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Abstract. In the context of structural optimization we describe a new nu-
merical method based on a combination of the classical shape derivative and
of the level-set method for front propagation. We implemented this method
in two and three space dimensions for models of linear or non-linear elastic-
ity, with various objective functions and contraints on the volume or on the
perimeter. The shape derivative is computed by an adjoint method. The cost
of our numerical algorithm is moderate since the shape is captured on a fixed
Eulerian mesh. Although this method is not specifically designed for topology
optimization, it can easily handle topology changes.

1. Introduction

Shape optimization of elastic structures is a very important and popular field. The
classical method of shape sensitivity (or boundary variation) has been much stud-
ied (see e.g. [13], [16], [20], [21]). It is a very general method which can handle any
type of objective functions and structural models, but it has two main drawbacks:
its computational cost (because of remeshing) and its tendency to fall into local
minima far away from global ones. The homogenization method (see e.g. [1], [2], [5],
[7], [8], [12]) is an adequate remedy to these drawbacks but it is mainly restricted
to linear elasticity and particular objective functions (compliance, eigenfrequency,
or compliant mechanism). Recently yet another method appeared in [14], [18], [4]
based on the level-set method which has been devised by Osher and Sethian [15],
[17] for numerically tracking fronts and free boundaries. The level-set method is
versatile and computationaly very efficient: it is by now a classical tool in many
fields such as motion by mean curvature, fluid mechanics, image processing, etc.

The work [14] studied a two-phase optimization of a membrane (modelled by a
linear scalar partial differential equation), i.e. the free boundary was the interface
between two constituants occupying a given domain. It combined the level-set
method with the shape sensitivity analysis framework. On the other hand, the work
[18] focused on structural optimization within the context of two-dimensional linear
elasticity. The shape of the structure was the free boundary which was captured
on a fixed mesh using the immersed interface method. However, [18] did not rely
on shape sensitivity analysis: rather the structural rigidity was improved by using
an ad hoc criteria based on the Von Mises equivalent stress.
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In [4] we generalized these two previous works in many aspects. Here we give a
brief review of our approach based on a systematic implementation of the level-set
method where the front velocity is derived from a shape sensitivity analysis. We
focus on shape optimization rather than two-phase optimization, and we replace
the immersed interface method by the simpler “ersatz material” approach which
amounts to fill the holes by a weak phase. This is a well-known approach in topol-
ogy optimization which can be rigorously justified in some cases [1]. We compute a
shape derivative by using an adjoint problem. Then, the shape derivative is used as
the normal velocity of the free boundary which is moved during the optimization
process. Front propagation is performed by solving a Hamilton-Jacobi equation
for a level-set function.

Acknowledgements: This work has been supported by the grant CNRS/ICCTI n°
2002-12163 of the Centre National de la Recherche Scientifique (France) and the
Instituto de Cooperagio Cientifica e Tecnologica Internacional (Portugal).

2. Setting of the problem

We start by describing a model problem in linearized elasticity. There is no concep-
tual difficulty in choosing another model, and in particular a nonlinear elasticity
problem. Let @ C R? (d = 2 or 3) be a bounded open set occupied by a lin-
ear isotropic elastic material with Hooke’s law A. Recall that, for any symmetric
matrix £, A is defined by

A& = 2p€ + N(Tré) 1d,

where 4 and A are the Lamé moduli of the material. The boundary of ) is made
of two disjoint parts
oN=Iyu T'p,

with Dirichlet boundary conditions on I'p, and Neumann boundary conditions on
I'ny. The two boundary parts I'p and 'y are allowed to vary in the optimization
process, although it is possible to fix some portion of it (see the numerical examples
below).

We denote by f the vector-valued function of the volume forces and by g that
of the surface loads. The displacement field « in Q is the solution of the linearized
elasticity system

—div(Ae(uw)=f inQ
u=0 onI'p (1)
(Ae(u))n=g on I'y.

Since  is varying during the optimization process, f and g must be known for
all possible configuration of Q. We therefore introduce a working domain D (a
bounded open set of R?) which contains all admissible shapes €.

To give a precise mathematical meaning to (1), we choose f € L2(D)? and g €
H'(D)? and we assume that I'p # () (otherwise we should impose an equilibrium
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condition on f and g). In such case it is well known that (1) admits a unique
solution in H'(Q).

