
ECOLE POLYTECHNIQUE
Master M2 "Mathematical modelling"

PDE constrained optimization (G. Allaire)

Correction of exercise 6

Let Ω be a smooth bounded open set in Rd, for d ≥ 1. Let α > 0 be a
constant and g : R 7→ R a C1 function which has at most linear growth at
infinity, in the sense that there exists M > 0 and C > 0 such that, if |s| > M ,
then

0 ≤ g(s)s ≤ Cs2 and |g′(s)| ≤ C. (1)

For given f ∈ L2(Ω), consider the following non-linear model{
−∆u+ αρg(u) = f in Ω,
u = 0 on ∂Ω.

(2)

In (2) ρ ∈ Uad is an optimization variable which, for ρmin, ρmax ∈ R+, belongs
to the admissible set

Uad =
{
ρ ∈ L2(Ω) , ρmax ≥ ρ(x) ≥ ρmin ≥ 0 a.e. in Ω

}
.

For a given target field u0 ∈ H1
0 (Ω), we consider the optimization problem

inf
ρ∈Uad

{
J(ρ) =

1

2

∫
Ω

|u(x)− u0(x)|2dx
}
, (3)

where u is the solution of (2). This is an inverse problem where we want to
reconstruct the coefficient ρ in (2).

1. Prove that the boundary value problem (2) admits at least one solution
in H1

0 (Ω).
Consider the minimization in H1

0 (Ω) of the energy

E(u) =
1

2

∫
Ω

|∇u(x)|2dx+ α

∫
Ω

ρG(u)dx−
∫
Ω

fu dx

where G is a primitive of g. From the assumption (1) one can check
that the term

∫
Ω
ρG(u)dx is uniformly bounded from below and has

at most quadratic growth. Then taking a minimizing sequence, since
H1

0 (Ω) is compactly embedded in L2(Ω), one can pass to the limit, up
to a subsequence, and deduce the existence of at least one minimizer
of E(u). The Euler optimality condition yields a solution of (2).
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2. Prove that, if α > 0 is small enough, then there exists at most one
solution of (2) in H1

0 (Ω).
Take two solutions u1 and u2 and multiply by (u2 − u1) the diffe-

rence of their equations to get

0 ≥
∫
Ω

|∇(u2 − u1)|2dx− Cαρmax

∫
Ω

(u2 − u1)
2dx,

because g′(s) is uniformly bounded by C > 0. Applying Poincaré in-
equality to the first term, we deduce that (u2 − u1) = 0 for α small
enough.

3. From now on we assume that α = 1 and that s 7→ g(s) is non-
decreasing. Prove there exists at most one solution of (2) in H1

0 (Ω).
The fact that g is non-decreasing implies that G is convex, so E(u)

is strongly convex, which yields the result.
4. Prove that there exists at least one minimizer for (3).

Take a minimizing sequence ρn of (3) and denote un the corres-
ponding solution of (2). From the energy minimization of E(u) we
deduce that the sequence un is bounded in H1

0 (Ω). Then, by the com-
pact embedding of H1

0 (Ω) in L2(Ω) we pass to the limit both in (2) and
(3).

5. Check that the map

L2(Ω) 7→ H1
0 (Ω)

ρ 7→ u solution of (2)

is Fréchet differentiable and compute its directional derivative in a
direction w.

The Fréchet differentiability can be established by the implicit func-
tion theorem, cf. the course. Computing the directional derivative v =
⟨u′(ρ), w⟩ in a direction w is a simple computation{

−∆v + ρg′(u)v = −wg(u) in Ω,
v = 0 on ∂Ω.

6. Find the Lagrangian of the problem and deduce the adjoint state.
The Lagrangian is defined for (ρ, u, p) ∈ L2(Ω) ×H1

0 (Ω) ×H1
0 (Ω)

by

L(ρ, u, p) = 1

2

∫
Ω

|u− u0|2dx+

∫
Ω

(∇u · ∇p+ ρg(u)p− fp) dx.
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The adjoint is defined by ⟨∂L
∂u
, ϕ⟩ = 0 for any ϕ ∈ H1

0 (Ω), which yields{
−∆p+ ρg′(u)p = −(u− u0) in Ω,
p = 0 on ∂Ω.

7. Compute the derivative with respect to ρ of the objective function.
The derivative is given by

J ′(ρ) =
∂L
∂ρ

(ρ, u, p) = g(u)p,

where u is the solution of (2) and p is the solution of the adjoint
equation.

8. Suggest and describe a numerical algorithm to solve (3).
One can use a projected gradient algorithm.
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