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∗Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau, France;

and †DEN/DM2S/SFME CEA Saclay, 91191 Gif-sur-Yvette, France
E-mail: gregoire.allaire@polytechnique.fr, sebastien.clerc@cea.fr, samuel.kokh@cea.fr

Received June 2, 2001; revised June 3, 2002

A diffuse-interface method is proposed for the simulation of interfaces between
compressible fluids with general equations of state, including tabulated laws. The
interface is allowed to diffuse on a small number of computational cells and a mix-
ture model is given for this transition region. We write conservation equations for
the mass of each fluid and for the total momentum and energy of the mixture and
an advection equation for the volume fraction of one of the two fluids. The model
needs an additional closure law. We study two different closure laws: isobaric and
isothermal. We study the mathematical properties of the resulting models: consis-
tency, hyperbolicity, and existence of a mathematical entropy. We also study the
stability of the interfaces with respect to averaging due to the numerical diffusion, a
crucial property for the simulation of interface problems by conservative schemes.
We show that the isobaric closure is preferable to the isothermal closure with respect
to this property. We propose a Roe-type numerical scheme for the simulation of the
model and show numerical results for classical test cases. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

We consider the simulation of interfaces between two immiscible compressible fluids.
Our motivation comes from the computation of water and steam two-phase flows and is
discussed at length in [12–14]. This problem is modeled by the compressible Euler equations
in each fluid domain and the usual jump conditions across the interface. The major numerical
difficulty is to compute accurately the motion of the interface. In the literature there are
mainly four possible methods for this problem. The first one is called interface tracking. It
is a Lagrangian method where the interface is discretized with markers which are moved
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at each time step. Examples of this approach are in [8, 33]. The second method is called
volume of fluid (VOF) and is based on an interface reconstruction process. A color function,
initialized with 0 and 1 in the domains occupied by fluid 1 and 2, respectively, is advected
on a fixed Eulerian grid. The actual position of the interface is recovered by a sophisticated
procedure (see, e.g., [10, 15, 27]), which also controls the numerical diffusion. The third
method is the level set method introduced by Osher and Sethian [20]. Here the interface is
given as the zero level set of a continuous function, which is typically the signed distance
to the interface. The interface recovery reduces to a simple interpolation problem. Methods
such as front-tracking or “second-order” volume of fluid invoke a real reconstruction of
the interface owing to fine interpolation processes. Despite their high accuracy, they suffer
the drawback of a high complexity in three dimensions or in case of drastic topological
changes of the front. On the other hand, level set methods are simple but less accurate, and
sharpening techniques are used to enhance their precision (see, e.g., [21, 28]). Finally, the
fourth method, to which the present work pertains, is based on a spread interface model.
In this method, one does not compute the precise location of the interface. As for VOF
methods each phase is marked by a color function which, because of numerical diffusion,
can take intermediate values between 0 and 1. In the transition region, these color functions
are interpreted as concentrations or mass fractions, and therefore we need to introduce
a mixture model or an artificial equation of state for the mixture in the transition layer
which corresponds to the spread interface. This type of model was first used to compute
multicomponent gas flows [2, 17] and then extended to immiscible materials (see [1, 11,
25, 26, 29] among others). This latter approach is not contradictory with the use of level set
algorithms as explained in [13, 14], since the color functions can be reinitialized periodically
as characteristic functions valued in {0, 1} by using the usual sharpening techniques based
on Hamilton–Jacobi equations (see, e.g., [21, 28]). A priori, the spread interface method is
less accurate than the previous methods, but it is simpler to implement, it relies on a sound
physical modeling of the mixture, and its numerical diffusion can be limited by different
sharpening techniques [13]. Let us mention also some other recent numerical methods such
as [3, 18].

In this work, we concentrate on the definition of the mixture model for the spread interface.
This must be done in accordance to the following criteria:

• the model should degenerate correctly when only one fluid is present,
• the model should be hyperbolic,
• the model should conserve the total mass and energy of the fluids, and
• the model should not create spurious numerical oscillations at the interface.

In the case of two perfect gases, the common practice is to define an equivalent perfect
gas for the mixture by simply averaging the coefficients of the equation of state with weights
proportional to the color function (see, e.g., [2]). More precisely, the right quantity to average
is 1/(γ − 1), where γ is the adiabatic exponent of the perfect gas. Abgrall [1] and Karni
[11] showed that it was desirable to include the last property of the aforementioned list,
namely, the preservation of constant pressure equilibriums. Mixing two fluids with the same
pressure should result in a mixture state with the same pressure. Failing to comply with this
requirement leads to the generation of spurious acoustic waves near the interface; see also
[5]. Based on this principle, Abgrall and Karni showed that it is necessary to give up the
conservative character of the equations and proposed a quasi-conservative approach. Indeed,
they introduce a nonconservative transport equation for the quantity 1/(γ − 1). Saurel and
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Abgrall [26] and Shyue [29] further extended this model to the so-called stiffened gas
equation of state or to the van der Waals equation of state [30]. One of the main ideas of
these extensions is to add as many transport equations as there are parameters defining the
equation of state (like the adiabatic exponent γ for a perfect gas). Therefore, the practical
complexity of this approach increases with the number of parameters required to define the
equation of state. In the present work, we further extend the spread interface model to a
wide range of equations of state, not necessarily parametrized by few parameters (as, for
example, tabulated equations of state, which are of common use in practical applications;
see Section 8.6). The key idea is to replace algebraic closure relations in the mixture by a
single supplementary transport equation. In particular, the number of equations of our model
does not depend on the equation of state (as was the case with the previous extensions).
This also has the advantage that our model conserves mass for each fluid.

The contents of the paper are the following. In Section 2 we recall the original quasi-
conservative model of Abgrall and Karni, which is specifically designed for a perfect gas. In
one dimension (1-D) it is a system of four equations which involves a special modeling and
numerical treatment of the adiabatic exponent γ . This model can be generalized to other
types of gas with simple parametrized equation of state (for example, stiffened gas [26, 29]
or van der Waals gas [30]). In Section 3 we extend the previous approach by considering a
five-equation model which allows us to treat any type of equations of state. In Sections 4
and 5 we investigate two algebraic closures for our five-equation model: isopressure and
isothermal closure respectively. For the isopressure closure, we prove in Section 6 a stability
property for the pressure at the interface. In Section 7 we propose a numerical scheme for
the simulation of the five-equation model. The scheme is based on Roe’s approximate
Riemann solver, with extensions to treat nonconservative terms and general equations of
state. Numerical results are presented in Section 8 and a short conclusion is drawn in
Section 9.

To conclude this introduction, let us remark that there exist more complicated models
for interface simulations. In [25] Saurel presented a seven-equation model for mixtures of
various fluids. The main results of this paper have been announced in [4]. We have learned
recently that the authors of [19] proposed a similar model independently.

2. THE FOUR-EQUATION MODEL

In this section we describe the so-called four-equation model for the modeling of the
mixture of two perfect gases in a thin layer around their true interface. It amounts to a
simple isothermal mixing model of perfect gases, as described in [1].

Each fluid i = 1, 2 is assumed to be compressible with a density ρi , a specific internal
energy εi , a pressure Pi , and a temperature Ti satisfying the perfect gas equation of state

Pi = (γi − 1)ρiεi , εi = cvi Ti ,

where γi = cpi/cvi is the ratio of the specific heat capacity at constant pressure and vol-
ume, respectively, of the i th fluid. We also define the specific enthalpy of fluid i by
hi = εi + Pi/ρi . Throughout this paper, both fluids in the mixture are supposed to share
the same velocity u. We introduce a color function z ∈ [0, 1] and define the volume frac-
tions z1 = z and z2 = 1 − z. By volume averaging, we then define global quantities and
thermodynamical parameters for the mixture, displayed in Table I. Note that the definition
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TABLE I

Global Variables of the Fluid Mixture

z1 = z, z2 = 1 − z Volume fractions
ρ = z1ρ1 + z2ρ2 Density
yi = zi ρi /ρ Mass fractions
P = z1 P1 + z2 P2 Pressure
ρε = z1ρ1ε1 + z2ρ2ε2 Internal energy
ρh = z1ρ1h1 + z2ρ2h2 = ρε + P Specific enthalpy
e = ε + |u|2/2 Specific total energy
H = e + P/ρ Specific total enthalpy

of the global pressure P is just Dalton’s law. During the computation, there will be cells
containing both fluids, and we need to define a new equation of state for this mixture if we
want to treat it as a single equivalent fluid. Although this is a purely numerical artifact we
use physically sound arguments to model this mixture layer. We make the assumption of
a thermal equilibrium; i.e., in the area where both species are present, they share the same
temperature T = T1 = T2.

