tiny holes by D. Cioranescu and F.
Muratin [9]). For any fixed ¢ € D(Q), we introduce in the variational formulation
(2.10) the test functions

(owi) € H, and (dg%) € L*(2,)/R.
We obtain
gf e(uc):6(¢W2)~f pEV-(¢wi)+uacf uc-(¢W?()=ff'(¢W7c)
Q, Q, T, Q,

(3.11)
(¢gi)V-u, = 0.

Q,
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Expanding (3.11), and using that wj is divergence-free, gives

]
EJ ¢e(u€):e(w§()+ﬁf e(u,): (Vo ® wi + wi ® Vo)
2 Jo, 2 Jo,

(120 | = [ poiove+pe [ ouowi= [ orws

f oqiV-ou, = 0.
PR ALY
We integrate by parts in the first equation of (3.12)

L¢e(uc):e(wli)=fne(¢u5):e(Wi)
(3.13) ‘
—L e(wi) (Vo ® u, + u, ® Vo),

and

oaws,
on

(3.14) %f e(¢uc):e(w7()=—uf ¢u£-Awi(+uf d)ue-( +’wacn).
Q, Q, T,

An integration by paris in the second equation of (3.12) gives
(3.15) L ®qiV u, = —f du.-Vqi — J‘z qiu, Ve + fr Pqiu, n.
x 2, 2, e
Summing the two equations in (3.12), and combining (3.13) with (3.15) vields

ML ¢ue'(Vq‘k—AW2)+§L e(u,): (Vo ® wi + wi ® Vé)

(3.16) ~§f e(wi):(V¢®uc+uc®V¢)+pf gou, Ve
Q @
owy,
— | pwWi-Vé+u | ou-|——+'Vwin—gint+awi)= 1 &f -wi
Q r, dn ,

Denote by 1, the characteristic function of the set ©,, which is equal to 1 in ©, and
0 elsewhere. Introducing the extensions of (u,, p.), and using the properties of
(w5, g%) (see Proposition 3.3), we obtain from (3.16)
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s, GE U, Y1 picay + g fn loe(Eu,): (Vo @ wi + wi ® Vo)

(3.17) —gf lnte(wf():(v¢®Eeu¢+E€uc®V¢)+u(ac—ag>f du, - wi
Q c T,
u [ 10giE0) Vo - [ 10 Pwtove = [ o9 w

In order to pass to the limit in (3.17), we note that, if a sequence v, converges
strongly to a limit v in L3(Q), then the sequence 1o,v, converges strongly to the
same limit v in L?(Q) (because the measure of @ — Q, tends to zero). Thus, using
the estimates of Propositions 3.1 and 3.3, and Rellich’s theorem, we obtain

;#5 (Mey, du)y-1 piay + g L e(u): (Vo ® e, + ¢, ® Vo)

- fnpek-Vcﬁ = L of - e

Integrating (3.18) by parts, and using the symmetry of M, gives

(3.18)

;’iz (Mu, pe,.y — u{Au, ¢e;y + (Vp, ¢per)y = (f, pery foreach k€E][l;N].
Thus
(3.19) Vp-uhu+LMu=7  in[D(Q)}"

(12

Besides, we know that V(%) = 0 in €,, with %.-n = 0 on dQ,, and that 1q 1,
converges strongly to # in [L*(Q)]¥. Passing to the limit yields

(3.20) V-u=0 in Q.
Regrouping (3.19) and (3.20) we obtain the following homogenized system
Find (u, p) € [H{(Q) 1Y X [LA(Q)/R] such that
(3.21) Vp—pAu+%Mu=f in Q
Vu=0 in €.
Because M is a positive matrix, there exists a unique solution of (3.21). Then, all

the subsequences of (F,u,, P,) converge to the same limit. So the entire sequence
converges.
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Remark 3.4. When the space dimension is N = 2 or 3, Theorem 3.4 can be
easily generalized to the Navier-Stokes equations
( Find (u,, p.) € H, X [L%(Q,)/R] such that

Vo, + u -Vu, — udu, = f in Q,
(3.22) J V-u,=0 in Q,

u-n=0 onT,

L o, = 2(guc-n>n —e(u,)n onT,.
n

For N = 2 or 3, it is well known that there always exists a solution of system (3.22),

which is unique at least for small values of || f || ; 2(qy. For such a force f, the extension

of the solution ( E,u,, P.) converges weakly in [H{ ()] X [L%(Q)/R] to (u, p),

which is the unique solution of the homogenized system (3.23)

Find (u, p) € [H5()]1Y X [L2(Q)1/R] such that
(3.23) Vp+u-Vu—uAu+i2Mu=f in Q
ag
Vu=0 in .

