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Homogenization of the Navier-Stokes Equations
in Open Sets Perforated with Tiny Holes
1. Abstract Framework,
a Volume Distribution of Holes

GREGOIRE ALLAIRE

Communicated by J. BALL

Abstract

This paper treats the homogenization of the Stokes or Navier-Stokes equations
with a Dirichlet boundary condition in a domain containing many tiny solid
obstacles, periodically distributed in each direction of the axes. (For example,
in the three-dimensional case, the obstacles have a size of £ and are located at
the nodes of a regular mesh of size ¢.) A suitable extension of the pressure is used
to prove the convergence of the homogenization process to a Brinkman-type
law (in which a linear zero-order term for the velocity is added to a Stokes or
Navier-Stokes equation).
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Introduction

This two-part paper is devoted to the homogenization of the Stokes or Navier-
Stokes equations, with a Dirichlet boundary condition, in open sets perforated
with tiny holes. Many physical phenomena involve viscous fluid flow past an
array of fixed solid obstacles. Such flows are governed by the Stokes or Navier-
Stokes equations with a no-slip (Dirichlet) boundary condition on the obstacles,
and the fluid domain is mathematically represented by an open set perforated with
holes (i.e., obstacles). As the number of holes increases, the flow tends to the solu-
tion of certain effective or “homogenized” equations which are homogeneous in
form (i.e., without obstacles). Homogenization is a mathematical method that
provides such effective models (see, e.g., [6] and [25] for a general introduction
to this topic).

In the sequel we pay particular attention to two different kind of flows: in
porous media, and through mixing grids. For flow in a porous medium it has been
proved that the homogenization of the Stokes equations leads to the well-known
Darcy law if the medium is represented as the periodic repetition of an elementary
cell of size ¢, in which the solid obstacle is also of size . (See, e.g., [16], [20],
and [25] for two-scale methods, and [28] for the proof of convergence; see also
[2] for a generalization of [28] to the case of connected solid obstacles.) Beside
Darcy’s law, other equations describe fluid flows in porous media: For example,
in the late 1940’s H. BRINKMAN [8] introduced a new set of equations, intermediate
between the Darcy and Stokes equations. The so-called Brinkman’s law is ob-
tained from the Stokes equations by adding to the momentum equation a term
proportional to the velocity. In this paper we prove the convergence of the solu-
tions of the Stokes equations to the solution of Brinkman’s law when a porous
medium is modeled as the periodic repetition of an elementary cell of size e,
in which the solid obstacle is of size ¢* (in the three-dimensional case). Further-
more, if the size of the holes is asymptotically larger than this critical size, then we
establish that the homogenized problem is governed by Darcy’s law; if the size
of the holes is asymptotically smaller than the critical size, then we obtain the
Stokes equations as the homogenized problem.

Consider now fluid flow through a mixing grid. C. Conca [10] and E. San-
CHEBZ-PALENCIA [26] dealt with Stokes flows through periodic sieves, in which the
holes have the same size as the period, and obtained an effective model, roughly
speaking, equivalent to Darcy’s law. E. SANCHEZ-PALENCIA [27] also studied ideal
fluid flows through perforated walls, but he was not concerned with the Stokes
equations, because ideal fluid flows are governed by a Laplace equation for the
potential of the velocity. Here we propose a mathematical model for fluid flows
through mixing grids, which is based on a particular form of Brinkman’s law (i.e.,
the additional term is concentrated on the plane of the grid). This model is ob-
tained through homogenization of the Stokes eguations in a domain containing
a mixing grid, which is represented by its vanes of size ¢ (in the three-dimensional
case) periodically distributed at the nodes of a regular mesh of size . (We neglect
the lattice which support the vanes.)

Although the distribution and the size of the holes are very different in each
example, the underlying idea of the convergence proof are the same. For this
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reason we begin by introducing an abstract framework (including both cases)
which allows us to prove general theorems under theoretical assumptions on
the hole distribution. The first part of this paper is devoted to this abstract frame-
work, and to the derivation of Brinkman’s law in the case of a volume distribution
of holes of the critical size. The second part deals with a volume distribution
of holes, having a size different from the critical one, and with the case of a sur-
face distribution of holes (leading to our model of fluid flows through mixing
grids).

Since the original paper of H. BRINKMAN [8], the derivation and justification
of Brinkman’s law from the Stokes equations has been extensively studied.
V. A. MARCENKO & E. Ja. HrRUSLOV [22] were the first to prove that Brinkman’s
law describe the limiting behavior of Stokes flow in a periodically perforated
domain for a particular scaling of the holes. A similar result was obtained by
A. BRILLARD [7] by using the framework of epi-convergence. E. SANCHEZ-PA-
LENCIA [24] and T. Livy [19] also derived Brinkman’s law by means of a three-
scale expansion method. Besides these works, which are concerned with periodic
homogenization, J. RUBINSTEIN [23] dealt with the case of a random array of
spheres in a three-dimensional domain. Using probabilistic methods, he proved
that Brinkman’s law describes the effective behavior in this context. Like [7],
[191, [22], and [24], we focus here on obstacles with spatial periodicity rather than
with a random distribution. Besides recovering the previous results from a new
perspective, we obtain a number of physically significant new results. First, in
the two-dimensional setting we show that the limiting Brinkman-type law is
independent of the shape of the holes (see Proposition 2.1.6). This is due to a
version of the Stokes paradox. Second, for holes that are too large to give a Brink-
man law but still smaller than the inter-hole distance, we show that the limiting
behavior is described by a Darcy-type law (see Theorem 3.4.4). This situation is
not the same as that studied by E. SANCHEZ-PALENCIA [25] and L. TARTAR [28],
although it leads to the same type of effective equations. Third, we give effective
equations associated with holes distributed on a hypersurface rather than through-
out the volume of the fluid (see Theorem 4.1.3). Finally, from a theoretical point
of view, the major novelty of our analysis is the optimal L>-estimate of the pres-
sure, which leads to a very simple proof of the convergence and gives new results,
including correctors and error estimates.

We turn now to a more detailed introduction of this first part of the paper.
For a given force f¢€ [L3(2)]V, consider the Stokes equations (with a Dirichlet
boundary condition) in a domain £, obtained by removing from a smooth open
set 2, included in R", a collection of holes (T7);<i<ne)»

{ Find (u,, p.) € [HN{L2)TV X [L*(2,)/R] such that
(S2) Vpe — Du, =f in Q,,

] Veu, =0 in Q,.
Following an idea of D. CioraNESCU & F. MURAT [9], we introduce, in the first
section, an abstract framework of Hypotheses (H1) to (H6) on the holes 7;. This

allows us to construct an extension P, of the pressure (see Proposition 1.1.4),
and to pass to the limit, when ¢ tends to 0, with the help of the energy method
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due to L. TARTAR [29]. It turns out (see Theorem 1.1.8) that the homogenized
problem in £ is governed by a Brinkman law:

Find (u, p) € [H{ (DN % [L2(£2)/R] such that
(So) iVp—Du+ Mu=f in Q,
Vu=0 in 2

where M is a positive and symmetric matrix that depends neither on the force
J nor on the solution (1, p) (see Proposition 1.1.2). We summarize these results
in the following

Theorem. Let (u,, p,) be the unique solution of (S,). Let u, be the extension by 0
in the holes (T7) of the velocity u,. Then (i, P,) converges weakly to (u, p) in [HI (Y
X [L2()/R], where (u, p) is the unique solution of Brinkman’s law (S,).

We also prove various results concerning first-order correctors (see Theorems
1.2.3 and 1.2.4), and error estimates (see Proposition 1.2.5).

In the second section of this paper we check the Hypotheses (H1)—(H6)
when the holes 77 are periodically distributed in each direction of the axes with
period 2¢, and each 77 is similar to the same model hole T scaled to size a, (see
Figure 1). The size 4, is assumed to be critical, typically a, = &* for N =3,
and a, = exp (—1/¢?) for N=2. For N=3 we can calculate the matrix
M through a local computation of a Stokes flow in RY past the model hole T
(see Proposition 2.1.4). For N = 2, because of the Stokes paradox, the matrix
M is always a scalar matrix that does not depend on the choice of the model hole
T (see Proposition 2.1.6). We also obtain precise bounds for the errors (see Theo-
rem 2.1.9), and following an idea of R. LipTOoN & M. AVELLANEDA [21], we can
make explicit the extension of the pressure (see Proposition 2.1.2). We summarize
the results of the second section in the following

Theorem. Let the hole size a, satisfy

a,
llm—]-w(N—z—)—Co for N=3 or ii_{l(}—sZLog(ae):Co for N=2

&+0 &

where C, is a strictly positive constant (0 < Cy << + o0). Then Hypotheses (H1)
—~(H6) are fulfilled, and all the previous results of the first section hold. Moreover,
the extension P, of the pressure turns out to be equal to

1

P.=p, in 2, and P, I il

f p. in each hole T3,

where Ci is a “control” volume around the hole Tf: C} is that part of the ball of
radius ¢ with the same center as T; which is outside T;.