This isothermal assumption allows us to relate the global parameters P , T , ρ, ε. Indeed,
introducing the mass fractions yi = ziρi/ρ, we obtain thermodynamic parameters for the
mixture

cp = y1cp1 + y2cp2, (1)

cv = y1cv1 + y2cv2, (2)

γ = y1cp1 + y2cp2

y1cv1 + y2cv2
, (3)

such that

ε = cvT, P = (γ − 1)ρε. (4)

Therefore, the mixture state equation is similar to that of a perfect gas, except that the γ

parameter depends on the mass fractions. This mixing process can be applied to other types
of gas, e.g., a stiffened gas [25], but not to any real gas. There are other possible mixing laws
which allow us to define a state equation for the mixture (see, e.g., the iso-heat-deposition
closure law introduced by Lagoutière [16]).

Abgrall [1] and Karni [11] showed that if the average γ is computed directly from Eq. (3),
spurious pressure oscillations are created at the interface. To avoid these oscillations, Abgrall
[1] introduced a parameter ξ defined by

ξ = 1

γ − 1

and wrote a transport equation for ξ . Therefore, the four-equation model is


∂ρ

∂t + div(ρu) = 0,

∂ρu
∂t + div(ρu ⊗ u + PId) = 0,

∂ρe
∂t + div(ρHu) = 0,

∂ξ

∂t + u · grad ξ = 0.

(5)
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Note that the last (nonconservative) equation of (5) can be put in conservative form by
combining it with mass conservation. However, for numerical purposes it must be discretized
as nonconservative.

Model (5) allows the recovery of the partial densities ziρi , partial pressures zi Pi , and
partial internal energies ziεi of each species from the knowledge of the mixture variables.
Nevertheless, we cannot deduce the volume fractions zi or the individual thermodynamic
quantities ρi , Pi , εi from (5) (except if we add another closure relation like e.g., P1 = P2).

The four-equation model is unfortunately restricted to very specific equation of states
(EOSs) such as the perfect gas EOS. The rest of this paper is devoted to its generalization
to real fluids, for which we add a supplementary transport equation. In particular, this will
allow us to recover all individual thermodynamic quantities as well as the volume fractions
of each phase.

3. THE FIVE-EQUATION MODEL

3.1. Definition

We keep the same notation as in the previous section (see Table I). Our model is based
on the usual conservation laws for the mixture (mass, momentum, and energy balance)
supplemented with one phase mass conservation equation and a transport equation for the
volume fraction z. Therefore, the five-equation system reads

∂z1ρ1

∂t
+ div(z1ρ1u) = 0, (6)

∂z2ρ2

∂t
+ div(z2ρ2u) = 0, (7)

∂ρu
∂t

+ div(ρu ⊗ u + PId) = 0, (8)

∂ρe

∂t
+ div(ρHu) = 0, (9)

∂z

∂t
+ u · gradz = 0. (10)

System (6)–(10) is different from the previous four-equation model (5) since one keeps
track of the volume fractions, not merely the mass fractions. Its form is closer in spirit to the
usual models of homogenized two-phase flows based on volume fractions (see, e.g., [24,
25, 32]).

This five-equation model is not closed. Indeed, there are five equations (in 1-D, or seven
equations in 3-D) and six variables (in 1-D, or eight variables in 3-D), which are z, ρ1, ρ2,
u, ε1, ε2. Therefore an extra relation is needed to complete it. A possible way to understand
how this missing closure relation acts in the system is to recognize that it is not possible
to compute the pressure P with the sole knowledge of the conserved quantities in (6)–
(10). Indeed, these conserved quantities yield the values of z, ρ1, ρ2, u but not those of
ε1, ε2 (merely a linear combination of them is known). Therefore, this extra constitutive
hypothesis can be thought of as a definition of a “generalized EOS” for the mixture. Of
course, there are many possible closure relations that allow recovery of the pressure P , but
among them we select those that allow recovery of all the thermodynamic variables of each
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fluid (it is easy to see that not all of them have this property). We call this selection principle
a consistency property since it is physically, as well as numerically, sound to be able to
characterize completely each fluid in such a mixture model.

We suggest two different closure laws based on reasonable physical assumptions that
we analyze from a mathematical and numerical point of view: the isobaric closure and
the isothermal closure. For each of these we study the consistency and the hyperbolicity
of the system, as well as some qualitative properties of interface advection. In this study
the numerical aspect of the five-equation system will be especially focused on the isobaric
closure.

Remark. If the color function z takes only the values 0 or 1, which means that it describes
a sharp interface, then Eqs. (6), (7), and (10) are redundant (only two out of them are
independent). In such a case, the five-equation model is equivalent to the four-equation
model, namely,

∂ρ

∂t
+ div(ρu) = 0, (11)

∂ρu
∂t

+ div(ρu ⊗ u + PId) = 0, (12)

∂ρe

∂t
+ div(ρHu) = 0, (13)

∂z

∂t
+ u · gradz = 0. (14)

However, as soon as z takes intermediate values, these two systems are not equivalent.

Remark. One advantage of the five-equation model is that it is always mass conservative
with respect to each phase. In particular, whatever the numerical treatment of the color
function z (which is governed by a nonconservative equation), we shall never lose the
important property of phase mass conservation. This is especially crucial if one couples
this model with a numerical procedure of front-sharpening or antidiffusion for the color
function z (see [12]). Note that the total momentum and total energy are also conservative
quantities, whereas each phase energy is usually not conserved.

Remark. The model can be extended to treat more than two fluids by adding a mass
conservation equation and a volume fraction advection equation for each new fluid.

3.2. Primitive Variable Formulation

A general closure relationship for the five-equation system is the definition of a mixture
equation of state of the type P = P(z, ρ1z, ρ2(1 − z), ρε). This formula is general enough
since it depends on all thermodynamic variables in the system (but not on the velocity as
is usual). Before turning to the study of specific closures of the system, we derive some
evolution equations for its primitive variables (which will prove useful in the following)
and show that it is hyperbolic under a mild assumption on the speed of sound.

We denote by Dφ/Dt the material derivative of a quantity φ, i.e.,

Dφ

Dt
= ∂φ

∂t
+ u · gradφ.
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Obviously, (6) and (7) are formally equivalent to

Dρi zi

Dt
= −ρi zi div(u), i = 1, 2.

Classically, (8) can be replaced by

ρ
Du
Dt

+ gradP = 0

while, since ρε = ρe − ρ|u|2/2, relation (9) is equivalent to

Dρε

Dt
= −ρh div(u). (15)

Then, we write an evolution equation for the pressure. Since the total pressure is a function
of the variables z, ρ1z, ρ2(1 − z), and ρε, its differential is

d P =
(

∂ P

∂ρε

)
d(ρε) +

∑
i

(
∂ P

∂ρi zi

)
d(ρi zi ) +

∑
i

(
∂ P

∂zi

)
dzi . (16)

Since Dzi/Dt = 0, the evolution of the pressure is governed by

D P

Dt
= −

[
ρh

(
∂ P

∂ρε

)
+
∑

i

ρi zi

(
∂ P

∂ρi zi

)]
div(u).

PROPOSITION 3.1. Suppose that the closure relation and the fluid equations of state are
such that

c2 =
(

∂ P

∂ρε

)
h +

∑
i

yi

(
∂ P

∂ρi zi

)
> 0;

then the five-equation model is hyperbolic.

Proof. Let us write the system of equations in the primitive variables (ρi zi , u, P, zi ):

Dρi zi

Dt
+ ρi zi div(u) = 0, (17)

Du
Dt

+ 1

ρ
gradP = 0, (18)

D P

Dt
+ ρc2 div(u) = 0, (19)

Dzi

Dt
= 0. (20)

In this form, it is obvious that the system is hyperbolic. In one space dimension for two
fluids, the Jacobian matrix of the system is



u 0 ρ1z1 0 0

0 u ρ2z2 0 0

0 0 u 1/ρ 0

0 0 ρc2 u 0

0 0 0 0 u




.
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This matrix is easily shown to be diagonalizable with eigenvalues u − c, u (three times), and
u + c and a complete set of eigenvectors, which proves the hyperbolicity (see Proposition 7.2
for a similar computation). �

Finally, we give an evolution equation for the entropies that will be used in the following
to investigate the existence of a mathematical entropy of the system.

LEMMA 3.1. Let Si be the physical entropy of phase i . Then, we have

∑
i

ρi zi Ti
DSi

Dt
= 0.

Proof. We write Eq. (15) in terms of the entropy of each fluid. Since Dzi/Dt = 0, we
first rewrite

Dρε

Dt
=
∑

i

D

Dt
(ziρiεi ) =

∑
i

zi
Dρiεi

Dt
.

We then use Gibb’s relation to get

d(ρiεi ) = ρi dεi + εi dρi = ρi Ti d Si + hi dρi .

Thus

∑
i

ρi zi Ti
DSi

Dt
+ zi hi

Dρi

Dt
= −ρh div(u). (21)

Since Dρi/Dt = −ρi div(u), we obtain the desired result. �

4. ISOBARIC CLOSURE

4.1. Definition

To close system (6)–(10) we supplement it with an algebraic relation of equal phase
pressures. The EOSs for both fluids are supposed to be given as

ρiεi : (ρi , Pi ) �→ (ρiεi )(ρi , Pi ).