More precisely, because the sequence E,u, converges weakly to u in [H{(2)]7, the
non-linear term E,u,- V(E,u,) converges strongly to «-Vu in [H'(Q)]7, for N =
2 or 3. It is worth noticing that the local problem, the functions (W%, %) sk <~
introduced in Proposition 3.3, and therefore the matrix A, are exactly the same
for Stokes and Navier-Stokes homogenization.

Remark 3.5. In [1] we gave several other theorems, including correctors for
both the velocity and the pressure, and error estimates. We also generalized Theorem
3.4 to the case of a surface distribution of the holes. All those results still hold here,
with slight changes in the proofs due to the difference between the Dirichlet boundary
condition in [1] and the slip boundary condition under consideration in this paper.
For brevity we do not repeat those proofs, and we refer to [1] for further details.

4. Other Scalings

In this section we consider scalings of the hole size and of the slip coefficient
different from the critical one (3.1). First, we keep the size of the holes critical,
and we examine the full range of values of the slip coefficient. Second, we briefly
describe what happens for holes larger or smaller than critical, which is a mere
reproduction of the situation described in Part II of [1].
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PROPOSITION 4.1, Assume that the following scaling holds

lim a,a, = +o0
e—=>0

(4.1

limoeo,=¢

e—>0

where o is a strictly positive constant. Then Theorem 3.4 is still true, and the matrix
M in the homogenized system (3.10) is obtained through a local problem with a
Dirichlet boundary condition, which corresponds in Lemma 3.2 to the limit value
a = +o.

Proof: Because a, is larger than 1/q,, we can still dertve from Lemma 2.4 the
uniform coerciveness of the variational formulation (2.10)

1
2L2(Q) = C[EL Ie(ub)lz + o, j; lucIZ:I .

Thus, we obtain the same estimates, as in Proposition 3.1, for the velocity and the
pressure.

On the other hand, we may define local problems as in Lemma 3.2, but with a
Dirichlet boundary condition on 47" Then, in the same way we can construct test
functions (w§, ¢i) which satisfy the properties of Proposition 3.3, except that
wi-n = 0on I',is replaced by wi, = 0 on TI',. In this case the matrix M corresponds
to an infinite value of «. We repeat the proof of Theorem 3.4 with these new
functions, and the only difference from Section 3 comes from the boundary con-
tribution

(4.3) f ¢ut-(aw" + ’Vwi.n) .
I, on

(4.2) IV(Eu.)]

In order to pass to the limit in this new term (4.3) we point out that, because the
boundary 97" is smooth, a standard regularity result implies that the solution w;, of
the local problem (3.6) or (3.8) satisfies

(4.4) (%wwkn)eﬁ(an.
dn
Rescaling (4.4) (see definitions (5.19) and (5.20) for the correct scaling of wj, in
terms of w;) and summing over all the holes yields
(4.5) H (‘M <
on Ly,

2
C
+ ’Vwﬁn) —.
a.
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In the meantime from (4.2) we obtain
(46) e [ 1l = CIf N
Combining (4.5) and (4.6) we can bound (4.3)

a £
f ¢u,-(ﬂ + ‘Vwi(n)
T, an

Thanks to the scaling (4.1) the upper bound in (4.7) tends to zero, so we are still
able to pass to the limit and to obtain the homogenized system (3.10).

< C

7 = @)

PROPOSITION 4.2.  Assume that the following scaling holds

Iim a,a, =0
(4.8) =0
Iimo, =0

e 0

where o is a strictly positive constant . Moreover, we explicitly assume that we have
a Dirichlet boundary condition on the large boundary 3Q (but not on the boundaries
of the holes T,). Then Theorem 3.4 is still true, and the matrix M in the homogenized
system (3.10) is obtained through a local problem with a mixed Dirichlet-Neumann
boundary condition which corresponds in Lemma 3.2 to the limit value a = 0.