If N=2, then M = —Id whatever the shape of the model hole T. If N = 3,

Co
CN-—Z
—;N— [ Vwe:Vw, where, for 1<k<N, e is the k"
RN -1

then ‘e;Me, =
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unit basis vector in RY, and wy is the solution of the following Stokes system
Vg — Dw, =0 i RN —T,
Vew,=0 inR¥—T,
w, =0 on T,

W, = ¢, at infinity.

It is only for the sake of simplicity that we restrict ourselves to the Stokes
equations. The same theorems hold (with obvious slight changes) for the stationary
Navier-Stokes equations, because, in this framework the non-linear term is a
compact perturbation of (S,) (the matrix M is the same for Stokes or Navier-Stokes
homogenization).

The present paper deals exclusively with Dirichlet boundary conditions. In
a forthcoming paper [4] we generalize our results to the case of a “slip” boundary
condition consisting of u, -n = 0 and an additional condition for the tangential
component of the normal stress on the boundary. The present results have been
previously announced in [1] and [3].

Notation. Throughout this paper, C denotes various real positive constants
independent of &. The duality products between H{(£2) and H-1(£2), and between
[HYD]Y and [H-1(£2)]", are both denoted by ¢, >H*1,H(1)(g)- (e)1<k<n IS the

canonical basis of RY.

1. Abstract Framework

1.1 Formulation of the problem and the convergence theorem

Let £ be a bounded connected open set in RN (N = 2), with Lipschitz boundary
082, 2 being locally located on one side of its boundary. Let ¢ be a sequence of
strictly positive real numbers which tends to zero. For each ¢ we consider a family
of closed sets (T7); <i<n¢ (the holes), and we define a perforated open set 2, by

N(e)

Q,=0-\JT.
i=1

We assume that £, is also a bounded connected open set in BN (N = 2), locally
located on one side of its Lipschitz boundary £2,. The flow of an incompressible
viscous fluid in the domain £, under the action of an exterior force f& [L2(Q)]Y,
with a no-slip (Dirichlet) boundary condition, is described by the following
problem for the Stokes equations (see Remark 1.1.10 for the case of Navier-
Stokes equations), where u, is the velocity, and p, the pressure of the fluid

Find (u,. p,) € [H3(RQ)I¥ X [L*(2,)/R]  such that
Vp, —Au, =f in 2, (1.1.1)
V-u, =0 in Q,.
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The viscosity and density of the fluid have been set equal to 1. As is well known,
the Stokes system (1.1.1) is equivalent to the following variational formulation,
which has a unique solution

Find (u., p.) € [H}(R)]¥ < [L*(2,)/R] such that
[Vu, :Vy — [p.V-v= [f-» for each y€ [H}(2)F, (1.1.2)
Q&' QS QE

[aV-u =0 for each g€ L¥(L2,)/R.

2

Introducing » = u, in (1.1.2) leads to

[V = [fou

Let us denote by - the extension operator from H{(£2,) into HJ(£2) defined by
for any ¢ € HY(Q.), é=¢in 2, and $6=0in 2 — Q,. (1.1.3)
With the help of the Poincaré inequality in £2, it is easy to see that

IV Iy = C S lleo (1.1.4)

where the constant C depends only on 2 (and not on &). Consequently the se-
quence (#,),., is bounded in [H(2)]". Thus there exists a subsequence, still
denoted (i1,),-q, and there exists a u € [H}(]Y such that i, converges weakly
to u in [HA()]". Note that this result is obtained without any assumptions on
the holes (77); <;<n¢)- The main problem is now to find an a priori estimate for the
pressure p,, which yields the existence of a limit pressure p, and to see which
homogenized equations are satisfied by the limit (», p). But, while the velocity
u, can be naturally continued by zero in £ — £,, it is not obvious how to con-
struct an extension of the pressure p, that is bounded in L*(2)/R. For that
purpose, we now introduce an abstract framework of hypotheses on the holes,
which allows us to prove the convergence of the homogenization process in general.
Of course these assumptions will be verified in the other sections of this paper for
the typical cases of hole distributions described in the introduction.

Hypotheses (H1)—(H6). Let us assume that the holes T7 are such that there exist
functions (W, g5, #x)1<k<ny and a linear map R, such that

(H1) wi€ [H'(DT, qi € LX),
(H2) V-wi=01in £ and wj =0 on the holes T7,
(H3) wi —~ ¢ in [HYD]" weakly, g¢i— 0 in L*(2)/R weakly,
(H4) € [WL2(QT,
(H5) For each sequence »,, for each » such that
v, —~v in [HY(Q)]Y weakly, v =0 on the holes T}
and for each ¢¢ D(£2) it follows that

Vg — Dwy, ¢”e>H—1,H},(Q) = e ¢”>H‘1,H(1,(9)’
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R, € L(LH(QN; [Ho(Q)1),

If uc [HYQ)TY, then Rt = u in Q,,

IfV-u=0in £, then V- (Ru) =0 in £2,,
iIRsul]Hé(Qe) = CHUHH(I)(Q) and C does not depend on e.

(H6)

Remark 1.1.1. The functions (wg, g5, )1 <x<n involved in Hypotheses (H1)-(HS)
seem, at first sight, rather mysterious. Actually they are the test functions that will
be used in the energy method in order to prove the convergence of the homogeni-
zation process. Moreover, from a physical point of view, they turn out to be the
velocity and the pressure of viscous layers around the holes (see Remark 2.1.5).
The idea of such an abstract framework has been introduced by D. CIORANESCU
& F. MurarT for the Laplacian (see [9]), but here, there is a new hypothesis (H6)
which is crucial for the construction of a bounded extension of the pressure.
The Hypotheses (H1)—(H6) have also direct consequences for the distribution and
geometry of the holes: From (H3) and Rellich’s theorem one can deduce that the
sequence wi converges to e, in [L2(2)]" strongly, while being equal to zero on
the holes 7%. This implies that the measure of Q, in RV tends to the measure of
£, i.e., the holes are very small and disappear in the limit. Moreover, for a given
family of holes (T7); <;<n, the functions (wg, g, #:); <, <~ Which satisfy hypotheses
(H1)-(H5) are ‘“quasi-unique” (see Proposition 1.2.9 in [1] for more details).

Now we give some properties of the functions (4,);<r<n-

Proposition 1.1.2. Let (Wi, g5, ti)1 <x<n be functions that satisfy Hypotheses (H1)
~(HS). Let M be the matrix defined by its columns ()1 <i<n> i.e., by its entries
(u)1<kicn 8iven by w, = w, - e;. Then for each ¢ D(2) we have

s Db, D02 =1in(1) [ &Vwg:Vw;. (1.1.5)
>0

Thus M is a symmetric matrix, which is positive in the following sense

(M®D, Dy, >0 for each @ c [D(2)] .

“Lajo
Proof. Take v, = wi and » = e¢; in Hypothesis (HS). Then
Ngi — Dwg, ¢wf>H~1’H(1)(Q) — iy, ¢e,~>H—1,H(1)(Q) for each ¢ ¢ D(). (1.1.6)

Integrating this expression by parts and using (H2), we reduce the left-hand side
of (1.1.6) to

<qu - Awlgc: ¢w§>H_1,H(1)(Q) = f qlscwf -V + f vwlsc twi Vé + f ¢vwlec : vwze
Q Q 02

Combining (H3) and Rellich’s theorem in the above equation gives

y_lj% Vg — Dwg, ¢w1€>H—],H(1](.Q) = 1{{% Qf ¢ Vwg: Vwi.
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Therefore (1.1.6) is equivalent to

!_2[ ¢ Vwi : Vwf — (g, qSei>H—1!H(1)(Q) = {ul, ¢>>H_1’H(1)(Q) .

Thus (1.1.5) 1s proved. Moreover M is a symmetric matrix, being the limit of a
sequence of symmetric matrices (Vwy : VW) < <n- On the other hand, for each
D¢ [DQF

N

2
(MB, B iyt gy = lim [ >0. (1.1.7)

=0 Iel

b Vg
1

k=

Thus M is positive. Q.E.D.
Remark 1.1.3. From equality (1.1.7) we deduce the following equivalence:
we =0 if and only if wf— e, in [H'(£2)]" strongly.

Consequently, the mere weak convergence of wj is required to obtain non-zero
functions g, (corresponding to the interesting cases in the convergence Theorem
1.1.8).

Following TARTAR’s idea (see [28]), we construct an extension operator for
the pressure under hypothesis (H6).