We define the partial derivative

ξi =
(

∂ρiεi

∂ Pi

)
ρi

. (22)

The isobaric closure assumption reads

P1 = P2 = P. (23)

We now turn to the properties of the five-equation system with isobaric closure.
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4.2. Consistency

In great generality we are going to make some assumptions on the EOS to prove that
the five-equation model is consistent and hyperbolic. For some specific examples these
assumptions are not required (see Section 4.5). We make the hypothesis that for each fluid

Pi ≥ 0 and Pi = 0 if ρiεi = 0 and ξi > 0. (24)

For a perfect gas EOS, ξi = 1/(γi − 1), so the condition ξi > 0 reads γi > 1. This condition
is always met by perfect gases. However, for real fluids, the condition ξi > 0 is somewhat
restrictive. A well-known counterexample is that of liquid water between 0 and 4◦C.

We emphasize that assumption (24) is sufficient but not absolutely necessary. For example,
Pi �= 0 when ρiεi = 0 for a stiffened gas, but our model is well-posed in such a case (see
Section 4.5). The only merit of (24) is that it is a simple technical assumption for the
following result.

PROPOSITION 4.1. Under hypothesis (24) the isobaric closure (23) allows recovery of a
single value of the pressure P for the five-equation model (6)–(10).

Proof. We just need to check that for given positive values of ρε, ρ1, ρ2 and z ∈ [0, 1]
the system

P1(ρ1, ρ1ε1) − P2(ρ2, ρ2ε2) = 0, (25)

zρ1ε1 + (1 − z)ρ2ε2 = ρε (26)

admits a unique solution (ρ1ε1, ρ2ε2). Defining x = (ρ1z1ε1)/(ρε), we introduce a function
� : [0, 1] → R, defined by

�(x) = P1

(
ρ1,

x

z
ρε

)
− P2

(
ρ2,

1 − x

1 − z
ρε

)
.

Assuming P1 and P2 to be C1, then we obtain by the chain rule

�′(x) = ρε

{
1

z

(
∂ P1

∂ρ1ε1

)
ρ1

(
ρ1,

x

z
ρε

)
+ 1

1 − z

(
∂ P2

∂ρ2ε2

)
ρ2

(
ρ2,

1 − x

1 − z
ρε

)}
,

which gives with the above notation

�′(x) = ρε

{
1

zξ1
+ 1

(1 − z)ξ2

}
.

Owing to hypothesis (24) we have �′(x) > 0, ∀x ∈ [0, 1]. Moreover, we have

�(1) = P1(ρ1, ρε) ≥ 0 and �(0) = −P2(ρ2, ρε) ≤ 0.

The assumption on Pi then provides the existence of x0 ∈ [0, 1] such that �(x0) = 0.
Setting ρ1ε1 = x0ρε/z and ρ2ε2 = (1 − x0)ρε/(1 − z) defines the unique solution to our
problem. �
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Remark. Under the isobaric closure assumption, it is straightforward to check that the
datum of the global conserved quantities zρ1, (1 − z)ρ2, ρu, ρe, z of the five-equation
model (6)–(10) yields the values of all individual fluid variables z, ρ1, ρ2, u, ε1, ε2. This is
precisely what we call the consistency property of the closure law.

We now give a more precise formula than (16) for the pressure differential.

PROPOSITION 4.2. The pressure P is a function of z, zρ1, (1 − z)ρ2, ρε and its dif-
ferential is

d P = 1

ξ
d(ρε) −

∑
i

δi

ξ
d(ziρi ) + Mdz, (27)

with ξ = z1ξ1 + z2ξ2 and

δi =
(

∂ρiεi

∂ρi

)
Pi

, M = 1

ξ
(ρ1δ1 − ρ1ε1) − 1

ξ
(ρ2δ2 − ρ2ε2).

Proof. Recalling the definition of the mixture internal energy (see Table I), we see that
its differential is given by

d(ρε) =
∑

i

ρiεi dzi +
∑

i

zi d(ρiεi ) =
∑

i

ρiεi dzi +
∑

i

zi [δi dρi + ξi d P], (28)

and finally

d P = 1

ξ
d(ρε) −

∑
i

ziδi

ξ
dρi −

(
ρ1ε1 − ρ2ε2

ξ

)
dz.

Using zi dρi = d(ziρi ) − ρi dzi (28) yields formula (27). �

4.3. Hyperbolicity

We turn to the well-posedness of the five-equation system with isobaric closure. By virtue
of Proposition 3.1, it is enough to check that the mixture sound velocity c is well defined,
namely, that

c2 =
(

∂ P

∂ρε

)
h +

∑
i

yi

(
∂ P

∂ρi zi

)
> 0.

Using the partial derivatives of P given by Proposition 4.2, we easily get

ξc2 = h −
∑

i

yiδi =
∑

i

yi (hi − δi ).

Recalling that hi = εi + Pi/ρi , we find that the speed of sound ci of the pure fluid i is
given by

c2
i = (hi − δi )/ξi ,

and thus we deduce

ξc2 =
∑

i

yiξi c
2
i . (29)
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In other words, c is some kind of average of the phase speeds of sound ci . We can thus state
the main well-posedness property of the five-equation model with isobaric closure.

PROPOSITION 4.3. Under assumption (24), and if the sound velocity ci of fluid i is well
defined, the five-equation model with isobaric closure it hyperbolic.

4.4. Existence of a Mathematical Entropy

In general, it is not possible to find an integrating factor in the equation of Lemma 3.1,

∑
i

ρi zi Ti
DSi

Dt
= 0.

Therefore, we did not find a mathematical entropy for the isobaric model. However, if all
the fluids in the mixture are perfect gases, we can write

ρi Ti = Pi/ri = P/ri ,

where ri = cpi − cvi . Setting S = ∑
i zi Si/ri , we deduce

DS

Dt
= 0,

which means that S is a mathematical entropy satisfying

∂ρS

∂t
+ div(ρSu) = 0.

4.5. Isobaric Closure Examples

For a general EOS, recovering the value of the pressure P from the conserved quan-
tities (ρε, ρ1, ρ2, z) requires solving the nonlinear algebraic equation (25) by some type
of iterative method. Such a procedure may be costly but is quite common when working
with single-phase tabulated EOSs (see Section 8.6 for more details). Nevertheless, there
are a number of important cases where we found an explicit expression of the pressure P ,
thus avoiding both the use of iterative root solvers for (25) and the need of the technical
assumption (24).

4.5.1. Stiffened gases. We first consider the simple case of a mixture of two fluids which
are so-called stiffened gases. Each fluid i is characterized by its equation of state

Pi = (γi − 1)ρiεi − γiπi , (30)

involving two thermodynamic constants γi > 1 (the adiabatic exponent) and πi ≥ 0 (a ref-
erence pressure). The coefficients we introduced here read

ξi =
(

∂ρiεi

∂ Pi

)
ρi

= 1

γi − 1
, δi =

(
∂ρiεi

∂ρi

)
Pi

= 0.
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In this particular situation we obtain an analytical expression for the pressure P = P1 = P2.
Replacing the expression of ρiεi in (30) into the definition of ρε yields

ρε =
∑

i

ziρiεi =
∑

i

zi

(
P + γiπi

γi − 1

)
= P

∑
i

zi

γi − 1
+
∑

i

zi
γiπi

γi − 1
. (31)

Therefore, introducing averaged mixture coefficients, we are able to derive an explicit
generalized analytic EOS for the mixture, given by

ξ = 1

γ − 1
=
∑

i

zi

γi − 1
, (32)

πγ

γ − 1
=
∑

i

zi
πiγi

γi − 1
, (33)

P(z, ρε) = (γ − 1)ρε − γπ. (34)

In this particular case the five-equation system can be reduced to a classical four-equation
bifluid system, equivalent to Shyue’s model [29],




∂ρ

∂t + div(ρu) = 0,

∂ρu
∂t + div(ρu ⊗ u + PId) = 0,

∂ρe
∂t + div(ρHu) = 0,

∂z
∂t + u · gradz = 0,

where P = P(z, ρε) is given by (34). In other words, knowledge of the phase densities ρi

is not necessary to compute the pressure. Of course, when reduced to four equations, this
model no longer furnishes the phase densities or mass fractions.

4.5.2. Generalized van der Waals gases. We now consider a mixture of two generalized
van der Waals gases. Both fluids are equipped with the following EOS:

Pi (ρi , ρiεi ) =
(

γi − 1

1 − biρi

)(
ρiεi − πi + aiρ

2
i

)− (
πi + aiρ

2
i

)
. (35)

The coefficients δi and ξi here read

δi =
(

∂ρiεi

∂ρi

)
Pi

= 2aiρi

(
1 − biρi

γi − 1
− 1

)
− bi

γi − 1

(
Pi + πi + aiρ

2
i

)
,

ξi =
(

∂ρiεi

∂ Pi

)
ρi

= 1 − biρi

γi − 1
.