The objective function is denoted by J(f2). In this paper, we shall mostly
focus on two possible choices of J (these are merely examples, and much more
freedom is allowed). A first classical choice is the compliance (the work done by
the load)

Jl(Q):/Qf-uda:-+-/F g-uds:/QAe(u)-e(u)da:, (2)

which is very comon in rigidity maximization. A second choice is a least square
error compared to a target displacement

nw = ([ k(wnu—uowdx)l/a, 3)

which is a useful criterion for the design of compliant mechanisms [3], [19]. We
assume a > 2, ug € L*(D) and k € L*®(D), a non-negative given weighting
factor. In both formulas (2) and (3), u = u(f2) is the solution of (1). We define a
set of admissible shapes that must be open sets contained in the working domain
D and of fixed volume V

Upg = {Q C D such that |0 = v}_ (4)
Our model problem of shape optimization is
inf J(Q).
onf J(S) (5)

It is well known that the minimization problem (5) is usually not well posed on
the set of admissible shapes defined by (4) (i.e. it has no solution). In order to
obtain existence of optimal shapes some smoothness or geometrical or topological
constraints are required. For example, a variant of (5) with a perimeter constraint
turns out to be a well-posed problem (see [6]). More precisely, if £ > 0 is a positive
Lagrange multiplier, the the minimization problem

Jinf (J(Q) + /8 ) ds> (6)

admits at least one optimal solution. There are other regularized variants of (5)
which are well-posed and we refer to [9], [11] for such existence theories. Note
that, even if existence is not an issue of the present paper, we shall work with a
smoother subset of (4) in order to define properly a notion of shape derivative.

3. Shape derivative

In order to apply a gradient method to the minimization of (5) we recall a classical
notion of shape derivative. This notion goes back, at least, to Hadamard, and many
have contributed to its development (see e.g. the reference books [16], [21]). Here,
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we follow the approach of Murat and Simon [13], [20]. Starting from a smooth
reference open set (2, we consider domains of the type

Qo = (1d +6)(Q),

with # € W1>°(R?, R?). Tt is well known that, for sufficiently small 8, (Id + 7) is
a diffeomorphism in R?.

Definition 3.1. The shape derivative of J(Q) at Q is defined as the Fréchet deriv-
ative in WH° (R, R?) at 0 of the application 6 — J((1d + 6)(Q2)), i.e.

J((1d+6)(Q)) = J(Q) + J'(Q)(6) +0(f) with Jim ”‘|’|(09“)” =0,

where J'(Q) is a continuous linear form on W1 (R¢ RY).

A classical result states that the directional derivative J'(2)(6) depends only
on the normal trace 6 - n on the boundary 0.

Lemma 3.2. Let Q) be a smooth bounded open set and J(Q) a differentiable function
at Q. Its derivative satisfies

J'()(01) = J'(2)(62)
if 01,05 € WH (R4 R?) are such that 8, — 0; € C1(R?; RY) and
0,-n=6>-n on ON.
We give two examples of shape derivative that will be useful in the sequel

Lemma 3.3. Let Q be a smooth bounded open set and f(z) € WH1(R?). Define

- [ f@ds
Q
Then J is differentiable at Q0 and

/ div (¢ ) dz = 0(z) - n(z) f(z)ds

80
for any € WH(R?; R?).

Lemma 3.4. Let Q be a smooth bounded open set and f(z) € W21 (R?). Define

JQ) = [ [f(z)ds
a0
Then J is differentiable at Q0 and

J()(6) =/899-n (%Jer)d

for any € WH°(R?; R?), where H is the mean curvature of OS) defined by H =
divn.
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Remark 3.5. In particular Lemma 3.3 is useful in order to compute the shape
derivative of a volume constraint V(Q) = C. Indeed, we have

V(Q):/de and V/0) = [ 0(a) n(z) ds

Similarly, Lemma 3.4 is useful in order to compute the shape derivative of a
perimeter constraint P(Q) = C. Indeed, we have

P(Q) = ds and P'(Q)(9) =/ 0(z) - n(x)H ds.
89 80

Theorem 3.6. Let Q be a smooth bounded open set and § € W1 (R%; R?). The
shape derivative of (2) is
JH(Q)(8) = / (2 [6(9 W | hy. u] — Ae(u) -e(u)) 0 -nds. (7)
80 on
The shape derivative of (3) is

(g - C
Jy()(0) = / ( ) +Hg-p— Ae(p) - e(u) + —2k|u — u0|a) 6-nds, (8)
a0 on (67

where u is the solution of (1), and p is the adjoint state, solution of

{ —div (Ae(p)) = Cok(z)|u — uo|*?(u —ug) in N

p=0 onTp 9)
(Ae(p))n =10 on L'y,

where Cy is a constant given by

Co = ( /Q k(a:)|u(w)|o‘d:c) v

Remark 3.7. Remark that there is no adjoint state involved in (7) (indeed the
minimization of (2) is a self-adjoint problem,).