Propesition 1.1.4. If there exists a linear operator R, satisfying (H6), then the
operator P, defined by

V[PAg.)], u>H—1,H(1)(g) = Vg, Rt =1 oy for each uc [H{(DTY, (1.1.8)

is a linear continuous extension operator from L*(2)/R into L>()/R such that
the following conditions hold for each gq,€ L*(Q,)/R:

(D) PAg.) =q. in L*(2)/R,
(i) 1| P(g I zcoyrn = Cllgeliizayms
(i) [[VIP.(@)]lr-1 2y = C IV lg-sa,

where C is a constant independent of q, and &.

Before proving Proposition 1.1.4, we need the following three lemmas.
Lemma 1.1.5. Let w be a bounded connected open set in RN, with Lipschitz boundary
dw, w being locally located on one side of its boundary. Let p be a distribution on

 such that Vp¢€ [H W w)]N. Then p€ L¥(w)/R, and

12l 2wyr = CIVPlg-1w)-

where the constant C depends only on w.

Lemma 1.1.6. Let w be a bounded connected open set inRY, with Lipschitz boundary
dw, w being locally located on one side of its boundary. Let f¢ [H Y (w)]" be such
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that
{f, ”>H"‘,Hé(m) =0 for each u€ [HY)™ with V- -u=0 in w.

Then there exists a p¢ L*(w)] R such that f= Vp.

Lemma 1.1.7. Let w be a bounded connected open set in RN, with Lipschitz boundary
dw, o being locally located on one side of its boundary. For each f¢€ Liw), i.e.,
for each f€ LXw) such thatr [ f=0, there exists u€ [Hy(w)\V satisfying

OV u=fino,

(ii) the map f— u is linear, and
”u”H(l)(w) é C “f”LZ(w)

where the constant C depends only on o.

The proofs of these lemmas are classical and may be found, e.g., in [30] or
in [1] (with the references to the original papers).

Proof of Proposition 1.1.4. Let ¢, € L*(£2,)/R. Because there exists alinear map
R, satisfying (H6), we may define a functional F, on [HY(Q)Y by

(F,, u>H_1,H(1)(Q) = (Vq,, R£u>H—1’H(1)(QS) for each uc [H{(D. (1.1.9)
Using the estimate of R.u provided by (H6), we obtain
”Fs”H~1(Q) = CliVg. ”H-l(QE)' (1.1.10)
Thus F, ¢ [H-Y(Q)]". Furthermore, integrating (1.1.9) by parts, we get
Fes u>H“1,H(1)(9) = - Qf g.V - (Ru).

According to (H6), V-u =0 in Q2 implies that V - (Ru) = 0 in Q.. Thus
(Fo =1 gyleqy = 0 for each ue [H{(D with V- u =0 in 2. (1.1.11)

Applying Lemma 1.1.6 we deduce from (1.1.11) the existence of Q. € L*(2)/R.
such that

F,=VQ, in Q.
Then we define the operator P, by P.(g.) = Q.. Itis clear that P, is a linear con-

tinuous operator from L*(2)/R into L*(£2)/R. Let us prove that P.(g,)=gq.
in L*(£2,)/R. Integrating (1.1.9) by parts, we obtain

[O.V u= [4q.V (Ru).
2 G,

According to (H6), if ue [H{(2,)]", then Ru=u in £2,. Thus, for each u¢
[H(Q)TY,

@ ~q)V-u=0. (1.1.12)
QE
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Applymg Lemma 1.1.7, we reduce (1.1.12) to f Q. —q.)f=0 for each f¢
LY(R,). In other words,

Qs — 4, = 0 in LZ(QE)/R'

In the same way one can obtain estimate (ii), and (1.1.10) is just estimate (iii).
Q.E.D.

Now, we are able to state and prove the main theorem about the convergence
of the homogenization process.

Theorem 1.1.8. Let Hypotheses (H1)—(H6) hold, and denote by M the matrix
defined in Proposition 1.1.2. Let (u,, p.) be the unique solution of the Stokes system
(1.1.1). Let u, be the extension of the velocity by 0 in 2 — Q,. Let P(p,) be the
extension of the pressure, where P, is the operator defined in Proposition 1.1.4.
Then

(thes Pe(pe)) =~ (w, ) in [Hy(DI X [LA(Q)/R] weakly,

where (u, p) is the unique solution of the homogenized system:

Find (u, p) € [H{(Q)N X [L2(Q)/R] such that
Vp—Du-+Mu=f in £, (1.1.13)

Veu=0 in 8.

Remark 1.1.9. The homogenized system (1.1.13) is a law of Brinkman type (see
the original paper of BRINKMAN [8]). The new term Mu in (1.1.13) expresses the
presence of the holes which have disappeared after passing to the limit. For the
Laplacian, the same kind of phenomenon occurs (see D. CIORANESCU & F. MURAT

[9] who called this new term a “strange term’). Note that if we put the fluid’s
viscosity equal to u instead of 1, then a matrix uM would replace M in (1.1.13).

Proof of Theorem 1.1.8. The proof is divided into two parts. In the first part we
show that the extension of the pressure js bounded in L*(£2)/R, and in the second
part we pass to the limit with the help of the energy method, introduced by
L. TARTAR [29], and adapted by D. CioraNEscU & F. Murat [9] for the Laplacian
to an abstract framework similar to ours.

(1) Recall that P(p,) is defined by (1.1.8), ie.,

<V[Ps(pe)]s ’V>H*1,116(9) = <vPs, Rev>H"‘1’H(l)(_Qe) fOI' each V€ [H(;(Q)]N
Introducing equation (1.1.1) and integrating the last equation by parts, we get

VPP, Wyt ey = — [ Vit : V(R + [ [+ Ro.
: . Be 2,

Thus
‘<V[Pe(l’s)]; ’V>J = IIVﬁs”Ll(Q) ”v(Re”)“LZ(.@e) + ”f”u(g) ”Rs””Lz(.oe)-
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Combining this with inequality (1.1.4) and (H6), we obtain

IVIP(p 512y = C lfllracey - (1.1.14)

According to Lemma 1.1.5, we deduce from (1.1.14)

HPe(Pe)”Lz(Q)/R =C ”f“L2(Q)

where the constant C depends only on £, and not on &. Consequently the sequence
P.(p,)is bounded in L2(£2)/R: One can therefore extract a subsequence, still denoted
P.p.), and there exists some p € L*(2)/R, such that P(p,) converges weakly to
p in L2(Q)/R.

(2) Now, we apply the energy method, i.e., for any fixed ¢ € D(£2), we introduce
in the variational formulation (1.1.2) the following test functions

Y = d’wlec € [H(%('Qs)]Na q = ¢qu € LZ(‘Qe)/R
We obtain

f Vu, : V(¢pwi) — f PV - (dwp) = f f(@wp),
1.1.15
f((bqk)v'usz(). ( )

Q¢

Expanding (1.1.15), and using (H2) (which requires that that w{, be divergence-free),
gives
f(i)Vu Vwy, + fvue wi Ve — {pewk Vo = f‘l’f Wi

8

(1.1.16)
$giV - u, = 0.
Q{ iV - u

But

Q

[ ¢ Vu.: Vwg = —(Awy, ¢L75>H—1’H(1)(Q) — f u, Vo:Vwi.  (L.1.17)
QE

&

Integrating (1.1.16) by parts, introducing (1.1.17), and adding the two equations
leads to

N ¢L7£>H—1’H(1)(9) + Qf gii, - Ve — Qf u, Vé: Vwi
+ f Vi, : wi Ve — fpewfc -V = [ of - wy.. (1.1.18)
2 Py Q
Moreover, because Pp,)=p, in Q, and w, =0 in Q — 2, we have
fpewlec : V(I) = f Pe(pe) w]ecv¢
G, Q

Then we pass to the limit in (1.1.18) as ¢ tends to zero. The sequence u, fulfills
the conditions of hypothesis (H35), and we obtain

<vqli - Awlsc{ ¢i;e>H‘1,H(I)(Q) — <,uka q')u>H_1,H(I)(Q)'
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On the other hand, recalling the following convergences
4, —u in [H}(Q)]" weakly,
wg —~e, in [HY(Q)] weakly,
gi —0 in L*(2)/R weakly,
P(p)—p in LX Q)R weakly
and using Rellich’s Theorem, we convert (1.1.18) to
ey ¢u>H_'1,H(I)(!2) + Qf Vu:e, Vo — Qf pe. -V = Qf ¢f-e.. (1.1.19)
Integrating (1.1.19) by parts gives
g, P> — D, ey + Vp, ey = {f, de,> for each k€ {l,2,..., N}.

But M is symmetric, so that
Vp — DMu+ Mu=f in [D'(D]. (1.1.20)

Furthermore, we know that V -#, = 0 in £, and #, — u in [H}(2)]". Passing
to the limit yields

Veu=0 in £. (1.1.21)
Regrouping (1.1.20) and (1.1.21) we obtain the following homogenized problem
Find (u, p) € [H}(DW X [L* ()R] such that
Vp—Dlu+ Mu=f in Q, (1.1.22)
Veu=0 1in 2.