An explicit expression for P is again available. We write ρε using (35) as

ρε =
∑

i

ziρiεi =
∑

i

zi

(
1 − biρi

γi − 1

)(
P + πi + aiρ

2
i

)+
∑

i

zi
(
πi − aiρ

2
i

)
.
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This yields the following expression of the pressure P:

P(ρ1, ρ2, ρε, z) =
[∑

i

zi

(
1 − biρi

γi − 1

)]−1[
ρε +

∑
i

zi
(
aiρ

2
i − πi

)

−
∑

i

zi

(
1 − biρi

γi − 1

)(
πi + aiρ

2
i

)]
.

Unlike the previous example, the five-equation model cannot be reduced to four equations,
as the full set of equations is needed to express all the variables which determine P . For
van der Waals gases, the system is not equivalent to Shyue’s extension [30].

4.5.3. Mie–Gruneisen materials. Finally, we consider a mixture of two Mie–Gruneisen
fluids with the EOS

Pi (ρi , ρiεi ) = (γi (ρi ) − 1)ρiεi − γi (ρi )πi (ρi ). (36)

The coefficients ξi and δi are now

δi = − γ ′
i (ρi )

(γi (ρi ) − 1)2
[Pi + πi (ρi )] + γi (ρi )

γi (ρi ) − 1
π ′

i (ρi ),

ξi = 1

γi (ρi ) − 1
.

An explicit expression for P is still available. Introducing ξ = ∑
i ziξi , we find

ρε = ξ P +
∑

i

ziγi (ρi )πi (ρi )ξi (ρi ),

which yields the expression

P(ρ1, ρ2, ρε, z) = ρε

ξ
− 1

ξ

∑
i

ziγi (ρi )πi (ρi )ξi (ρi ) = (γ − 1)ρε − γπ

with ξ = 1/(γ − 1) and

π = γ − 1

γ

∑
i

ziπi (ρi )
γi (ρi ) − 1

γi (ρi )
.

Our five-equation model with this equation of state is not equivalent to Shyue’s extension
[31].

5. ISOTHERMAL CLOSURE

5.1. Hypotheses

In this section we assume that each fluid i is equipped with an EOS defined in terms of
its density ρi and temperature Ti , which reads

εi : (ρi , Ti ) �→ εi (ρi , Ti ), Pi : (ρi , Ti ) �→ Pi (ρi , Ti ).
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The isothermal closure reads

T1 = T2 = T . (37)

In the following, we assume that the equations of state satisfy

Ti (ρi , εi ) ≥ 0 and Ti (ρi , εi = 0) = 0,

(
∂ Pi

∂ρi

)
Ti

> 0, cv i =
(

∂εi

∂Ti

)
ρi

> 0. (38)

All theses assumptions are physically reasonable although they are not always satisfied.
They hold true at least for perfect gases. For a perfect gas EOS, (∂ Pi/∂ρi )Ti = cvi is a
positive constant, so assumption (38) is indeed satisfied. Once again, we emphasize that
assumption (38) is just a simple sufficient condition for the five-equation model (with
isothermal closure) to be consistent and hyperbolic. Since we shall not use this closure in
practice, we did not try to find more general assumptions.

5.2. Consistency

The consistency property amounts to being able to compute the global pressure P from
the conserved quantities. In the present case, it is equivalent to determining the global
temperature T , which allows recovery of the partial pressures Pi through the EOS and thus
the deduction of P . We proceed as in the isobaric closure in Section 4.2.

PROPOSITION 5.1. Assumptions (38) and (37) indeed define a single-valued tempe-
rature T .

Proof. We just need to check that for given positive values of ρε, ρi , ρ2 and z ∈ [0, 1]
the system

{
T1(ρ1, ε1) − T2(ρ2, ε2) = 0,

zρ1ε1 + (1 − z)ρ2ε2 = ρε

always admits a unique solution (ε1, ε2). We define � : [0, 1] → R by

�(x) = T1

(
ρ1,

ρε

ρ1z
x

)
− T2

(
ρ2,

ρε

ρ2(1 − z)
(1 − x)

)
.

Supposing T1 and T2 to be C1 we obtain by the chain rule

�′(x) = ρε

{
1

ρ1z

(
∂T1

∂ε1

)
ρ1

(
ρ1,

ρε

ρ1z
x

)
− 1

ρ2(1 − z)

(
∂T2

∂ε2

)
ρ2

(
ρ2,

ρε

ρ2(1 − z)
(1 − x)

)}

= ρε

[
1

zρ1cv1
+ 1

(1 − z)ρ2cv2

]
.

Thus, by hypothesis (38) we have �′(x) > 0, ∀x ∈ [0, 1]. Next, we check that

�(1) = T1

(
ρ1,

ρε

zρ1

)
≥ 0 and �(0) = −T2

(
ρ2,

ρε

(1 − z)ρ2

)
≤ 0.
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The smoothness assumptions for Ti then provides the existence of x0 ∈ ]0, 1[ such that
�(x0) = 0. Setting ε1 = xρε/(zρ1) and ε2 = (1 − x)ρε/(ρ2(1 − z)) defines a unique so-
lution to our problem. �

We end this section by a lemma that provides the expression of the differential for P
using the variables z1ρ1, z2ρ2, ρu, ρe, z.

LEMMA 5.1. The differential of the pressure P for the five-equation model with isother-
mal closure reads

d P = 1

ξ
d(ρε) −

∑
i

δi

ξ
d(ziρi ) + Mdz, (39)

where the coefficients ξ , δi , and M are defined by

ρcv =
∑

i

ziρi cv i ,

1

ξ
= 1

ρcv

∑
i

zi

(
∂ Pi

∂Ti

)
ρi

,

δi = −ξ

(
∂ Pi

∂ρi

)
Ti

+ hi − T

ρi

(
∂ Pi

∂Ti

)
ρi

,

M =
[

P1 −
(

∂ P1

∂ρ1

)
T1

+ ρ2
1

ξ

(
∂ε1

∂ρ1

)
T1

]
−
[

P2 −
(

∂ P2

∂ρ2

)
T2

+ ρ2
2

ξ

(
∂ε2

∂ρ2

)
T2

]
.

Remark. The coefficients ξ , δi , and M defined by (39) in the context of the isothermal
closure are different from those defined in Section 4 in the isobaric case. We choose to give
the same names to these different coefficients because it results in the same formulas for
the pressure differential and the Jacobian matrix in Section 7.

Proof (Proof of Lemma 5.1). Since P = ∑
i zi Pi we get

d P =
∑

i

Pi dzi +
∑

i

zi

(
∂ Pi

∂ρi

)
Ti

dρi +
∑

i

zi

(
∂ Pi

∂Ti

)
ρi

dT

=
∑

i

[
Pi − ρi

(
∂ Pi

∂ρi

)
Ti

]
dzi +

∑
i

(
∂ Pi

∂ρi

)
Ti

d(ziρi ) + ρcv

ξ
dT . (40)

The expression of dT is deduced from the definition of ρε:

d(ρε) =
∑

i

εi d(ziρi ) +
∑

i

ziρi

[(
∂εi

∂ρi

)
Ti

dρi +
(

∂εi

∂Ti

)
ρi

dT

]
.

Using ziρi dρi = ρi d(ziρi ) − ρ2
i dzi and ρcv = ∑

i ziρi cv i , this yields

d(ρε) =
∑

i

[
εi + ρi

(
∂εi

∂ρi

)
Ti

]
d(ziρi ) −

∑
i

ρ2
i

(
∂εi

∂ρi

)
Ti

dzi + ρcv dT .
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Now we just have to plug dT from this relation back into relation (40), which gives

d P =
∑

i

[(
∂ Pi

∂ρi

)
Ti

− 1

ξ

(
εi + ρi

(
∂εi

∂ρi

)
Ti

)]
d(ziρi ) + d(ρε)

ξ
+ Mdz.

To obtain (39) it remains to identify the correct factor in front of d(ρi zi ),

(
∂ Pi

∂ρi

)
Ti

− 1

ξ

(
εi + ρi

(
∂εi

∂ρi

)
Ti

)
= 1

ξ

[
ξ

(
∂ Pi

∂ρi

)
Ti

− hi + T

ρi

(
∂ Pi

∂Ti

)
ρi

]
= −δi

ξ
,

where we used the thermodynamic identity T ( ∂ P
∂T )ρ = P − ρ2( ∂ε

∂ρ
)T . �

5.3. Hyperbolicity

By virtue of Proposition 3.1, it is enough to check that the mixture sound velocity c is
well defined.

PROPOSITION 5.2. For the five-equation model with isothermal closure, the mixture
sound velocity c satisfies

ρc2 =
∑

i

ziρi

(
∂ Pi

∂ρi

)
Ti

+ T

ρcv

[∑
i

zi

(
∂ Pi

∂Ti

)
ρi

]2

. (41)

Therefore, under assumption (38) the system is hyperbolic.