Proof. Although Theorem 3.6 is a classical result (see e.g. [13], [16], [20], [21]) we
briefly sketch its proof for the sake of completeness. To simplify we give a short,
albeit formal, proof due to Céa [10]. We consider a general objective function

@ = [ i) dz,
Q
for which we introduce the Lagrangian defined for (v,q) € (H'(R?; ]Rd))2 by

L(Q,v,q) = /j(m,v)da:-i—/ Ae(v) -e(q)da:—/ q-fdz
Q Q Q
(10)
—/ q-gds— / (q - Ae(v)n +v -Ae(q)n)ds.
I'n I'p
In (10) ¢ is a Lagrange multiplier for the state equation and its boundary condi-

tions. It is worth noticing that v and ¢ belong to a functional space that does not
depend on (2, so we can apply the usual differentation rule to the Lagrangian L.
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The stationarity of the Lagrangian is going to give the optimality conditions of the
minimization problem. For a given (2, we denote by (u,p) such a stationary point.
The partial derivative of £ with respect to ¢, in the direction ¢ € H'(R¢;R?),
after integration by parts leads to

<%(Q;U;P);¢) =0= —/Q¢' (diV(Ae(u)) + f)da;

+/ ¢ - ((Ae(u))n —g) ds (11)
I'n

- / u - Ae(p)n ds.
I'p

Taking first ¢ with compact support in  gives the state equation. Then, vary-
ing the trace function ¢ on I'y gives the Neumann boundary condition for wu,
while varying the corresponding normal stress (Ae(¢))n on I'p gives the Dirichlet
boundary condition for u. On the other hand, in order to find the adjoint equation,
we differentiate £ with respect to v in the direction ¢ € H'(R?; R?). This yields

(G @up9) =0 = [ ) 6o+ [ 4e(@)-e(p) o

_/r (p - Ae(dp)n + ¢ - Ae(p)n) ds.
Integrating by parts we obtain
G @upnd) = [ (5w -dv(ew)) odo+ [ o (de)nds

Q I'n
—/ p- Ae(d)nds.
Tp

Taking first ¢ with compact support in € gives the adjoint state equation
—div(4e(p)) = —j'(u) in Q.
Then, varying the trace of ¢ on I'y yields the Neumann boundary condition
(Ae(p))n =0 on Ty.
Finally, varying the normal stress (Ae(¢))n on I'p gives
p=0 on Tp.
We have therefore find a well-posed boundary value problem for the adjoint state
" The shape derivative of the objective function is obtained by differentiating
J(Q) = L(9,u(2),p()),

which, by the chain rule theorem, reduces to the partial derivative of £ with respect
to 2 in the direction 6
oL

T(@)(6) = 5o (

Q,u,p)(0).
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Applying Lemma 3.3 and 3.4 we obtain

S @un® = [ 6on(iw) -+ Aew) ) ~p- 1)ds

—/FNe-n(%+Hg-p>ds (12)

—/ 0-n(@+Hh>ds,
'o an

with h = u - Ae(p)n + p - Ae(u)n. Taking into account the boundary condition
u = p =0 on I'p which also implies

ou 0 ou 0
Ae(u) - e(p) :u%-£+(u+)\) <% n) (% n) on I'p,
we deduce

oL

G @@= [ 0on (5w +Act)-e) - 5B —wg-p) as

+ /FD 0 - n(](u) — Ae(u) - e(p)) ds.

This proof is merely a formal computation (in particular it assumes that u and p
are differentiable with respect to the shape Q) but it can be rigorously justified
(see the references quoted above). O

Remark 3.8. We can generalize Theorem 3.6 to more general objective functions,
including functions of the strain or stress. It is also possible to consider non homo-
geneous Dirichlet boundary conditions in the state equation, or even a non-linear
model of elasticity.