It remains to prove that (1.1.22) admits a unique solution. From Hypothesis
(H4) we know that Mu belongs to [H~'(£2)]", and from Proposition 1.1.2, that
M is a positive matrix. Thus, for each u¢ H}(£)]", we have

[ |Vul> + (Mu, W1 gl = [ IVul?. (1.1.23)
2 2

From (1.1.23) we deduce the coercivity of the operator (—A -+ M), and also the
existence and uniqueness of a solution of (1.1.22). Moreover, because the solution
of (1.1.22) is unique, all the subsequences of (u,, P,(p,)) converge to the same limit.
So the entire sequence converges. Q.E.D.

Remark 1.1.10. When the space dimension is N = 2 or 3, Theorem 1.1.8 can
be easily generalized to apply to the Navier-Stokes equations:
Find (u,, p.) € [HY(R2)V < [L2(2,)/R] such that
Vp, +u, - Vu, — Au, = f in Q,, (1.1.24)
V-u,=0 in Q,.
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It is well-known that there exists at least one solution of system (1.1.24), which
is unique for small values of || f]|;:0y when N = 2 or 3. For such f, with the same
hypotheses (H1)-(H6) as for the Stokes system, we can prove the same resulfs.
More precisely, because the sequence u, converges weakly to u in [HI(2)]V,
the non-linear term #, - Vu, converges strongly to u - Vu in [H-1(2)]", and the
homogenized problem is

Find (u, p) € [H{(Q)¥ X [L*(2)/R] such that
Vp+u-Vyu—Nu+Mu=f in Q, (1.1.25)
V-u=0 in Q.

It is worth noticing that the functions (W}, g;, ) < <n that satisfy Hypotheses
(H1)-(HS), and therefore the matrix M are exactly the same for both the Stokes
and the Navier-Stokes homogenizations. For more details, see Section I.7 in

[1].

Remark 1.1.11. Hypothesis (H4) can be weakened to u, € [H-*(Q)]Y, and
Theorem 1.1.8 still holds with a slight change in the class of solutions (see Sec-
tion 1.6 in [1]).

1.2. Correctors and error estimates

In this subsection we give correctors for the velocity #, and the pressure p,
with the help of a weak semicontinuity result for the energy. Moreover, we give
abstract error estimates which will be used in the second part of this paper in order
to obtain explicit bounds for the error in concrete situations.

Proposition 1.2.1. Let Hypotheses (H1)-(H5) hold. Then each sequence (z.),-,
such that

Z, 2z in [HY{Q)W weakly,
Vez,>V-z in L}(Q) sirongly, (1.2.1)
z, =0 on the holes T
satisfies
lirsn_)iglfgf \Vz, 2 = Qf Vz|? + (Mg, Z>H*‘,H(1)(9)- (1.2.2)

Proposition 1.2.2. Let Hypotheses (H1)-(HS) hold. Then each sequence (z.)s~¢
such that

Z, .z in [H{DT weakly,
V-z,—>V -z in L¥Q) strongly,
(1.2.3)
z, =0 on the holes T?,

lim f |Vz, > = f Vz[? + (Mz, Z>H~1’H(1)(Q)
e &

e=>0
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satisfies
(z. — W,2)—=>0 in [WH(DI strongly (1.2.4)

where W, is the matrix defined by W.e, = wi, and q =
<2 if N=2.

N
if N= =
v_1 fN=3 I=4q
Theorem 1.2.3. Let Hypotheses (H1)-(H6) hold. Then the solution u, of the Stokes
system (1.1.1) satisfies
U, = Wau+r, (1.2.5)

where W, is defined by W.e, = wi, u is the solution of the homogenized system
(1.1.13), and r, is such

re—>0 in [WH(DY strongly (1.2.6)

N
with ¢ =5~ if N23, 1=q<2 if N=2.

Moreover, if u is smoother than [H{(Q)T, say,
u€ [WeN@ N coY  if Nz=3,

(1.2.7)
uc [Wi2r1(d?, for some >0, if N=2,
then (1.2.6) can be improved:
re—>0 in [HY{D strongly. (1.2.8)

Theorem 1.2.4. Let Hypotheses (H1)~(H6) hold. Let the solution u of the homo-
genized system (1.1.13) be sufficiently smooth, say,

uec [WENt(DY  for some > 0. (1.2.9)
Then the pressure p, of the Stokes system (1.1.1) satisfies
P(p.—p—u-0)—0 in L*(Q)R strongly, (1.2.10)

where Q, is the vector defined by Q. - e, = q;, (u, p) is the unique solution of the
homogenized system (1.1.13), and P, is the extension operator defined in Proposi-
tion 1.1.4.

Obviously (1.2.10) implies that
”PS —p — u- QEHLI(QE)/R — O. (1.2.11)

Before giving abstract error estimates in the next proposition, we replace
Hypothesis (HS) by a stronger version (HS'):
For each k€{l,2,..., N}, Vg — Awj = pf, —y; in 2
{with pe— e in [HY(Q)]Y  strongly,
with ¥5 —~ g, in [H7Y(Q)]Y weakly,
and with v =0 in [H-'(2)".

(H5')
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(The last equality means that, for any function » € [H§(2)]V that satisfies v = 0
on the holes T7, we have {(yj, v>H-~1,H(1)( o= 0.)

Obviously (HS) can be deduced from (H5") which was not introduced before
because we need it only for the following proposition. Of course in the other
sections of this paper, we check that (H5") is always satisfied in the examples under
consideration.

Proposition 1.2.5. Let Hypotheses (H1)-(H6) and (H5') hold. Assume that the
velocity u satisfying the homogenized system (1.1.13) is smooth, say

uc [W>>(1. (1.2.12)

Let 6,=p, —p—u-Q, and v, =u, — Wu. Let M, denote the matrix defined
by its columns p; = M,e,. Then

e llaoyr = Cllullpreo) 1M, — Mlg-uay + 11d — W20y + Q] 5-1ce]s
(1.2.13)
IVr ey = Cllullwo) 1M, — Mllg-o) + 11d — Wellaa) + 1Qlg-1(2)]
(1.2.14)
where the constant C depends only on (.

Remark 1.2.6. The above results on correctors and error estimates are actually
generalizations to the Stokes equations of previous results obtained for the
Laplacian operator. In that case, Propositions 1.2.1 and 1.2.2, and Theorem 1.2.3,
have been proved by D. ClIoRANESCU & F. MURAT [9], while Proposition 1.2.5
(except the result for the pressure) has been proved by H. KaciMi & F. MURAT
[15]. Theorem 1.2.4 is original because it is devoted to a corrector of the pressure.
Furthermore, Propositions 1.2.1 and 1.2.2 correspond to the so-called I-conver-
gence, introduced by E. DE Giorar [11], [12].

Proof of Proposition 1.2.1. Let @ = (¢,, ..., ¢5) € [D(2)]Y. Consider the se-
quence A, of real numbers defined by

N 2
A= [ V(Zs -2 ¢ka> : (1.2.15)
Q k=1
Expanding (1.2.15) gives
A, = [|Vz,1? + [.f & VWit b Vw + [ Ve wi: Vew
0 1<iksN L Q2 Q
+2 3 [&VwiiVewi—2 X [Vz: Véw
1ikEN Q 1<kEN Q2
-2 3 f Vz,: ¢ Vwy. (1.2.16)

1Sk=N Q
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Integrating the last term in (1.2.16) by parts leads to
[Vz 1 Vg = — <Lwg, ¢kz€>H—1,H(1)(Q) — [ 2,V Vg (1.2.17)
Q L2

= (Vgi — Awg, ¢sz>H~1’H(1)(Q) — Qf z, Vé, : Vwp — Vgq;, ¢kz£>H—1’H(1)(Q).