Proof: Because «, is smaller than 1/4,, we can no longer derive from Lemma
2.4 the uniform estimates for the velocity and the pressure. However, in the presence
of a Dirichlet boundary condition on 99, these estimates are still valid. Indeed,
since E.u, belongs to [H§(2)]V, a standard Korn inequality in Q gives

(4.9) IV(Eat) | 200y £ C f |e(E) 2.

It is easy to see, using (4.9), that the conclusion of Proposition 3.1 still holds.

On the other hand, Lemma 3.2, which furnishes the form of the local problems,
is still valid if the slip coefficient « is equal to zero. Then, as in Proposition 3.3, we
construct test functions (w%, g%) (note that the matrix M is defined for « = 0). We
repeat the proof of Theorem 3.4 with these new functions, and the only difference
from Section 3 comes from the boundary contribution

(4.10) aef bu, wi.
T,



NAVIER-STOKES EQUATIONS 629

If the spatial dimension is N 2 3, then using the trace Lemma 2.3 we bound (4.10)

N-1
a.a
£C ESCN Wil oo Nttel zrice,)

acf ouU,* Wi
rl‘

(4.11)
= Capa,.

Thanks to the scaling (4.8) the upper bound in (4.11) tends to zero, so we are still
able to pass to the limit and to obtain the homogenized system (3.10). In the two-
dimensional case N = 2, the definition of ¢, is slightly different (see (2.2)) and we
cannot bound (4.10) by using the trace Lemma 2.3. Remark that Lemma 2.3 is
not optimal here because it does not use the fact that both u, and wj have zero
normal component on I',. Nevertheless we can still prove that (4.10) tends to zero,
and here is the trick. Note that, in B; — 7', the following trace inequality holds for
any w € [HY(B, — T)}", such that w-n = 0 on 4T

(4.12) ”W“u(ar) = C(T)”VW“Lz(BI—T)-
Then, rescaling (4.12), we obtain
fwid il(arf’) = Ca f|Vwi| ilw‘,ﬂ—r,f)
and
fleel i’-(an) = CallVu, | i%s}»r,‘),
which implies
A iz(r,) = Ca, and flae.l %Z(m = Cal Sl %2(9)-

With these estimates, we obtain the same bound for (4.10) as in the case N = 3.

PROPOSITION 4.3.  Assume that the size of the holes is smaller than the critical
one, i.e., the ratio o,, defined in (2.2), tends to infinity

(4.13) lim o, = +o0.

e—>0

We emphasize that the scaling of the slip coefficient is free, but we explicitly assume
that we have a Dirichlet boundary condition on the large boundary 0Q (not on T,).
Let (u,, p,) be the unique solution of the Stokes system (2.8). Then its extension
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(E.u,, P,) converges strongly in [H)}(Q)]Y X [L2(Q)/R] to (u, p), which is the
unique solution of the Stokes system

Find (u, p) € [H{D]Y X [L2(Q)/R] such that
(4.14) Vp—wAu=f  inQ
V-u=0 in €.

Proof: Because of the scaling (4.13), we can no longer derive uniformly
bounded estimates of the solution with the help of Lemmas 2.4 and 2.5. Therefore,
we need the Dirichlet boundary condition on 9 in order to establish both Poincaré’s
and Korn’s inequality with a uniform constant. For each v € [H§(?)]", they
give

(4.15) ”UHLZ(Q) = C”VUHLZ(Q) and |]VU”L2(9) = Clle(v)llem)-

Using (4.15) for E,u,, it is easy to see that the conclusion of Proposition 3.1
still holds.