Remark 3.9. It is possible to further restrict the class of domains by asking that
some parts of the boundary I tizeq do not move: specifically, the map 6 must belong
to

Tog = {0 € WH°(R,R?) such that =0 on Tigea} -

4. Front propagation by the level-set method

Let a bounded domain D C R? be the working domain in which all admissible
shapes 2 are included, i.e.  C D. In numerical practice, the domain D will be
uniformly meshed once and for all. Then, we shall capture the shape 2 on this
fixed mesh. For this purpose, we parametrize the boundary of {2 by means of a
level-set function, following the idea of Osher and Sethian [15]. We define this
level-set function 1) in D such that

Y(x)=0 ©zxednD
P(x) <0 ©zxe
() >0 e ze(D\Q)
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The normal n to the shape Q is recovered as V4/|V4| and the curvature H is
given by the divergence of n (these quantities are evaluated by finite differences
since our mesh is uniformly rectangular). Remark that, although n and H are
theoretically defined only on 02, the level set method allows to define easily their
extension in the whole domain D.

Following the optimization process, the shape is going to evolve according to
a ficititious time which corresponds to descent stepping (we shall come back to
issue in the next section). As is well-known, if the shape is evolving in time, then
the evolution of the level-set function is governed by a simple Hamilton-Jacobi
equation. To be precise, assume that the shape Q(t) evolves in time ¢t € Rt with
a normal velocity V' (¢, ). Then

¢(t,w(t)) =0 for any z(t) € O0(t).

Differentiating in ¢ yields

oy . oy _
Eer(t)-Vz@b— E-Fvn-vwd)—o.
Since n = V,9/|V,9| we obtain
oY _

This Hamilton Jacobi equation is posed in the whole box D, and not only on the
boundary 912, if the velocity V is known everywhere. Remark that the level-set
method easily allows to compute the mean curvature H = divn (which plays an
important role in a perimeter penalization).

It is solved by an explicit first order upwind scheme (see e.g. [17])

PPt —yp
At

with DFyp = Y poyp = ¥V ang

+min(V;",0) g~ (DF 7, DZ¥7) + max(V;",0) g* (D77, D ) = 0

gt (d*,d) = /min(d*,0)? + max(d-,0)%,

g~ (d*,d™) = /max(d+,0)2 + min(d—,0)2.

In order to regularize the level set function (which may become too flat or
too steep), we reinitialize it periodically by solving

& 4 sign(¢)<|vm¢| - 1) =0 inD xRt, (13)
Y(t=0,z) =¢o(z) inD,

which admits as a stationary solution the signed distance to the initial interface
{to(z) = 0}. In numerical practice, reinitialization is very important because the
level set function often becomes too steep which implies a bad approximation of
the normal n or of the curvature H.
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5. Optimization algorithm

For the minimization problem

inf Q) = )
onf {J( ) /QJ(x,u) dw}
we computed a shape derivative
J'(2)(0) :/ v -nds,
a0

where the function v is given by a result like Theorem 3.6. Ignoring smoothness
issues, a descent direction is found by taking

0=—-vun.
The normal component 8 - n = —v is therefore our choice of advection velocity in
the Hamilton-Jacobi equation
oy
- _ =0. 14
ol vy =0 (14)

Transporting ¢ by (14) is equivalent to move the boundary of Q (the zero level
set of 1) along the descent gradient direction —J'(Q2). Finally, our algorithm is an
iterative method, structured as follows:

1. Initialization of the level-set function 1y corresponding to an initial guess

Qo.

2. Tteration until convergence, for k > 0:

(a) Computation of the state u; and adjoint state py through two prob-
lems of linear elasticity.

(b) Deformation of the shape through the transport of the level set func-
tion: Yr41(x) = Y (Atg,z) where ¥(t,z) is the solution of (14) with
velocity vg, = v(ug,pr) and initial condition ¥(0,z) = g (x). The
time step Aty is chosen such that J(Qp41) < J(Q).

3. From time to time, for stability reasons, we also reinitialize the level set

function v by solving (13).