Integrating the last term in (1.2.17) by parts yields
Vg ¢st>H~1,H})(g) = f‘]/i(zs "V + ¢ V- z,). (1.2.18)
2

Now we introduce (1.2.18) and (1.2.17) into (1.2.16):

A= [Vz, 24+ 3, [f¢k¢,.vw,i:vw;+ fvcpkw,i:w,.w;]
k24 0 0

1<ik<N

+20% [ Vwpi Ve, wi (1.2.19)

15 k€N 2
-2 N [sze:Vd)kw,i + [ qiz Ve 4 ¢V - z) — fz€V¢k:Vw,i]
k<N L 0 02

) <quc — AWE, <i’l‘cze>1r](_1,H(l)(!2)'

1SkEN

There exists a subsequence, still denoted by z,, such that

flVZ€l2—>lim inf f|Vze|2. (1.2.20)
I =0 g

Moreover, because of assumption (1.2.1), the sequence z, fulfills the conditions
of (HS), and we obtain

Vg — Dwg, ¢kze>H*1,H(1)(Q) = s ¢kZ>H_1,H(l)(Q)- (1.2.21)
On the other hand, Proposition 1.1.2 implies that
Qf i VWl VWi = St b =1, 411 0y - (1.2.22)
Recalling that A, = 0, we pass to the limit in (1.2.19) with the help of (1.2.20)-
(1.2.22):
liIEILiOanf |Vz,|? + Qf VOI2+ % <y, ¢k¢>H_1,H(1)(Q)

1=k=N

(1.2.23)
—2 fV(D: Vz —2 Z <1uk5 ¢kZ>H-1’H(])(Q) g 0.
Q

1=ksN

Because u, € [W1=(2)], we can apply inequality (1.2.23) to a sequence of
functions @ that tends to z and pass to the limit. Then

lilen_j)nfgf |Vz, |2 > Qf [Vz |2 + (M2, D u=1,5)) : Q.E.D.
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Proof of Proposition 1.2.2. We now pass to the limit in equality (1.2.19) taking
into account the new assumption on z.:

£i_r)ré A = Qf |Vz]? + <Mz, Z>H—1,H})(9) + Qf |V 2

+ Z <,uk, d)k ¢>H_1,HI(Q) - 2 j V(D: VZ - 2 Z <Mk, ¢kZ>H—1 HI(Q)
1<k=N 0 ’ 1Sk=N o
=[G = D + M B~ Dy 110, (1.2.24)

Let 5 be a strictly positive real number. Because D(£2) is dense in H}(£), there
exists @, € [D(2)}¥ such that

lz — P, luice) = 1- (1.2.25)
Then we can bound (1.2.24):
lim [[V(z— W8, =lim A, < 0* + [ M-ty [z — D) 115
=0 g5 £

But ||(z — (Z),])Z]]W%),l(g) =Cllz—9, qu(l)(g) where C depends only on £2. Thus

lim [ |9, — W) = (1 + C [ Mlly-t.ooga) 7. (1.2.26)
>0 3

Because z, — Wiz = (z, — W,D,) + WP, — z), for g =2 we have
12, = Wzllwhaay = 2. — W@, llukay + 1 WAD, — Dllwlae. (1.2.27)
If N=3, H'(Q) is continuously embedded in L*»¥~2(Q); then
IWLP, — D lyimie—1g) = I Wellaniw-200) V(P — 2)aay
+ 1D, — zll2viv—20) 1V Welliaga)-
If N=2, H'(£) is continuously embedded in L?(£) for any p < 4 oo; then
| WP, — yba = 1 Welirro IV(P, — 2)llray + 1D, — zlleeay |V Wellraca

1 1 1
with 7 = + ?(Note that if p<Coo, then g<C 2). Consequently, from

(1.2.27) we obtain

N
) 9=%_1 if N= 3,
13_1)13 Nz, — Weznwéﬂ(g) =0y w1th] - (1.2.28)

1=¢9g<2 if N=2.
Inequality (1.2.28) gives the desired result when » tends to zero. Q.E.D.
Proof of Theorem 1.2.3. We easily check that the solution %, of the Stokes system

(1.1.1) satisfies the assumptions of Proposition 1.2.2. Thanks to Theorem 1.1.8
we know that

i,—~u in [H}(Q weakly, V-u%,=0 in 2, # =0 on the holes T¢.
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Moreover, we have
f]V&slzz [fu. — [fru= [[Vu]® +{Mu, w1 g,
s Il 2 o o

Thus the conclusion of Proposition 1.2.2 holds for #,, and we conclude that

if

u, — Wu =r, converges strongly to 0 in [WJ(QD]", where q = 1

Nz=3, and 1=¢g<2 if N=2. The proof of the improved convergence
(1.2.8) of r, when u is smoother is not difficult, and is left to the reader (see [1]
if necessary). Q.E.D.

Before proving Theorem 1.2.4, we give a generalization of Hypothesis (HY)
in the following lemma, the proof of which is elementary.

Lemma 1.2.7. Let Hypotheses (H1)-(H5) hold. Then (HS) can be generalized thus:
For each sequence v, and for each v such that v, converges weakly to v in [H ()Y
and v, = 0 on the holes Tt, and for each ¢ which belongs to W{N(2) N C%(Q)
for N=3, and to WJ*T(Q), with 5> 0, for N =2, the following limit
holds:

Vi — D, 01 by = o 901 gy

Proof of Theorem 1.2.4. First remark that u¢ [WSN ()N C [L=(Q)]Y for
7 > 0; this implies that u-Q,€ L*(Q)/R, and that P,(u-Q,) is meaningful.
According to Lemma 1.1.5 it is equivalent to prove that

VIP(p.—p—u-Q)—>0 in [H- (DI strongly. (1.2.29)
Let v, be a bounded sequence in [Hi(2)}Y. We define a real sequence £, by
Ae = <V[Ps(pe —p—u Qe)L ’V8>H_1’H(I)(Q)‘ (1230)
Using Proposition 1.1.4 gives
As = <Vp€, Rsvs>H*1,H(1)(Qs) - <VP, R6v6>H*1,H(I)(.Q£) — <V(u ' Qs)’ Rsve>H‘1’H(1)(Q€)-
(1.2.31)
In order to simplify the notation, from now on R, represents both the function
in [HY(2,)]" and its extension by 0in 2 — £,. This extension belongs to [H3(£2)]".
Introducing Stokes’ and Brinkman’s equations in (1.2.31), and integrating it by
parts leads to

A, = f(Vu — Vu,): V(Ry,) + {Mu, R£v€>H—1,H(1)(Q) — {NV(u-0), RSVS>H71’H(1)(Q)_
0

(1.2.32)
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Theorem 1.2.3 asserts that #, = Wu +r, and r,—0 in [HI(]V strongly.
Replacing u, by the above expression, and integrating (1.2.32) by parts gives

Bo= [Ud=W)Tu: VR = [Vrei VR + [V Roe TWD () o0

_Qf O.Vu- Ry, — {(VQ, — AW ) u, Reve>H—1,H(1)(Q) + {Mu, Rev€>H—1,H(1)(Q).

From elementary arguments and Lemma 1.2.7, it follows from (1.2.33) that
lim &, = 0 for any sequence », bounded in [H}(£)}". This is equivalent to (1.2.29)

&e—=>0

and therefore Theorem 1.2.4 is proved. Q.E.D.

Proof of Proposition 1.2.5. Define the matrices M, and I, by their columns
Ur = M.e, and y; = I'e,.. Hypothesis (H5') enables us to replace the term
VO, — AW, by (M, — I') in equality (1.2.33), and we use the fact that
yo=0 in [H-1(2)]" to obtain

A, = f (Id —WIVu:V(Ry) — [Vr:V(Ry) + [Vu:(Ry,- VW)
Q kel Q
_ Qf O.Vu- Ry, + M — M)u, Reve>H*1,H(1)(Q)' (1.2.34)

Because u is smooth we have

fVu: Ry, - VW) = {Vwii*Vu, Revf>H—1’H(1)(Q)
2

1=iLk=<N

and

Qf Q. Vu - Ry, = Q. Vit Rye) =1 i g

Moreover, because the gradient operator is continuous from L3(Q) in [H-'(Q)1",
we have

1V Wlsrscay = C 1A — W, 120).
Then we bound (1.2.34):
0, < 1 Hd — Wlliacon 1Vl 1VR@ liaay + 1V llzagar 1V (R ooy
+ CVullyrooay 114 — Wolioy 1R pgicay
+ IVl [1Qelar-scoy | Rvellglca
+ oy | M — Moy | R gl (12.35)

But Hypothesis (H6) implies that “REVE”H(I)(Q) = C“VSHH(I)(Q), and Definition (1.2.30)
of A, can be rewritten as

As = _[PE(O(’E) v Ve with Keg=Pe —p— U QS' (1'2'36)
2
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With the help of Lemma 1.1.7, we obtain for each f¢€ L3(£) that

L}fﬂ(%)f‘é ClIVrlLx ey 1/l 30 + € lullwz o 1200y 14 — WellLaay

+ 1M — M, |lg-10) + 1| Q:llar-1¢0]- (1.2.37)

Because L2(£2)/R is the dual space of L3(£2) and because PJx)=«, in 2,
we conclude from (1.2.37) that

lovelzacoym = ClIVEey + C lullwog 1M, — M| g0
+ 1d — W20y + Qe 1] (1.2.38)

Now it remains to estimate r, in [H}(2)]". Following an idea of H. Kacimr &
F. MuraAt [I5], we calculate the duality product {(—Ar, r) -1 Lale in two
different ways. On the one hand we have