On the other hand, because of the small size of the holes (4.13), an easy but
tedious computation (see [1]) shows that, for any positive value (including 0 and
+0) of the slip coefficient «, the convergence of the test functions (w4, ¢%), defined
in Proposition 3.3, is actually strong in [H'(2)]" X L%(Q). Thus, the function
uy, defined as (Vg4 — Aw$) in Q, and zero elsewhere, converges strongly to zero in
[H1(2)]". This implies that no matrix M appears when passing to the limit, and
the homogenized system reduces to the Stokes equations (4.14). This fact can be
checked straightforwardly (i.e., without the tedious computation of the test func-
tions) as follows. In each cell P%, let us define a function 6,

(6.(r)=0for0=<r=<a, O()=—-1 for a

6.(ry=1 elsewhere, for Nz3
log r — log a,
log ¢ — log a,
L g.(r)=1 elsewhere, for N=2.

b(r)=0for0=r=aq, 6.(r)= for a,sre,

Then, for any ¢ € D(§2), we have

0.0 € H(Q,), and |00 — dlluhay =

2a

Using such test functions in the variational formulation (2.10), it is easy to see
that the limit of (2.10) is a Stokes problem (without any additional term), because
the sequence 6,¢ converges strongly to ¢ in H§(Q).
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To prove that the solutions converge strongly, we observe that

(4.16) %L)amv+mﬁJmP=L/un+quaLWM?

Because V-u = 0in € and « = 0 on 4%, an integration by parts shows that

1
(4.17) EL Ie(u)}2=L |Vu|?.

Let X, be the characteristic function of the set Q, (i.e., X, = 1 in €, and 0 elsewhere).
We know that the sequence e( E,u,) converges weakly to e(x) in [L2(Q)]"’. Because
X, converges almost everywhere in £ to 1, the sequence X.e{ E,u,) converges also
weakly to e(u) in [L2(2)]"’. Then, using the semilower continuity of the weak
convergence, it follows from (4.16) and (4.17) that

(4.18) lim |X€e(Eeut)|2=f le(u)|? and lim acf lu,|?> = 0.
e=0 JQ Q I,

e—>0

The first limit in (4.18) implies the strong convergence of X.,e(E,u.) to e(u) in
[L2()]Y ?. To obtain the same result for e( E,u,) (without X,), we bound

||e(u) - e(EeME)HLZ(u) = ||e(u) - e(Eeu)”LZ(SZ) + ||6’(Eeu) - e(Erue)”Lz(Q)-
Thanks to Lemma 2.2 on the extension operator E,, we obtain

le(u) — e(Eu) 120 = lle(u) — e(Eu)l2e) + Clle(u) — e(w.) | L2q,)
= |le(u) — e(Eu) oy + Clix.e(u) — Xe(Eu,) || L2a)
(4.19) < |le(u) — e(Eu) | 1q) + Clile(u) = X.e(u) |l e

+ lle(u) — Xee(Esue)“Lz(Q)]-

The three terms in the right-hand side of (4.19) go to zero, as a consequence of
Lemma 2.2 for the first one, the Lebesgue theorem of dominated convergence for
the second one, and (4.18) for the last one. Hence we deduce the strong convergence
of e(E.u,) to e(u) in [L2(2)]"’. Combined with the strong one in [L?(Q)]”, it
yields the strong convergence of E,u, to u in [H'(Q)]". Then, using Lemma 2.7
{which defines the extension of the pressure), it is easy to conclude that P, converges
strongly to p in L?(Q)/R.

PROPOSITION 4.4.  Assume that the size of the holes is larger than the critical
one, i.e., the ratio o,, defined in (2.2), tends to zero

(4.20) lim o, = 0.

e—>0
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Let (u,, p.) be the unique solution of the Stokes system (2.8). After rescaling the
velocity, the extension (Eu,/ o2, P,) converges strongly in [L2()]¥ X [L?(2)/R]
to (u, p), which is the unique solution of Darcy’s law

( Find (u, p) € [L>(D))Y X [H(2)/R] such that
-1

u=£—(f—Vp) in Q
(4.21) H

Vou=0 inQ

L u'n=0 on 49,

Where the matrix M is still given by Definition 3.1, and depends on the slip coefficient
a obtained through the following scaling

a = im q,q,.

e~ 0

If lim, . o(aY 'a,)/e¥ = 0, then the present proposition holds only if there is a
Dirichlet boundary condition on 0%.

Proof: For the case of a Dirichlet boundary condition on I',, this proposition
is proved in [1] (see Section 3.4). Using the ideas of the present paper, the proof
for the slip boundary condition is a mere repetition of that in [1]. For the sake of
brevity we do not repeat it here. However, let us emphasize that, even though the
local problem is still given by Lemma 3.2, the test functions (w, g%), involved in
the proof, satisfy similar but weaker properties than that of Proposition 3.3. Fur-
thermore, iflim, ., o(a¥ 'e,)/e" = 0, the Korn-type inequality of Lemma 2.4 fails
to provide a uniform coercive estimate. In that case we need a Dirichlet boundary
condition on 4Q, in order to use the Korn inequality in [H}(Q)]" (as in Proposi-
tion 4.3).