Proof. From Lemma 5.1 and the definition of c2, we have

ρc2 = 1

ξ
ρh −

∑
i

δi

ξ
ρi zi

= 1

ξ
ρh +

∑
i

ρi zi

{(
∂ Pi

∂ρi

)
Ti

− hi

ξ
+ T

ρiξ

(
∂ Pi

∂Ti

)
ρi

}

=
∑

i

ρi zi

(
∂ Pi

∂ρi

)
Ti

+ T

ρcv

[∑
i

zi

(
∂ Pi

∂Ti

)
ρi

]2

,

by definition of ξ . By assumption, (∂ Pi/∂ρi )Ti > 0 for each fluid i , and thus c2 is positive.
The five-equation model with isothermal closure is therefore hyperbolic. �

Remark. Formula (41) is reminiscent of the sound velocity c of a pure fluid,

ρc2 = ρ

(
∂ P

∂ρ

)
T

+ T

ρcv

[(
∂ P

∂T

)
ρ

]2

. (42)

However, the sound velocity of the mixture cannot be easily expressed as a combination of
the individual sound velocities.
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5.4. Existence of a Mathematical Entropy

We recall here Eq. (21), which is formally equivalent to the energy equation

∑
i

ρi zi Ti
DSi

Dt
= 0.

Since Ti = T , this equation yields

T
∑

i

ρi zi
DSi

Dt
= 0.

Setting S = (
∑

i ρi zi Si )/ρ, we have

DρS

Dt
+
∑

i

ρi zi Si divu = 0,

which can be written in conservation form as

∂tρS + div(ρSu) = 0.

This shows that ρS is a mathematical entropy for the five-equation model with the isothermal
closure. However, this entropy is not strictly convex with respect to the variables zi .

5.5. Perfect Gases

For perfect gases, the isothermal five-equation model reduces to the classical four-
equation model introduced in Section 2. Indeed the pressure law then takes the form

P = (γ − 1)ρε, with γ =
∑

i ρi zi cp
i∑

i ρi zi cv i
.

Note that in this case, the computation of the pressure does not require knowledge of the
zi . The transport equation (10) for z is uncoupled from the rest of the system.

6. EVOLUTION OF CONSTANT-PRESSURE PROFILES

FOR THE ISOBARIC CLOSURE

Following the lines of [1], we want to ensure that the numerical scheme is able to simulate
properly the evolution of a contact discontinuity (or material interface) between the fluids.
We thus consider a Riemann problem in which only the volume fraction z is allowed to vary.
The exact solution of this problem is the advection of the z profile at constant speed. In this
section, we consider numerical schemes based on an approximate Riemann solver which is
exact on isolated contact discontinuities. This is true for accurate solvers such as the Roe,
Osher, and AUSM schemes, but not for diffusive solvers such as the Lax–Friedrichs, Van
Leer, or kinetic schemes. We can state the following proposition.
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FIG. 1. Constant-pressure profile.

PROPOSITION 6.1. Consider a Riemann problem with initial data

uL = u R = u,

ρL
i = ρR

i = ρi , i = 1, 2,

εL
i = εR

i = εi , i = 1, 2,

zL �= zR .

Let U ∗ be the numerical solution of this problem in the cell downstream of the discontinuity,
obtained after one time step of a Godunov-type scheme. This solution satisfies

u∗ = u,

ρ∗
i = ρi , i = 1, 2,

ε∗
i = εi , i = 1, 2.

Remark. Note that although the densities and energies of each phase are the same on
each side of the interface (εL

i = εR
i ), the density and the energy of the mixture can be different

(ρL �= ρR , εL �= εR).

Remark. The property is still valid if either the left or right cell is occupied by a pure fluid
(z = 0 or z = 1). Of course, whenever a fluid is not present, its thermodynamic variables
are not uniquely defined.

Remark. Because of this property, a contact discontinuity will evolve numerically to-
ward a smeared numerical profile but will still remain at constant pressure and velocity.

Proof. Without restriction we can suppose that u > 0, so that the downstream state is
located in the right cell (see Fig. 1). We denote with superscript ∗ the updated values in this
cell. Considering Godunov-type schemes that are exact on isolated contact discontinuities,
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we find that this state is given by

ρ∗
i z∗

i = uλρL
i zL

i + (1 − uλ)ρR
i zR

i , (43)

ρ∗u∗ = uλρLuL + (1 − uλ)ρRu R, (44)

ρ∗e∗ = uλρLeL + (1 − uλ)ρReR, (45)

z∗ = uλzL + (1 − uλ)zR . (46)

Using the hypothesis on the initial states, one finds that

ρ∗
i = ρi ,

u∗ = u,

ρ∗ε∗ = uλρLεL + (1 − uλ)ρRεR .

Next, since ρL
i = ρR

i and εL
i = εR

i , we get

ρ∗ε∗ =
∑

i

[
uλzL

i + (1 − uλ)zR
i

]
ρiεi =

∑
i

z∗
i ρiεi .

We remark that P∗ = P satisfies

ρ∗ε∗ =
∑

i

z∗
i (ρiεi )(P∗, ρ∗

i ).

Since the equation has a unique solution, then P∗ = P must be the pressure of the updated
right state (∗), and ρ∗

i ε∗
i = (ρiεi )(P∗, ρ∗

i ) = ρiεi . �

Remark. Following the same lines for the isothermal closure (T1 = T2) leads to T ∗ = T ,
which hence yields P∗

i = Pi . However, in general P∗ = ∑
i z∗

i Pi �= ∑
i zi Pi , so the pressure

of the updated right state (∗) is different from the initial pressure. The isothermal model
therefore does not preserve this type of constant-pressure profile. This is the main reason
why we do not use the isothermal closure in numerical computations (see Section 8.2 for a
numerical comparison).

7. NUMERICAL METHOD

7.1. Introduction

In this section, we build a quasi-conservative numerical method for the five-equation
model with isobaric closure which is based on a Roe-type scheme [23]. We call it quasi-
conservative because the five-equation model is not conservative. On the other hand, since
the works of Abgrall [1] and Karni [11], it is known that one should give up the conservative
character of the numerical method to obtain good stability properties at the material interface.
We remark also that, even if the five-equation model were conservative, the complete
definition of the usual Roe scheme relies on the linearization of the pressure jump at each
cell interface. As is well known, there is no general way to obtain such a linearization when
general equations of state are used.

We start from a usual Roe-type scheme. Since some coefficients in the Roe matrix are
difficult to determine analytically in the case of real gases, we use a variant of Roe’s scheme
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which gives up the usual jump property (see (51)). Instead of requiring a linearization of
the pressure jump, this variant relies on the definition of an average sound velocity at each
cell interface. Any reasonable averaging procedure can be used for that purpose, making
this method very versatile and easy to implement. A similar approach was used in [6] to
accommodate general equations of state.

More precisely, assuming that a Roe matrix is well defined, after some algebra our
quasi-conservative Roe scheme can be equivalently and conveniently written in terms of
a numerical flux which involves only the usual Roe averages for the velocity u∗, the total
enthalpy H∗, the mass fractions y∗

i , and the averaged speed of sound c∗. To obtain a
simplified scheme (valid for any type of real gas), we then change the definition of c∗, taken
as some explicit average of the speed of sound, rather than enforcing the linearization of
the pressure jump.

7.2. The Roe Scheme

We work with the set of variables W = (z1ρ1, z2ρ2, ρu, ρe, z). In this set of variables (as
in any other one), the five-equation model (6)–(10) is not in a conservative form. However,
it is almost conservative in the sense that the first four equations are conservative.

7.2.1. Jacobian matrix of the five-equation model. We first need to compute the dif-
ferential of the pressure in terms of the variable W. A straightforward application of
Proposition 4.2 provides the following lemma.

LEMMA 7.1. For the isobaric closure the differential of the pressure also reads

d P =
∑

i

1

ξ

(
u2

2
− δi

)
d(ziρi ) − u

ξ
d(ρu) + 1

ξ
d(ρe) + M dz. (47)

By introducing the coefficients βi = (u2/2 − δi )/ξ , an easy computation yields the quasi-
linear form of system (6)–(10) with isobaric closure.