In order to avoid an explicit meshing of the shapes Qf, we compute the state
uy and adjoint state py in the whole working domain D. For this, we fill the void
part D\ Q; with a very weak material with Hooke’s law B = 10 34 and we
perform the elasticity analysis on a fixed rectangular mesh in D (using Q1 finite
elements). Then, the Hooke’s law in D is

[ A where ¢ (z) < 0
A(z) = { 10734  where ¢y (z) > 0,

completed by a simple linear interpolation (proportional to the volume) of these
values in the mesh cells where 1, changes sign.

Since n and H, as well as the state u and the adjoint state p, are computed
everywhere in D, the shape derivative (see formulas (7) and (8)) delivers a normal
velocity —v which is defined throughout the domain D and not only on the free
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boundary 9€). Therefore, we never have to know where precisely is the boundary
00 and we apply the same numerical scheme everywhere in the working domain
D.

Since the Hamilton-Jacobi equation (14) is solved by an explicit scheme, the
time step Aty must satisfy a CFL condition. Remark that one explicit time step
for (14) is much cheaper, in terms of CPU time and memory requirement, than
the solution of the state equation (1) or adjoint state equation (9). On the other
hand, the usual time step Aty for (14) is often much smaller that the optimal
descent step for the minimization of the objective function J(Q2). Therefore, for
each iteration k in the above algorithm (corresponding to a single evaluation of
ug, and pg), we solve several time steps of the Hamilton-Jacobi equation (14). The
number of such time steps per iteration k is monitored by the decrease of J(€).

Our algorithm never creates new holes or boundaries if the time step Aty
does indeed satisfy a CFL condition because of the mxximum principle for (14)
(there is no nucleation mechanism for new holes). However the level set method is
well known to handle easily topology changes, i.e. merging or cancellation of holes.
Therefore, our algorithm is able to perform topology optimization if the number
of holes of the initial design is sufficiently large (see Figure 1). The algorithm
converges smoothly to a (local) minimum which strongly depends, of course, on the
initial topology (see the differences in Figures 2 and 3). For a “good” initialization,
the numerical results are very similar to those obtained by the homogenization
method but the convergence is usually slower (although we did not yet try to
speed it by a quasi-Newton algorithm).

6. Numerical examples

FIGURE 1. Boundary conditions and two initializations of a 2-d cantilever

We first consider a compliance problem and neglect body forces, i.e. f =0 in
(1). The objective function is a combination of the compliance and of the weight
of the structure

J(Q):/F g-uds+15/9dm, (15)

where £ > 0 is a Lagrange multiplier. We further impose that the Dirichlet bound-
ary I'p, as well as that part of the Neumann boundary I'yy where the loads are
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applied are kept fixed during the homogenization process. Thus, only the traction-
free Neumann boundary is allowed to move. The boundary conditions and two
initial configurations for a plane cantilever are displayed on Figure 1. The results
are shown on Figures 2 and 3 for two different iteration number, showing the strong
influence of the initialization. The convergence is smooth and fast (see Figure 4)
and 20 explicit time steps of the Hamilton-Jacobi equation were performed at each
elasticity iteration.

FI1GURE 2. Iterations 10 and 50 of the two-dimensional cantilever
initialized as in Figure 1 (middle)

FIGURE 3. Iterations 10 and 50 of the two-dimensional cantilever
initialized as in Figure 1 (right)

The advantage of the level-set method is that it can be easily extended to
three space dimensions. A three-dimensional optimal electrical mast is given on
Figure 5 (see [2] for a precise definition of this test case).

Next, Figure 6 shows a numerical result for the least square objective function
(3) where k() and ug(z) have been chosen such that the jaws of the mechanisme
close. This is a classical gripping mechanism test case which is described, e.g., in
[1], [19].

We come back to the compliance objective function (2) with design dependent
loads and take g as a uniform pressure load on the free-boundary I'y. Imposing 5
Dirichlet points yields a nice sea star as can be seen of Figure 7.

Our shape optimization method can easily be extended to models of non-
linear elasticity or to multiple loads problem. This, as well as the study of the
effect of first-order or second-order discretization and of re-initialization in the
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FI1GURE 4. Convergence of the objective function for the two-
dimensional cantilever of Figure 3

FIGURE 5. Three-dimensional electrical mast.

numerical convergence towards an optimal shape, are the subject of a forthcoming
paper.
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input force u

| output force

]

]

n

T

FIGURE 6. Boundary conditions, initialization, and deformed op-
timal shape of a plane gripping mechanism.

FIGURE 7. Optimal shape under a uniform pressure load with
five anchor points.
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