5. Construction of the Test Functions

This section is devoted to the proof of Lemma 3.2 and Proposition 3.3. We
emphasize that, in this section, we consider only the critical scaling defined in (3.1).
Actually, we focus on what is new compared to [1], where all the omitted details
can be found. The treatment of the two-dimensional case is especially different
from [1] in order clearly to show the source of the paradoxical result (3.9).

Proof of Lemma 3.2:
e N=3
For a fixed £ in R”, consider the Stokes system (5.1)
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(Vg —Aw,=0 inR¥-T
V-w,=0 inRY-T

wegn =0 on 9T
aw£=2(%-n)n—e(wf)n on dT

|l w;= ¢ at oo.

(5.1)

In order to prove the existence and uniqueness of a solution we seek an equivalent
minimization problem for (5.1). Let D?(R") be the completion, with respect to
the L2 norm of the gradient. of the space of all smooth functions with compact
support

Ivd’”L?(n")

(5.2) D'*(R") = D(RN)’

If N Z 3, the following continuous embeddings hold (see, e.g., Ladyzhenskaya [16]
for the first one, and Lemma 1.1, Chapter 4, in Lax-Phillips [17] for the second
one):

(5.3) D“(RY)C L*MW-I(RY) and D'*(RY) C LL(RY).

Let H.= {we& [D"*(RM)]"/V-w=0inRYand (w + £)-n = 0 on 8T}, and, for
positive «, consider the following minimization problem

Find w} which achieves

1
inf (—f |e(w)|2+af |w+£|2).
weH\2 Jr¥-T aT

Because of (5.3), the functions in H, are equal to zero at infinity in the L*»/(V=2)
sense. Then, it is easy to check that (5.4) is equivalent to the Stokes problem (5.1):
indeed, a coercive and strictly convex function on a closed, convex set admits a
unique minimizer, and it is easy to see that w, = w; + £ is the unique solution of
(5.1). In [1] we also proved that there exists a unique pressure g; solving (5.1) in
L*(R"). Furthermore, an integration by parts shows that the drag force F, exerted
on T satisfies

(5.4)

1
Feg= [ an-emomg=3 [ el ra [ iw,
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Decomposing £ in 2/, £¢;, we obtain

1
(55)  2MeME= 3 s,»s,»F,--e,:ELN_T|e(wf)|2+aLT|wE|2.

1<ijSN

Now, if we derive (5.5) with respect to «, no contribution comes from w; because
it achieves the minimum, and the derivative is positive, equal to f . |w5|2. This
gives the proof that a; = «, implies M(«,) = M(«). Going back to (5.4) it is easy
to see that the limit case when « tends to infinity corresponds to a Dirichlet boundary
condition on 87. As in [1], using the fundamental solution of the Stokes operator
inR" (see [12] and [16]), we obtain asymptotic expansions at infinity of the solution
of (5.1)

r | n |
wy=§— IS0 [m + (Fg-e,)e,] + O(rN_l)
g = — i (Fee) + o(iN)
(5.6) ) Snr r
Vw, = O(er_l)
| % T & Eﬁfr—m [F+ N(F-e)e] + o(riN) ,

These expansions are accurate if the drag force F; is non-zero. That is always the
case: by comparison with the small ball B, included in T, it is not difficult to show
that F;-£ > 0 for any non-zero £.

e N=2

This case is completely different from the previous one, because there is no
solution of (5.1) in two dimensions (this is the well-known Stokes paradox). That
is why we seek a solution of the Stokes equations with a logarithmic growth at
mfinity:

( Vg.—Aw,=0 inR’-T
Viw,=0 inR*-T

wen =0 ondT

d
aw£=2(a—:)f-n)n—e(wf)n on T

w; = (log r)& at «o.