{—=Nr,, "8>H“1,Hé(g) = f |Vr|?.
o

On the other hand we have
—Ar, = —DNu, — W)
= —Nig, + W, Du -+ AW, u ++ 2VW,) Vu
=—Nu, — (W, — Id)Dhu+ Du— (VQ, — AW ) u
4+ 2V - [(W, — Id)yVu]l + VQ, u. (1.2.39)
Introducing the Brinkman equation gives
—Arg = (Vp, — Du, — f+ Tau) + (M — M) u + 2V - (W, — 1d) Vu]
—(W,—Id)du—V(p.—p—u-Q) —VuQ,. (1.2.40)

Thanks to (H5') and the Stokes equation, the first term of the right-hand side of
(1.2.40) is equal to zero in £2,. Since r,= 0 on the holes, integrating (1.2.40)
by parts yields

<—Al’s, r€>H_1,Hé(Q) = <(M - Me) u, rs>H1—’H(])(_Q) - <vu Qe7 r6>H_1’H6(Q)
-2 f(Ws —Id)Vu:Vr, — f(Ws —Id)Du-r,
Po] I
-+ foce V- r,. (1.2.41)
Q

Because u, 4,, wj, are divergence-free, we have V-r, = —W,: Vu= (Id— W,): Vu.
Then we can bound (1.2.41), and, using the Poincaré inequality, we obtain
”v”e”iz(g) =C “uHWZ"”(Q) Hv”s”Lz(g) (M, — M”H*(.Q) + id — WeHLZ(Q)

+ ”Qs”H—l(.Q)] + ”u”Wl»m(Q) 1d — I’Ve”LZ(Q) H“EHLZ(.QE)/R’ (1.2.42)

Finally, combining (1.2.38) and (1.2.42) gives the desired result (1.2.13) and
(1.2.14). Q.E.D.
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2. Periodically Distributed Holes in the Entire Domain

This second section is devoted to the verification of Hypotheses (H1)-(H6)
in the case of identical holes of critical size, periodically distributed in . This
implies that all the results obtained in the abstract framework of the first section
hold in the present geometrical situation. Moreover, the periodicity of the geometry
yields some supplementary results, including explicit expressions for the matrix
M and for the extension of the pressure, and concrete bounds for the errors.

2.1. Main results

Let 2 be a bounded connected open set in R (N = 2), with Lipschitz boundary
042, Q being locally located on one side of its boundary. The set 2 is covered
with a regular mesh of size 2e, each cell being a cube P, identical to (—e, +&)V.
At the center of each cube P} included in £ there is a hole T3, each of which is
similar to the same closed set T rescaled to the size a,. We assume that T is strictly
included in the unit open ball B, and that (B, — T) is a connected open set,
locally located on one side of its Lipschitz’ boundary. Moreover, we assume
that the size of the holes «, is critical, i.e., that

. aE
hm_ﬁ/(—N—_Z)ZCO for Nz3,

o0 & (2.1.1)
lir% —¢*log(a,)=C, for N=2

where C, is a strictly positive constant (0 << C, << + o0).

Remark 2.1.1. Assumption (2.1.1) gives a unique and explicit scaling of the hole
size for N = 3, but does not do so for the two-dimensional case. Actually, when
N =2, many different sizes of the holes satisfy (2.1.1) with the same constant
C,. For example, a, = ¢ exp (—C,/e?) is acceptable for any p¢R. In any
case, assumption (2.1.1) is enough for the sequel, so we do not make more precise
the scaling of the holes in two dimensions. In the second part of this paper the
non-critical sizes of the holes (corresponding to zero or infinite limits in (2.2.1))
are investigated, and lead to results which are completely different from those
presented here.

An elementary geometrical consideration gives the number of holes

Q .
N(e) = &)—L [1 + o(D)]. (2.1.2)

The open set £, is obtained by removing from £2 all the holes (T7); ci<ne: 2. =
N(e)
£ — \J T; (see Figure 1). Because we

cluded in £, we are sure that no holes intersect the boundary 6. Thus £, is also

<

‘perforated” only the cells entirely in-
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a bounded connected open set, locally located on one side of its Lipschitz boundary
082,. In each cell P; we define B as the open ball of radius ¢ included in Pj. We
also define a ‘‘control volume™ C] around each hole by (see Figure 2)

C:= B —T. (2.1.3)

-
v K;
B Cf

Fig. 2

Now we state the main results for such an open set £2,, including the verification
of Hypotheses (H1)-(H6). Their proofs are located in the remaining subsections
2.2, 2.3, and 2.4.

Proposition 2.1.2. Let the hole size be critical, i.e., be given (2.1.1). Then there
exists a map R, satisfying (H6). Furthermore, we construct R, such that the exten-
sion operator P,, from L*(2)/R to L*()/R, defined in Proposition 1.1.4, satisfies

[Pe(qs) =g, in Q,

2 1
for each ¢, € L*(22,)/R ]Ps(qe) el [ g. in each hole T} @14
il

where C; is the control volume around T} defined in (2.1.3).
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Remark 2.1.3. Proposition 2.1.2 is actually the main new technical result in this
paper (Subsection 2.2 is devoted to its proof). However, equality (2.1.4) is a
generalization of a result due to R. LirtoN & M. AVELLANEDA [21]. It explains
that the extension of the pressure, obtained by a duality argument from R,, turns
out to be very simple. Nevertheless, it seems that the theoretical construction of
P, in Proposition 1.1.4 cannot be avoided because formula (2.1.4) gives no esti-
mate for VP,(p,) (as (iii) in Proposition 1.1.4), which is crucial for the proof of
Theorem 1.1.8.

Before verifying Hypotheses (H1)-(HS5), we introduce the so-called local prob-
lem when the space dimension is greater or equal to three. Let N = 3. For
ke{l,..., N}, consider the following Stokes problem:

Find (g4, w,) such that

gkl pn_gy < o0 and [V, < + oo,

L2RN-T)
Vg, — Aw, =0 in RN —T,

2.1.5
Vew,=0 in RY—T, 1.3

w, =0 on o7,
w, = ¢, at infinity.
We prove in the Appendix that there exists a unique solution of (2.1.5). We denote

0
by F, the drag force applied on T by the above Stokes flow, i.e., F, = f (—;n—k —
&r

qkn), where n is the normal exterior vector of o7T.

In our framework, the system (2.1.5) is the local problem, around a single
model obstacle, associated with the homogenization process. In the case of holes
having the same size ¢ as the period, it is well-known (see, e.g., Section 7.2 in
[25)) that the local problem holds in a unit cell, with periodic boundary conditions.
But here, the hole size a, is asymptotically smaller than the period e. Therefore,
after a rescaling of the hole size to 1, the boundary of the cell goes to infinity, and
the periodic boundary condition becomes a uniform boundary condition at in-
finity.

Proposition 2.1.4. Let N =3, and let the hole size be critical, i.e., be given by
(2.1.1). Then there are functions (Wi, q;, t)1<k<n constructed from the solutions
Wi G << Of the local problem (2.1.5), that satisfy Hypotheses (H1)—-(H5), and
(H5).

Moreover, the matrix M appearing in the Brinkman-type law (1.1.13) is given
by

N2
Mekzyk:—-iA,—-Fk for each ke{l,2,..., N} 2.1.6)
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or, equivalently,

CN—2 .
‘e, Me, = i == f Vwy:Vw;  for each i,k€{l,2,..., N}
‘ RN—T
‘or, equivalently,
) CN—Z
EME = o 1nf HVw]]LZ(RN n 2.1.7)

with E={we [HL BNV -w=0inRY, w=0inT, w=2§ at infinity}.

Remark 2.1.5. Proposition 2.1.4 provides a very simple characterization of the
matrix M which appears in Brinkman’s law. Formula (2.16) gives a physical
interpretation of M: Each column of M is proportional to the drag force of a
corresponding Stokes flow. This means that the new term Mu in the homogenized
system (1.1.13) represents the slowing effect of the obstacles on the macroscopic
flow. If the model obstacle T is not isotropic, then M may be non-scalar, and even
non-diagonal ; this is Brinkman’s law for an anisotropic medium. Formula (2.1.7)
furnishes a mathematical interpretation of M as a ““Stokes capacity” of the model
obstacle T (see [5], and [15] for a similar “capacity-formula” in the case of the
Laplacian operator). Roughly speaking, the functions (wj, g;) are constructed
by rescaling (wy, g,) in each period. Thus they appear as the velocity and pressure
of a unit boundary layer around the holes (in the ¢, direction), and the matrix
M may be seen as the energy of these boundary layers.

Proposition 2.1.6. Let N =2 and let T contain a small open ball. Let the hole
size be critical, i.e., be given by (2.1.1). Then, there exist functions (Wi, gz, ﬂk)lgk<2
that satisfy Hypotheses (H1)-(H5), and (HS5').

Moreover, whatever the shape and the size of the model hole T are, the matrix
M appearing in Brinkmar’s law (1.1.13) is given by

M=21d 2.1.8)
- Zx. Q1.

