ECOLE POLYTECHNIQUE
Master M2 "Mathematical modelling"
PDE constrained optimization (G. Allaire)

Correction of exercise 6

Let Q be a smooth bounded open set in R?, for d > 1. Let o > 0 be a
constant and ¢ : R — R a C! function which has at most linear growth at
infinity, in the sense that there exists M > 0 and C' > 0 such that, if |s| > M,
then

0<g(s)s<Cs* and|g(s)| <C. (1)

For given f € L?*(Q), consider the following non-linear model

—Au+apg(u) = f in Q, @)
u=20 on 0f).

In (2) p € Uyq is an optimization variable which, for pyin, pmaz € RT, belongs
to the admissible set

Uy = {p € L*(),  pmaz = p(T) > pmin > 0 ae. in Q}

For a given target field ug € H}(€2), we consider the optimization problem

int {5600 =5 [ 1ute) - wle)Pas | 3)

where u is the solution of (2). This is an inverse problem where we want to
reconstruct the coefficient p in (2).

1. Prove that the boundary value problem (2) admits at least one solution
in H}(Q).
Consider the minimization in H}(Q) of the energy

E(u):%/Q|Vu(:z:)|2dx+oz/QpG(u)dx—/qudac

where G is a primitive of g. From the assumption (1) one can check
that the term fQ pG(u)dz is uniformly bounded from below and has
at most quadratic growth. Then taking a minimizing sequence, since
H}(Q) is compactly embedded in L*(SY), one can pass to the limit, up
to a subsequence, and deduce the existence of at least one minimizer
of E(u). The Euler optimality condition yields a solution of (2).



2. Prove that, if o > 0 is small enough, then there exists at most one
solution of (2) in HJ ().
Take two solutions uy and us and multiply by (us — uq) the diffe-
rence of their equations to get

0> / IV (ug — ) Pdr — C’Ozpmax/(uQ — uy )2dw,
Q Q

because ¢'(s) is uniformly bounded by C' > 0. Applying Poincaré in-
equality to the first term, we deduce that (uz — uy) = 0 for a small
enough.

3. From now on we assume that @« = 1 and that s — g¢(s) is non-
decreasing. Prove there exists at most one solution of (2) in H} ().

The fact that g is non-decreasing implies that G is convez, so E(u)

18 strongly convex, which yields the result.

4. Prove that there exists at least one minimizer for (3).

Take a minimizing sequence p, of (3) and denote w,, the corres-
ponding solution of (2). From the energy minimization of E(u) we
deduce that the sequence u,, is bounded in Hy(Q). Then, by the com-
pact embedding of H}(QY) in L*(Q2) we pass to the limit both in (2) and
(3).

5. Check that the map

L*(Q)
p

—  Hg(Q)

— u solution of (2)

is Fréchet differentiable and compute its directional derivative in a
direction w.

The Fréchet differentiability can be established by the implicit func-
tion theorem, cf. the course. Computing the directional derivative v =
(W' (p),w) in a direction w is a simple computation

—Av + pg'(u)v = —wg(u) in Q,
v=20 on 0N).

6. Find the Lagrangian of the problem and deduce the adjoint state.
The Lagrangian is defined for (p,u,p) € L*(Q) x HL(Q) x H}(Q)
by

1
L(p,u,p) = 5 /Q lu — uo|*dz + /Q (Vu-Vp+ pg(u)p — fp) dz.
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The adjoint is defined by <%, @) =0 for any ¢ € HY(Q), which yields

—Ap+pg'(u)p = —(u—wug) in<
p=20 on 0.

. Compute the derivative with respect to p of the objective function.

The deriwative 1s given by

J(p) = Z—ﬁmu,p) = g(u)p,

where u is the solution of (2) and p is the solution of the adjoint
equation.

. Suggest and describe a numerical algorithm to solve (3).

One can use a projected gradient algorithm.