(5.7) 3

If T is a ball B, of radius a, we can compute an exact solution of (5.7), denoted
by (¢, w¢)
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(5.8) Wg=(§’€r)"2f(’)€’r+g(r)f
’ g8 = (£ e)rh(r)
( L A
S(ry = 3 (’1 + p)
(5.9) with g(r)=10gr——A—2+B
2r
2
| M= =5
{ ~ a2
Tz
(5.10) with ad
4+ aa —l
L T 4+ 2aa g 4

Moreover, the drag force FY{ is equal to 4¢, for any value of « and a. In order to
extend that result to an arbitrary shape of the obstacle 7', we seek a solution of
(5.7) in the form w, = w§ + w; and ¢; = ¢ + g} where, from now on, (g3, w})
denotes the Stokes solution for the ball B, with a Dirichlet boundary condition
(i.e., « = +oo in formulae (5.10)). Let 65, be the homogeneous, unit mass, surface
measure concentrated on dB,. An easy computation shows that gfe, — (dw?/dr)
is equal to —2£ on the circle dB,. By subtraction (g}, w}) is a solution of the
following system

w? .
[ Va; — Awy = —(q?er - %)631 =285 R -T
V-wi=0 inR2—-T
(5.11) J wi-n=0 on 4T
a !
aw; = Z(ﬁ)ﬁ-n)n—e(wg)n on dT
| w; = o(log r) at 0 (i.e., IL)_V;s_I; - 0) .

We shall give a minimization formulation to system (5.11) as we did for (5.1). Let
D"2(R?) be the completion, with respect to the L? norm of the gradient, of the
space of all smooth functions with compact support in R?. Unfortunately, there is
no Sobolev embedding for D'(R?) (an important consequence of that fact is that
functions of D'*(R?) do not go to zero at infinity; for example, constants belong
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to D'#(R?)). Nevertheless, O. A. Ladyzhenskaya in [16] proved that any smooth
function ¢ with compact support in R? — B, satisfies

¢

rlogr

= 4|Vl L2m2 - 5y

LYR2- B))

Thus, we can deduce a continuous embedding, weaker than (5.3)

(5.12) D"Z(RZ)C{d)ELﬁ,c ELz(Rz)].

¢
2
(& )/(r + D)log(r + 2)
Functions of D'?(R?) behave like o(log r) at infinity, in the sense of (5.12), because
log r does not belong to the space on the right-hand side of (5.12). Let H, = {w &
[D'"*(R*)]?/V-w=0inR*>and w-n = 0 on 8T}.

Consider now the following minimization problem

Find w; which achieves

1 a
inf —f 2+—f 2-2 : )
w‘é’m(‘t el S =2 ] g

It is easy to check that (5.13) is equivalent to the Stokes system (5.11). As (5.13)
admits a unique minimizer w;, we conclude that w, = w; + w{ is the unique
solution of (5.7). Now it remains to show that the drag force F; is always equal to
47 ¢ (this paradoxical result has already been pointed out by R. Finn and D. Smith
in [13]). We have

- _ _f e >
F, J;T(qgn an)_ aBR(ar qu,) for any R=1

Decomposing w; as w{ + w; we obtain

(5.13)

a I
(—Wi - qge,) for any Rz 1.

(5.14) FE:47r£+f e

aBg

Let w{ be the same function as w, but for £’ # £ From (5.8)-(5.10) we know
that w{ is equal to 0 on 9B, and to log r[1 + o(1)]£ at infinity. Multiplying
equation (5.11) by w¥/log R and integrating by parts over Bz — B, yields

1 ow’;
.1 — vw? - '=f —E —gnl-£ 11+ o(1)].
(5.13) log R Jee— 5, We VW [ aBR( on q‘") 5}[ o()]
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For any ¢’ we can bound (5.15)

ow; , , 1 '
LBR (—ﬁ - qgn) -£ i = B—g—R ,1VW2’”LZ(BR~B[)HVWE nLZ(RZ—T)

(5.16)
< <
(log R)!/?

When R tends to infinity, we deduce from (5.14) and (5.16)
F, = 4xt.

We now turn to the construction of the test functions, which, roughly speaking,
are obtained by rescaling the solutions of the local problems, and expanding them
by Ps-periodicity in the whole domain .