0

Remark 2.1.7. In comparlson w1th Proposition 2.1.4, the result of the above
proposition is quite paradoxical. In fact, this result is close to the celebrated Stokes
paradox, which asserts that the system (2.1.5) has no solution when the space
dimension is N = 2. This result can also be connected to the fact that any two-
dimensional bounded set has zero capacity.

Remark 2.1.8. From Propositions 2.1.2, 2.1.4, and 2.1.6, we know that Hypo-
theses (H1)-(H6) and (HS') are satisfied by some functions (w;, gz, #x); <k <y and
some map R, for any value N = 2. Of course, because of that, all the results of
the first section hold, including the convergence Theorem 1.1.8, and the corrector
Theorems 1.2.3 and 1.2.4.

Theorem 2.1.9. Let the hole size be critical, i.e., be given by (2.1.1). Let the
solution (u, p) satisfying Brinkman’s law (1.1.13) be smooth, say, ue [W2=(Q)".
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Then there exists a positive constant C that depends only on 2 and T such that

”ag - I/Veu“H(l)(g) g Ce “u”WZ,co(Q)s

(2.1.9)
lpe — p — v Qcll2oym = Ce Nully2 00000 :

Remark 2.1.10. We assume that the holes (77) are identical; but this condition
can be weakened, as will be clear from the construction of the functions {(w, ¢3)
that satisfy Hypotheses (H1)-(HS). In two dimensions, the holes may be entirely
different from one another; provided that they have the required size, we still
have the same results (in particular M = z/CyId). In other dimensions, the hole
shape may vary smoothly without interfering with the convergence of the homo-
genization process. (Of course the matrix M is no longer constant in £.)

2.2. Verification of Hypothesis (H6): Proof of Proposition 2.1.1
In this subsection we construct a linear operator R, that satisfies (H6), i.e.,
R, € L([Hy(D1"; [Ho(2)YY), such that
uc [H{Q)YY implies that R = u in Q,, (2.2.1)
Veu=0in Q implies that V -(R,u) =0 in Q,, 2.2.2)
HREUHH(I)(QE) =C HuIIHé(Q) and C does not depend on ¢. (2.2.3)

Following TARTAR’s idea [28], we easily define such an operator R, that satisfies
conditions (2.2.1) and (2.2.2). The main difficulty consists in the verification of
(2.2.3). For this purpose we introduce two technical Lemmas 2.2.3 and 2.2.4,
which are the keys to the analysis of this section. For technical purposes, we
decompose each cube P; entirely included in 2 by

Pi=T:VCVK with Kf = P — B (2.2.4)
where T7 is the hole, C7 is the control volume, and K; is the remainder, i.e., the

“corners” of P; (see Figure 2).

Lemma 2.2.1 Let u€ [H{(Q)IN. For each cube P: entirely included in Q, the fol-
lowing Stokes problem

Find (%, g5) € [HY(CHIV X [LA(C)/R].  such that
Vgi — M= —NAu  in C,
1
Veg=Vut—r [V-u inC, (2.2.5)
[=E

vi=u on 0C; — 077},

¥i=0 on &T;
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has a unique solution, depending linearly on u, such that

+ llulf? (2.2.6)

L(CiVTH]

199 1R, o = CLIVul?

HCH HCPUTY)

where the constant C does not depend on e, i, and u.
Accepting for the moment Lemma 2.2.1, we have
Prbposition 2.2.2. For. u€ [HYQ, let v be the unique solution of system

(2.2.5). Define an operator R, by:
For each cube P} entirely included in Q,
Ru=u inK, Ru=v; inC, Ru=0 inT;. 2.2.7
For each cube P; which meets 012,
Ru=u in PINQ.
Then Hypothesis (H6) holds for the operator R, defined by (2.2.7).
Proof. It is not difficult to see that R, is linear and continuous from [Hi()1Y

into [H}(£2,)]", and satisfies properties (2.2.1) and (2.2.2). Moreover, summing
the- estimates (2.2.6) for all cubes Pj, we easily obtain

HVReu”%z(!)e) = C[”Vu”iz(g) + “””22(9)] =C ”UHZ,&(Q)’

which is just property (2.2.3); thus R, satisfies (H6). Q.E.D.
Now, using the explicit Definition (2.2.7) of R,, we give the

Proof of Proposition 2.1.2. We have already proved in Proposition 2.2.2 that R,
satisfies (H6). Now, following an idea of R. LipTON & M. AVELLANEDA [21], we
prove equality (2.1.4).

Let g, € L*(2,)/R. By Proposition 1.1.4, we already know that P,(q,) = gq.
in Q,. Recall property (iv) of P, in Proposition 1.1.4:
VPG W) gr=1,glcay = Vo> RWo =1 g,  for each we [Hy (DT
(2.2.8)

In order to prove that P.(g.) is a constant in each hole T7, we take w = w;¢€
[D(TH]Y in formula (2.2.8), so that w; is a smooth function with compact support
in the hole 7. Using system (2.2.5), we casily check that R,(w;) = 0. Thus, from
(2.2.8) we obtain

{VIPq.)], w,»>H—1’H(1)(9) =0 for each w;€ [D(Tf)]N.
That is,
V[P.g)] =0 in T;, or equivalently, P/(g.) is constant in T7. (2.2.9)
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In order to calculate this constant, we now take w = »,€ [D(B)]" in formula
(2.2.8), so that »; is a smooth function with compact support in the ball B;. Inte-
grating (2.2.8) by parts, we obtain

[ P(g)V vi= [q, V- (Rv}) for each »;¢ [D(BHIY. (2.2.10)

£ £
B; <

Using system (2.2.5) and the fact that P.(g.) is constant in T;, we compute

P.(q.) = |C€ f g. in each hole T:©. Q.E.D.

Now we give some technical lemmas which will be crucial for proving Lem-
ma 2.2.1. Lety €R be such that 0 << <<4. We define an open set C, = B; — (nT)
where B, is the unit open ball, and (7 is similar to the model hole T rescaled
at size #.

Lemma 2.2.3. There exists a linear continuous operator L such that
(i) Le LIH'(By); H'(C)L,
(i) L(w) = u on 0By, L(u) =0 on d(nT) for each uc H'(B,),
(iii) |VL(w) ”LZ(C??) = ClliVullpagy + K, 1ullixs,) for each uc H'(B,)
u
where K, =n > for N=3, K, =
pend on u or 1. Vllog 7]

for N=2, and C does not de-

JO for r e [0; 1],
Proof. Define 9¢ C°[0; 1] by 0() = 2.2.1D)
|2r —1 for re[4;1].

[0 for r¢ [0, 5],
log r f :1] and N =2
_logn or re[n; an =2,
Define ¢ ¢ C°[0; 1] by ¢@F) = 1 1
N-2 T 17N—2
1 for r€ [n; 1] and N = 3.
1 — e
(2.2.12)
Let u€ H'Y(B;). Then we define the operator L by
1
L(u) = 6(r [u————— ] -+ ¢(r) (2.2.13
@ =0 [« [ o] #9077 ] ’
We easily check properties (i) and (ii). From (2.2.13) it follows that
1 1
IVL(w) ]|, gV(u—— u) +2lt——— [ u
e B | B{ L230) | B, | B{ L28,)

|
+ =1 [ ] 1Vl 2.2.14)
’B1| By
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The Poincaré-Wirtinger inequality implies that
1

— |u

574

Moreover, an elementary calculation gives

=C| vu”u(m) .
L2(B1)

u —

Vell2s,) = CK, where C does not depend on 7.
Thus (2.2.14) leads to the desired property (iii). Q.E.D.

Lemma 2.2.4. For each feL*(C,) with f f=0 there exists v¢ [Hy(C)IY
such that Gy
@ V-v=finC,
(ii) the map f—v is linear, and there exists a constant C that does not depend on
n or f such that ”v”Hé(C,]) = C”f”mc,))-

Proof. Let f€ L*(C,) with [f=0. We define feL*(B,) by
C77

f=f inC, f=0 in (;jT). (2.2.15)

We still have f f = 0. Lemma 1.1.7 asserts that there exists a u ¢ [H{(B)Y
such that B
V-u=f in By,

_ (2.2.16)
sy < C 1 laca,

where C depends only on B; (and not on 5 or f). We distinguish two cases accord-
ing to the spatial dimension:

N=3. We set C, = (B, — B)VVn(B; —T), where n(B; —T) denotes the
set (B, — T) rescaled to the size 4. Consider the following problem in (B, — T):

Find we¢ [H'[5(B; — D]}V such that
V-w=f innB —T),

2.2.17)
w=u on dnB,),

w=0 on &énT).