PROPOSITION 7.1. For smooth solutions, the five-equation system with isobaric closure
is equivalent to the system

∂W
∂t

+ A(W)
∂W
∂x

= 0, (48)

where the matrix A (called, by a slight abuse of language, the Jacobian matrix of the system)
is given by

A(W) =




uy2 −uy1 y1 0 0
−uy2 uy1 y2 0 0

(β1 − u2) (β2 − u2)
(
2 − 1

ξ

)
u 1

ξ
M

u(β1 − H) u(β2 − H)
(

H − u2

ξ

) (
1 + 1

ξ

)
u uM

0 0 0 0 u




. (49)

We now give the eigenelements of the Jacobian matrix.
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PROPOSITION 7.2. The Jacobian matrix A(W) is diagonalizable with eigenvaluesλi (W),
right eigenvectors ri (W), and left eigenvectors li (W) given by

λ1(W) = u − c, λ2(W) = λ3(W) = λ4(W) = u, λ5(W) = u + c,

r1(W) =




y1

y2

u − c
H − uc

0


, r2(W) =




1
0
u

u2

2 + δ1

0


, r3(W) =




0
1
u

u2

2 + δ2

0


,

r4(W) =




0
0
0

−Mξ

1


, r5(W) =




y1

y2

u + c
H + uc

0


,

(50)

l1(W) = 1

2c2




β1 + uc

β2 + uc

−c − u
ξ

1
ξ

M




, l2(W) = 1

ξc2




ξc2 + y1
(
δ1 − u2

2

)
y1
(
δ2 − u2

2

)
uy1

−y1

−y1 Mξ




,

l3(W) = 1

ξc2




y2
(
δ1 − u2

2

)
ξc2 + y2

(
δ2 − u2

2

)
uy2

−y2

−y2 Mξ




, l4(W) =




0
0
0
0
1


, l5(W) = 1

2c2




β1 − uc

β2 − uc

c − u
ξ

1
ξ

M




.

7.2.2. Roe matrix. We now define a Roe-type linearization for the five-equation model
with isobaric closure. Following Roe’s approach [23], we consider a 1-D Riemann problem
with piecewise-constant initial data WL (left) and WR (right). The goal is to define a
Roe matrix A∗ which is a linearization of the Jacobian matrix satisfying some additional
properties. We first recall some classical notation associated with the average Roe matrix
definition: Let a be any vector or scalar quantity; we note �a = aR − aL and

ā =
√

ρLaL + √
ρRaR√

ρL + √
ρR

, a =
√

ρLaR + √
ρRaL√

ρL + √
ρR

.

Since the five-equation model is not in conservative form, one cannot impose the usual
jump condition. Rather, A∗ must satisfy the weak form of Roe’s jump condition,




�(z1ρ1u)

�(z2ρ2u)

�(ρu2 + P)

�(ρHu)

u∗�(z)




= A∗(WR − WL), (51)
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where u∗ is a properly chosen average value of u, and A∗ must have the same structure as
the Jacobian matrix (49), namely,

A∗ =




u∗y∗
2 −u∗y∗

1 y∗
1 0 0

−u∗y∗
2 u∗y∗

1 y∗
2 0 0

(β∗
1 − (u∗)2) (β∗

2 − (u∗)2)
(
2 − 1

ξ∗
)
u∗ 1

ξ∗ M∗

u∗(β∗
1 − H∗) u∗(β∗

2 − H∗)
(

H∗ − (u∗)2

ξ∗
) (

1 + 1
ξ∗
)
u∗ u∗M∗

0 0 0 0 u∗




,

with β∗
i = [(u∗)2/2 − δ∗

i ]/ξ ∗. This last property ensures that A∗ is diagonalizable with
eigenelements given by Proposition 7.2. We choose u∗ to be the usual Roe average

u∗ = ū. (52)

Then, after some easy algebra, (51) implies that H and yi are also Roe averages:

y∗
i = yi , H∗ = H̄ . (53)

Finally, the jump condition (51) is satisfied if there exist averaged partial derivatives of the
equation of state ξ ∗, δ∗

i , and M∗ such that

�(ρε) = ξ ∗�P − ξ ∗M∗�z +
∑

i

δ∗
i �(ziρi ). (54)

For perfect gases, one can explicitly find the values of ξ ∗, δ∗
i , and M∗. However, for real

gases this is not the case and we shall assume the existence of these coefficients in the
pressure linearization (54).

Remark. The matrix A∗ thus defined is a quasi-conservative Roe matrix for the five-
equation system. Since it has the same structure as the Jacobian matrix, Proposition 7.2
delivers its eigenvalues and eigenvectors in terms of a coefficient c∗ defined by

(c∗)2 =
(

H̄ − ū2

2
+
∑

i

yiδ
∗
i

)/
ξ ∗. (55)

We call c∗ the sound velocity of the matrix A∗. Note that A∗ is not defined as the Jacobian
matrix A(W∗) of some average state W∗, and thus c∗ is not the true sound velocity of a
physical state.

7.2.3. Numerical scheme. With the knowledge of the Roe matrix A∗, we next define our
first-order quasi-conservative Roe scheme. Introducing the subset of the four conservative
variables V = (z1ρ1, z2ρ2, ρu, ρe), we see that this scheme is designed to be conservative for
V and nonconservative for z (recall that W = (V, z)). Actually, the last advection equation
for z is decoupled from the first four ones.

Recall that the dissipative part of the usual Roe numerical flux is given by |A∗|�W with
�W = (�(z1ρ1), �(z2ρ2), �(ρu), �(ρe), �z). We only keep its first four components
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denoted by R(WL , WR). More precisely, for 1 ≤ k ≤ 4, the kth component of R is

Rk = (|A∗|�W)k =
5∑

j=1

|λ j |α j (rj)k,

with α j = lj · �W. Introducing the conservative flux for the four first equations,

f(W) = (z1ρ1u, z2ρ2u, ρu2 + P, ρHu), (56)

we divide the scheme into two parts:

• The conservative variables V are updated by

Vn+1
i = Vn

i − �t

�x

[
Gn

i+1/2 − Gn
i−1/2

]
,

with the numerical flux

Gn
i+1/2 = 1

2
[ f (Wi ) + f (Wi+1)] − 1

2
R(Wi , Wi+1), and

• the color function z is advected using the upwind scheme

zn+1
i = zn

i − �t

2�x

[(
ūi+1/2

)−
�zi+1/2 + (

ūi−1/2
)+

�zi−1/2
]
,

where �zi+1/2 = zi+1 − zi , ūi+1/2 is the Roe average of u between the cells i and i + 1, and
u± = (u ± |u|)/2.

A priori, this definition of the scheme requires knowledge of the coefficients ξ ∗, δ∗
i , and

M∗ since A∗ depends on their values. Nevertheless, it is possible to write R in such a way
that these coefficients cancel out and only the average sound velocity c∗ remains. Let us
explain this algebraic fact. By virtue of Lemma 7.1 the coefficients α j can be written as

α1 = 1

2c∗2 (�P − ρc∗�u), (57)

α2 = �(z1ρ1) − y1

c∗2 �P, (58)

α3 = �(z2ρ2) − y2

c∗2 �P, (59)

α4 = �z, (60)

α5 = 1

2c∗2 (�P + ρc∗�u). (61)

The coefficients δ∗
i and M∗ only appear in the right eigenvectors r j for j = 2 through 4. We

have

4∑
j=2

|λ j |α j r j = |u|




α2

α3

ū(α2 + α3)

B
α4


,
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with B = ū2

2 [α2 + α3] + α2δ
∗
1 + α3δ

∗
2 − α4 M∗ξ ∗. Using the values of α2, α3, and α4 from

Eqs. (58)–(60), we get

B = ū2

2

[
�ρ − �P

(c∗)2

]
− M∗ξ ∗�z +

2∑
i=1

(
�(ρi zi ) − yi

(c∗)2
�P

)
δ∗

i .

In view of the jump relation (54) and definition (55) of c∗ we deduce

B = ū2

2
�ρ + �(ρε) − H̄

c∗2 �P, (62)

and (62) relies only on the average speed of sound c∗. To sum up, R can be written as

R(WL , WR) = |ū − c∗|α1




y1

y2

ū − c∗

H̄ − ūc∗


+ |ū|




α2

α3

ū(α2 + α3)

B


+ |ū + c∗|α5




y1

y2

ū + c∗

H̄ + ūc∗


,

with the coefficients α1–α5 and B defined by (57)–(61) and (62).

7.3. The Simplified Solver

Eventually, to derive a simplified numerical scheme, we simply replace the exact formula
(55) for the average sound velocity c∗ (which requires knowledge of δ∗

i and ξ ∗) by another
simpler and explicit formula. The main idea, as in [6], is to compute c∗ directly as an
average value of the mixture sound velocity. Many reasonable averages are available for
that purpose. For instance, c∗ = c̄, or (c∗)2 = (H̄ − ū2

2 +∑
i yiδi )/ξ̄ .

For the isobaric closure, it is convenient to use instead formula (29), i.e.,

(c∗)2 =
∑

i yiξi c2
i

ξ̄
. (63)

This is the choice we have used in the numerical applications. For more details on the
computation of ξ and c for van der Waals, see, for instance, [12].

Note that it might be impossible to enforce the jump condition (54) with the choice ξ ∗ = ξ̄

and δ∗
i = δi . In this sense, our numerical scheme differs from the original Roe scheme.

Finally, we use the entropy fix of Harten and Hyman [9] in conjunction with our Roe-type
scheme.