Proof of Proposition 3.3:  We decompose each cell P$in smaller subdomains.
We set '

(5.17) PP=T:UCrUDIUK:

where C° is the open ball of rgdius ¢/2 centered in P¢, and perforated by 7%, D:
is equal to B¢ perforated by C°* U T5, and K¢ is the remainder, i.e., the corners
of P:.

Let (Wi, gi)1 <« < ~ be the solutions of the local problem defined in Lemma 3.2.
We define the functions (w%, g%); <x <~ by

e For each cube P$ which meets 9Q

wf<=ek .
mPiNg
q: =0

o For each cube P! entirely included in

Wi = € .
in K¢
g% =0

Vg, — Awi =0 )
n Dj

V-wi=0
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Wi (x) = wk(f)

(5.18) in C%¥ for NZz3
1 X
qi(x) = — qk(—)

a. \4a,

( 1
wi(x) = " wk(f)

(5.19)

1
qi(x) = 7 qk(f)
aflog(2 ) 4

Vgi — Awi =0 .
in T

V-wi =0
where (w§, gi) € [H'(P5)]Y X L*(P3).
Using the properties of the local solutions (including the asymptotic expansions

in the case N = 3, and the decomposition in a “spherical” part and a small remainder
in the case N = 2), we can easily prove, as we did in [1], that

(i) g% = 0in L*(Q)/R weakly.
(ii) wi — epin [H'(2)]" weakly, and V-w§ = 0 in Q.
(iii) wi-n = 0and (a/a,)wi = 2[(dw}/dn)-nln —e(wi)non T,.

Basically the main fact is to remark that

VWil L2y < 0 for Nz3
(5.20)

VWil 225, = 27 log R[1 + o(1)] for N=2,

Then by rescaling (5.20), and summing over cells P (the number of which is of
order ¢ V), we obtain

( C aN*Z
1VwillZae) = o NMATSE LS ;N [VWell Z2@my = C
(5.21) for Nz 3,
C C
2log[ —
L ¢108 2a,

For the sake of simplicity we omitted in (5.21) the estimates of Vwj in D¢ and in
T¢, which anyway turn out to be similar (and even stronger) to those in C’* (see
[1] for details).
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The main point to prove in Proposition 3.3 is the last statement (iv), namely
(iv) Let ui = Vqi, — Aws € [H Q). Then ui has compact support in Q,.

Moreover, extending u; by 0 in Q@ — Q, we have
1
,J,f(—>—2M€k in [H_l(Q)]N strong/y.
o

First, thanks to the definitions (5.18) and (5.19), the function (Vg5 — Aw}) is
equal to zero everywhere in (), except on the boundaries of C;* and D:. Thus u}
has compact support in €, as claimed in (iv). Second, we shall prove that u} con-
verges strongly to (1/¢22"}F, in [H~1(Q)]". However we only sketch this proof,
because it is a mere repetition of Lemmas 2.3.3 and 2.3.7 in [1]. A tedious com-
putation yields the strong L? convergence of (g5, Vw$) to zero in the union of the
Ds. Thus the part of Vgi — Aw$ concentrated on the boundaries of the D¢ converges
strongly to zero in [H~'(2)]". On the other hand, because of the definition of the
function pxf we may skip the contribution of Vgi — Aw{ on the boundaries dC’* N
dT%. It only remains to prove that

Néc:) ( (Zwi
T

i=1

- qiei)éﬁﬁ

(where 8¢/? is the unit mass concentrated on the sphere 3C;* N dD;) converges
strongly to (1/¢22")F.in [H~'(2)]". Introducing the solutions of the local problem
leads to

N 1 dws v
—qsel 5;/2
i-1 ( ar; axe )
r Nie) ZN o
2 5 [Fu+ N(Fieherled?*[1 + o(1)] for Nz3
i=1 40 SN
(522) =/
N(e) 2
2 S eed 1 + o(1)] for N=2.
i=1 0
\

Then using a lemma of D. Cioranescu and F. Murat (see [9]), which asserts that

[ N(e) Sy
> eéf—*; in H™1(Q) strongly

N
i=1

N(C) . .
2. eoi(eer)er >

i=1

in [H71(Q)]" strongly,

Sn
N2

\



640 G. ALLAIRE

we prove the desired convergence (see [1] for details)

N dws,
i§1 ( ar;

) 1
- 4281)5?/2 - Fz‘ﬁFb
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