7.4. Second-Order Extensions

7.4.1. Second order in space. Second-order accuracy is reached using a MUSCL method.
Slopes are defined for following variables z1ρ1, z2ρ2, u, P, z with a minmod limiter. At each
cell interface two states VR,L

i+1/2 are reconstructed, and the numerical flux reads




Vn+1
i = Vn

i − �t
�x

[
Gn

i+1/2 − Gn
i−1/2

]
,

Gn
i+1/2 = G

(
WL

i+1/2, WR
i+1/2

)
,

with W = (V, z) and G(·, ·) defined in Section 7.2.3.
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Let us detail the construction of the states VR,L
i+1/2. For each flow parameter a we define

two states aR
i+1/2 and aR

i+1/2 on each side of the cell interface (i + 1/2) by

aR
i+1/2 = ai+1 − 1

2
minmod

(
�ai+3/2, �ai+1/2

)
, (64)

aL
i+1/2 = ai + 1

2
minmod

(
�ai+1/2, �ai−1/2

)
, (65)

with

minmod(x, y) = sign(x) max{0, min[|x |, y sign(x)]}.

This reconstruction process is applied to the primitive variables (z1ρ1, z2ρ2, u, P, z), which
yields the values of the reconstructed conservative variables at the cell interface WR,L

i+1/2.
Special care is needed for the numerical scheme advecting the z variable. As discussed

in Section 6, the second-order advection numerical scheme for z must be compatible with
relation (46), namely,

z∗ = λuzL + (1 − λu)zR,

in regions where the solution is a constant-pressure profile as described in Section 6. We
propose two numerical schemes that satisfy this criterion. We set

�̂ai+1/2 = aR
i+1/2 − aL

i+1/2,

with a being a flow variable.
The first scheme is the one proposed by Abgrall for his quasi-conservative method in [1],

namely,

zn+1
i − zn

i + �t

2�x

[
un

i �̂zi+1/2 + un
i �̂zi−1/2 − ∣∣un

i

∣∣�̂zi+1/2 + ∣∣un
i

∣∣�̂zi−1/2
]= 0. (66)

We found a second scheme that provides good results too. The idea is to write the transport
equation for z as

∂z

∂t
+ div(zu) − zdiv(u) = 0 (67)

and to apply a second-order scheme for the conservative part of (67) together with a non-
conservative correction for the last term of (67). The resulting scheme reads

zn+1
i = zn

i − λ
(
qi+1/2 − qi−1/2

)+ λzi
(
ri+1/2 − ri−1/2

)
, (68)

qi+1/2 = q
(
WL

i+1/2, WR
i+1/2

)
, (69)

q(WL , WR) = 1

2
(u RzR + uL zL) − 1

2

∣∣∣∣u R + uL

2

∣∣∣∣(zR − zL), (70)

ri+1/2 = u R
i+1/2 + uL

i+1/2

2
. (71)
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7.4.2. Second order in time. Second-order accuracy in time is obtained by using a two-
point Runge–Kutta method applied to the full five-equation solver. Let Wn be the set of flow
variables (ρ1z1, ρ2z2, ρu, ρe, z) at the time step n. We denote by L the discrete operator
associated with the first-order in time solver such that the previous algorithm reads

Wn+1 = Wn + �tL[Wn].

With this notation the second-order Runge–Kutta method is simply

Wn+1/2 = Wn + �t L[Wn],

Wn+1 = Wn + Wn+1/2

2
+ �t

2
L
[
Wn+1/2

]
.

8. NUMERICAL TESTS

We present a selection of numerical tests performed with the five-equation model, using
our second-order algorithm, in both time and space, as described in Section 7.4. The two
proposed schemes (66) or (68)–(71) for the advection of the color function z give the same
results except as otherwise mentioned. The CFL number is always equal to 1/2. We use the
isobaric closure except as otherwise mentioned. More examples, as well as comparisons
with other models, are available in [12].

8.1. Pure Interface Advection

The first test is a 1-D interface advection between two Mie–Gruneisen fluids (see
Section 8.1). The length of the computational domain is 1.0 m, and initially the interface is
located at x = 0.5 m. Each Mie–Gruneisen material has a special type of EOS, introduced
by Cochran and Chan as

P = P̄(ρ) + (γ − 1)[ρε − ρε̄(ρ)],

with 


P̄(ρ) = A1
(

ρ0
ρ

)−E1 − A2
(

ρ0
ρ

)−E2
,

ε̄(ρ) = − A1
ρ0(1 − E1)

[(
ρ0
ρ

)1−E1 − 1
]

+ A2
ρ0(1 − E2)

[(
ρ0
ρ

)1−E2 − 1
]

− cvT0.

The values of the constants γ , ρ0, T0, cv , A1, A2, E1, E2 for both gases are shown in
Table II (taken from [25]). The initial density of the fluid on the left side of the domain is
ρ = 9000 kg · m−3 and that of the fluid on the right side is ρ = 2000 kg · m−3. Both fluids
have the same pressure P = 105 Pa and velocity u = 1500 m · s−1 at t = 0.

The discretization is done on a 100-cell grid. Boundary conditions are constant states
on both right and left sides of the domain. Figure 2 displays the numerical solution of the
five-equation model obtained at t = 240 µs after 269 time steps (the solid line is the exact
solution and the dotted line is the numerical solution). This test shows the perfect behavior
of the model as far as preserving the constant-velocity and -pressure profile is concerned.
Similar tests have been successfully performed for other EOSs, including stiffened gas and
van der Waals fluid (as in [30]).
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TABLE II

Mie–Gruneisen Material Properties

Parameter Left material Right material

γ 3 1.93
cv (J · kg−1 · K−1) 393 1087
A1 (Pa) 1.45667 × 1011 1.2871 × 1010

A2 (Pa) 1.47751 × 1011 1.34253 × 1010

E1 2.994 4.1
E2 1.994 3.1
T0 (K) 300 300
ρ0 (kg · m−3) 8900 1840

FIG. 2. Interface advection problem between two Mie–Gruneisen materials: exact (solid line) and numerical
(dotted line) results.
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The interface is spread over roughly 15 cells due to numerical diffusion. Of course, it
is possible to sharpen the advection front of the volume fraction z, but, since this is a
separate issue, we do not discuss this problem here. Let us simply mention that we tested
two classical methods: First, we add antidiffusive terms in the transport equation for z
(see [13]); second, we reinitialize a sharp z profile by using a level set method (see [12]).
There are other possible approaches, including the use of antidiffusive schemes for the
transport equation [7].

8.2. Comparison of the Isobaric and Isothermal Closures: Interface Advection

We perform a simple interface advection which confirms that only the isobaric closure
preserves constant-pressure profiles. Even for perfect gases, the isothermal closure is not
stable at material interfaces. The two perfect gases, lying in a 1-m tube, are initially separated
by an interface located at x = 0.5 m and share the same pressure P = 105 Pa and the same
velocity u = 103 m · s−1. On the left side the adiabatic exponent is γ = 1.4, the specific heat
at constant volume is cv = 732 J · kg−1 · K−1, and the density is ρ = 50 kg · m−3, while on
the right side we have γ = 4.4, cv = 1000 J · kg−1 · K−1, and ρ = 103 kg · m−3.

The domain is discretized with 100 cells and the boundary conditions are constant states
on both sides. Figure 3 gives the profiles of the flow variables at t = 50 µs obtained with the
two (isobaric and isothermal) solvers at second order in space and time. While the pressure
and the velocity are correctly preserved by the isobaric closure, there are strong overshoots
and undershoots or the isothermal closure.

8.3. Shock Tube

Our third test (originating from [30]) is a classical 1-D shock tube problem. It involves
a stiffened gas modeling a liquid on the left side of the domain and a van der Waals gas on
the right. The domain is 1-m long. The interface is initially located at x = 0.7 m. The EOS
of the van der Waals gas is

{
P = (

γ − 1
1 − bρ

)
(ρε − aρ2) − aρ2,

γ = 1.4, a = 5, b = 10−3,
(72)

while that of the stiffened gas is

{
P = (γ − 1)ρε − γπ,

γ = 4.4, π = 6 × 108 Pa.
(73)

At t = 0 both fluids are at rest, while the pressure and the density are P = 109 Pa, ρ =
103 kg · m−3 on the left side of the domain and P = 105 Pa, ρ = 50 kg · m−3 on the right
side.

Constant boundary conditions are applied on both sides of the domain discretized with
300 cells. Figure 4 displays the numerical solution (dotted line) of our five-equation solver
obtained at t = 240 µs,which is compared to a converged solution (solid line) obtained with
3000 cells. Our results are also in very good agreement with the solution obtained in [30]
(with a different model).
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FIG. 3. Advection test between two perfect gases: comparison between the isobaric (thick solid line) and the
isothermal (thin dotted line) closure for the five-equation model.

8.4. Interface–Shock Interaction

The fourth test (again from [30]) is more delicate. It is a 1-D shock–interface interaction
problem involving a stiffened gas and a van der Waals gas. The domain is 1-m long and is
discretized with 400 cells. A van der Waals gas is on the left side and a stiffened gas is on
the right. The interface between the fluids is initially located at x = 0.4 m. The EOSs used
for this test are provided as in the previous examples by relations (72) and (73).

A 1.422 Mach shock travels from the right to the left. Initially the shock wave is in the
pure stiffened gas area at x = 0.5 m. The initial fluid variables are recalled in Table III.

The initial pressure ratio between the preshock and the postshock states is 104, which
indicates a very strong shock. The flow variables are displayed at t = 270 µs in Fig. 5 with
a refined solution obtained with a 3000-cell grid. The good profile of the solution obtained
here can be checked by comparison with [30]. This test is more delicate than the previous
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FIG. 4. Shock tube test problem between a stiffened gas and a van der Waals gas: results for a fine grid (solid
line) and a coarse grid (dotted line).

ones, and only our second scheme (68)–(71), for the advection of the color function z, gives
good results. Our solver does not handle perfectly the rarefaction on the right side of the
tube: there is a slight undershoot of the pressure (with even negative values; see Fig. 5).
Recall that, although negative values of the pressure are not physically relevant, it is not a

TABLE III

Initial State for Interface–Shock Interaction Problem

Location ρ (kg · m−3) u (m · s−1) P (Pa)

Left (van der Waals) 1.2 0 105

Middle (stiffened gas): preshock 103 0 105

Right (stiffened gas): postshock 1.23 × 103 −432.69 109
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FIG. 5. Computational results for the 1-D shock–interface test with a van der Waals gas and a stiffened gas
for a fine grid (solid line) and a coarse grid (dotted line).

problem for a stiffened gas as long as its internal energy and squared sound velocity remain
positive (which is the case here). Let us note that these numerical flaws seem to fade away
with grid refinement.

8.5. Impact Problem

The fifth test (originating from [25]) is an impact problem between two materials (copper
and an inert explosive) following the Cochran–Chan EOS we introduced in Section 8.1
(a special type of Mie–Gruneisen EOS already described in Section 8.1). The copper (on
the left) impacts the inert explosive (at rest on the right) with a velocity of 1500 m · s−1

under atmospheric pressure. The details of the numerical parameters of this test are given
in Table II. The exact solution is made of two shocks propagating in opposite directions.
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FIG. 6. Exact (solid line) and numerical solutions (dotted line) of an impact problem between two Mie–
Gruneisen materials.

The domain is 1-m long and is discretized with 100 cells. The interface between the
materials is initially located at x = 0.5 m. The flow variables are displayed at t = 85 µs in
Fig. 6. Our results are very similar to those obtained in [25].

8.6. Tabulated EOS Tests

An interesting feature of the five-equation model is that no analytical form of the fluid
EOS is required. We therefore perform two numerical tests to demonstrate this possibility.
The use of tabulated EOSs is very common in industry. However, the data of such tabulated
EOSs is not readily available (it is already a huge task to enter all the numerical values in
a file). For simplicity and for ease of reproducibility, we tabulated the van der Waals gas
EOS of Section 8.3.
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The tabulation process has been performed with a 1000 × 1000 uniform discretization
of the (ρ, P) plane limited by 0 ≤ ρ ≤ 990 and 104 ≤ P ≤ 109. Values of ρε are given at
each (ρ, P) node. The function (ρ, P) �→ ρε(ρ, P) is provided by a Q1 interpolation of
the ρε table values. Thus, the function (ρ, ε) �→ P(ρ, ε) is obtained implicitly owing to a
Newton method. The isobaric closure P1 = P2 is used as in Proposition 4.1 to recover all
the thermodynamic variables fron the conservative variables. More precisely, we solve the
equation (P1 − P2)(ρ1ε1) = 0 with a dichotomy algorithm.

We first perform an advection test between this “tabulated EOS” fluid and a stiffened
gas (the same as that of Section 8.3). The tabulated EOS fluid is initially located on the
left side of a 1-m tube for 0 < x < 0.5 with a density ρ = 50 kg · m−3. The right side
0.5 < x < 1 contains the same stiffened gas as in Section 8.3, with ρ = 1000 kg · m−3.
Pressure and velocity are uniformly set to u = 1000 m · s−1 and P = 105 Pa. Figure 7

FIG. 7. Interface advection problem between a stiffened gas and a tabulated EOS fluid: exact (solid line) and
numerical (dotted line) results.
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FIG. 8. Shock tube problem between a stiffened gas and a tabulated EOS fluid.

displays the solution computed on a 100-cell grid, with constant states maintained on the
left and right boundaries, at t = 240 µs. The analytical solution is also plotted. We see
that both the pressure and velocity constant profiles are, as expected, preserved by the
solver.

Second we perform a shock tube test with the same two fluids. They are initially at rest,
on each side of an interface lying at x = 0.4 m in a 1-m tube. On the left side, the tabulated
EOS of the fluid is given by ρ = 50 kg · m−3and P = 108 Pa. On the right side we have
ρ = 500 kg · m−3 and P = 105 Pa for the stiffened gas. Figure 8 displays the computed
solution at t = 190 µs performed with a 400-cell grid.

8.7. Bubble–Shock Interaction

Our last test is a well-known 2-D problem (see, e.g., [22, 30]) of bubble and shock
interaction (the previous shock–interface interaction test is its 1-D version). We extend
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FIG. 9. The shock–bubble interaction case test.

our previous second-order 1-D scheme with a classical dimensional splitting strategy on a
regular grid. The geometry of the problem is displayed in Fig. 9. The domain is a rectangle
of size Lx = 1.2 m and L y = 1 m. A 480 × 400 mesh is used for the discretization. A bubble
of a van der Waals fluid with a radius r = 0.2 m initially located at (x0, y0) = (0.7, 0.5) is
surrounded by a stiffened gas. This gas and the bubble are in equilibrium. A planar Mach
1.422 shock originally located at xc = 0.95 m travels in the stiffened gas from the right side
of the domain and hits the bubble. On the upper and lower boundary reflecting conditions
are imposed, while a far-field condition is maintained on the left and right boundaries.

The initial data for the problems are gathered in Table IV. For this table and Fig. 9, the
state �1 refers to the preshock state in the stiffened gas, �2 refers to the van der Waals fluid
bubble, and �3 denotes the postshock stiffened gas state. As previously the EOS for both
fluids are given by relations (72) and (73).

The shock propagates first through the stiffened gas before it hits the bubble, which gains
speed and loses its circular shape. This appears readily in Fig. 10, which displays the color
function as well as the pressure and density fields. Figure 11 shows that a small pair of
vortices appears on the tail of the bubble, increasing the pattern complexity of the interface.

Figure 10 also shows that the shock loses its 1-D character when it hits the bubble,
creating circular pressure waves. These waves are reflected by the domain boundaries and
hit the vortex again.

Figure 12 displays the Schlieren diagram of the test which corresponds to the graph of
|gradρ|. This graph is especially of interest as it reflects what can be observed during a real
physical experiment when a light beam is projected through the fluid (see [22]). We added
to the graph the color function isovalues to indicate the bubble position.

Finally, we provide the cross-section graphs (Fig. 13) along the line x = 0.5 m for the
pressure and the density, which show a very good quantitative agreement with the solution
computed by Shyue in [30]. Let us note that a wave moving to the right side of the domain can
be observed on the density isovalues profile (Fig. 10) and the Schlieren diagram (Fig. 12),

TABLE IV

Initial State for the Shock–Bubble Interaction Test

Location ρ (kg · m−3) u (m · s−1) P (Pa)

�1 Stiffened gas (preshock) 103 0 105

�2 Bubble 1.2 0 105

�3 Stiffened gas (postshock) 1.23 × 103 −432.69 109
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FIG. 10. Bubble–shock interaction. Results at instants t = (1, 2, 3, 4, 5) × 10−4 s.
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FIG. 11. Bubble–shock interaction. Velocity field profile together with the color function profile at instants
t = (2.5, 4.5) × 10−4 s.

FIG. 12. Bubble–shock interaction. Schlieren diagram at instants t = (1.2, 3.4) × 10−4 s.
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FIG. 13. Bubble–shock interaction. Pressure and density along the line x = 0.5 m.

although only a very small glitch can be noticed on the density graph 13. This wave is the
result of a very small inaccuracy in the initial values. It has nevertheless been magnified by
the postprocess used for producing the isovalue pictures.

9. CONCLUSION

We have presented a five-equation model for the simulation of interfaces between com-
pressible fluids with arbitrary equations of state. This model extends the results of
Abgrall [1], Saurel-Abgrall [26], and Shyue [29] for perfect, stiffened, and van der Waals
gases. With an isobaric closure, interfaces between fluids can be computed without intro-
ducing spurious pressure oscillations. We have proposed a Roe-type numerical method for
the simulation of this model. Numerical results demonstrate the efficiency and accuracy of
the method. In the future, we plan to improve the robustness of the method in the case of
large density ratios and to treat mass transfer phenomena.
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plusieurs constituants, Ph.D. thesis (Université Paris VI, 2000).
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