Because the compatibility condition of system (2.2.17), namely [ f= [ u'n,
n(By—T) ¢(nB1)
is satisfied, there exists a solution w. Moreover, if we assume that this solution

satisfies the estimate

IVWlragys, 1y = C ISl (e, where C does not depend on %, (2.2.18)

then Lemma 2.2.4 is proved by taking » equal to

y=u in (Bl _‘BW)’
(2.2.19)
yv=w innB; —7T).
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It remains to prove that estimate (2.2.18) holds for some solution w of (2.2.17).
For this purpose we rescale system (2.2.17). For y¢€ (B, — T), setting

1 1
foy) = fy),  uo(y) = n u@my),  wo(y) = ) wny).  (2.2.20)
we obtain the problem
Find wo € [H'(B, — T)]¥ such that
Vewg=fo in (B —T),

(2.2.21)

WO - uo on aBl s

wy =0  on oT.
Since f fo= f uy -1, Lemma 1.1.7 implies that there exists a solution wg

B, —T

0B,

of (2.2.21), which depends linearly on u, and f,, such that
IVwollLes,— 1 = Cllfollaa,—1 + 4oz, —m + Vo, -l (2.2.22)
In view of (2.2.20), estimate (2.2.22) can be rewritten in the form

1
1%, g = C [nfnuwﬂn + Vsl + uunml)] . (2.23)

Using the Hélder inequality in 73, gives

) 1p 1p’ . 1 1
N2, = [ [u "] f 1] with —+—=1. (2229
7 nB p p

1

. N , N
With p = 3 and p’' = 3 (2.2.24) becomes
22V 2 2N
lulZpsy = O lullN 2 opy = O JulllN 2@, (2.2.25)
As N =3, the following Sobolev embedding holds
2N
H\(B,) C IN72(B)). (2.2.26)

Then (2.2.25) becomes

lul2my = O Ul (2.2.27)

HY(B))
Consequently, from (2.2.23), (2.2.27), and (2.2.16) we obtain the required estimate
(2.2.18).
N = 2. This case is more complicated, and we “cut” the open set C, into many
“slices”, the number of which is asymptotically equivalent to |logn|. Let n€ N

1 1 1

be such that? >n= 57T - For any integer i, let By, be the disk of radius 5
centered at the origin of R2. Let C; be the slice of C, defined by

Ci = Bllzi——l - B1I2i for 1 g lé . (2.2.28)
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Let C,.; be the smallest slice defined by

Cor1 =By —(qT) for 1=i=<n. (2.2.29)
We have
n+1
c, =\ C,. (2.2.30)
i=1

In each slice (Cp),<;<, We consider the problem

Find », € [HY(C)}? such that
V- V; :f in C,',
1

s o= u  on 8By y-1,
(5 |Ciy VG c,-__lfvci 1
: f 2B
V= U — u on /s
1 |GV Cigy| e e

i+1
in C; we consider
Find », € [H*(C,)]* such that
Veyy=f in Cy,
(Sy) y; =0 on 8By,
1

V)W = U — =
! ICI UCZI C1JC2

u on 3131/2,

and in C,; we consider

Find »,,, € [H'(C,.)]* such that
V- Yopr =F in Cuyy,

(Sn+1) 1

Vg = U U on 8B1/2n,

B ICnUCn+1(C,,\/C,,+1
Y01 =0 on dnT).

It is easy to check the compatibility conditions of these systems (S)i<i<nits

because
[ —
U—— ul-n= u-n.
]C.‘ \V CH—I I 3B1/2i

381/21' C,-UCH_I

Moreover, for 2 < i< n — 1 we rescale to the unit-size set (C_; V C, \V C,) by

1
C VGV Gy = —ZT(C—-x VGV Gy (2.2.31)
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Consequently, each system (S;),<;<,—1 is similar to the following rescaled system
Find v, € [HY(C,)]* such that

Vevg=/fo in Co,
1
(So) Vg = Wg — ————— w on 0B,,
e »\c_lvcolc_lufco ° ’
1

——| Co U, ' COJCI wo on 0B;.

.f‘}o:Wo__

According to Lemma 1.1.7 there exists a solution of (S;) such that

1
0
{(Co)

w

IVollzaen = [”f olzaen + L VG c_l\[co

L ] . (2.2.32)
1(Co)

= ClIVwollzae_ucy- (2.2.33)
|[H1(Co)

1

+ ICO v (& | COJCl

Wo — Wo

But the Poincaré-Wirtinger inequality gives

1

w | ————————
o T TETU G e,

Wo

The same inequality holds for the last term of estimate (2.2.32), which becomes
Voollracy = Cllfolraccy + 1VWollLace_ucuen]- (2.2.34)

We now apply inequality (2.2.36) to system (S;) with fo(y) =f (%), wo(y) =
2u (‘;T)’ and vo(y) = 2'; (~2y7) to obtain

IV9illeacy = Cllf laey + WValiae,_jucue;, pl (2.2.35)

where the constant C does not depend on f, u or i. It is not difficult to get equiva-
lent estimates for (S;), (S,), and (S, ;); then, summing those estimates we obtain
from (2.2.35) that

||V’V”L2(c y = []]f”LZ(c y + 31 Vulla@y] = Clfl L2(c,)>

where v is equal to #»; in each slice C;. Thus Lemma 2.2.4 is proved.

Lemma 2.2.5. Let uc [H'(B))]". Consider the non-homogeneous Stokes problem:
Find (v, q) € [HY(C)I¥ X [L¥(C,)/R] such that
Vg—Dyv=—Au in C,

Vey=V-ut——r [Vu in C

0

2.2.36

vy=u on 0By,

v=0 on omnT).
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There exists a unique solution of (2.2.36), which depends linearly on u, such that

HVV”U(CW) = C[”vu”L2(81) -+ Kn ”u”LZ(Bl)] (2.2.37)
N-2 1
where K, =7 * for N=3, and K, = -—== for N =2; C depends nei-
Y |log x|

ther on u nor on 1.

Proof. Since

Cy

fV-v: f[V-u%——l—fV-u]: fV-u—I— fV-u: fV-u
S, Colar < aT B,

= fun= [vem,
[Z2:0 0C,7

the compatibility condition holds for system (2.2.36). Now using the two previous
lemmas, we transform system (2.2.36) in order to have a homogeneous Dirichlet
boundary condition and a divergence-free solution. Then it is easy to obtain esti-
mate (2.2.37). Q.E.D.

aE . . .
Proof of Lemma 2.2.1. If we take 7 = " then each control volume C7 is simi-
lar to C, rescaled at size &. Consequently, we can apply Lemma 2.2.5 with the

x
rescaled variables ¥;(x) = ev (—8—) . From estimate (2.2.37) we obtain

K2
a 2
Because 7 = —83, the quantity ;7’7 is of the same order 1 in &, and thus

INEA ™

2
LZ(C;-E) g C ”u” Q.E.D.

H(C{UT) '

2.3. Verification of Hypotheses (H1)-(H5)

This subsection is devoted to the explicit construction of functions (wy, ¢z,
i <x < that satisfy Hypotheses (H1)-(HS). These functions will be carefully de-
fined, but many technical computations which are needed in order to verify the
hypotheses will be omitted. This is done only for the sake of simplicity; no
fundamental difficulties are avoided. The interested (or suspicious) reader is
referred to [1] for the complete calculations. We first consider the case N = 2,
then the case N = 3.
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2.3.1. Two-dimensional case: N = 2 (Proof of Proposition 2.1.6)

Recall the decomposition (2.2.4) of each cube, namely Pf= T:\U C;\V ff.
For k=1,2 we define (w;, qp) € [H'(P)]* XL*(P;), with [ g;=0, by:
P}
For each cube P} that meets 812

{w,ﬁ = e,

. } in PN Q,
g =0

For each cube P; entirely included in (2,

- Vgt — Dwi = 0] )
{W" e"} in K, :q" W }in c, {w" }in TS, (23.0)
g =0 V=0 g =0

Obviously definition (2.3.1) is meaningful, and the functions (W}, g5); <x <> €Xist
and are unique. For an arbitrary model hole T, we cannot explicitly compute these
functions. However, it is possible to make them explicit when the model hole is
the unit ball B,, and this gives an appropriate class of comparison functions. As
T C B, let us define, for each cube P;, a ball B of radius q, that strictly contains
the hole T; (see Figure 2).

Replacing the holes 77 by the balls Blein Definition (2.3.1), we obtain functions
(Wors 90) € [H (P X L*(Pf), with [ gg, = 0, defined by:

#
For each cube P; that meets 0£2,

£ __
{WOk =

£ —_
Jox —

e"} in PN Q.
0

For each cube P} entirely included in £,

— v e A o = 0 ok = 0
{wf" e"} in K, { o Tk } in Cf — By, {Wfk } in B,
gor =0 Vewy =0 qor =0

(2.3.2)

Now, we explicitly compute (wg., qor)i<r<2 in each G — Bfs. Denoting by r;
and e/ the radial coordinate and unit vector in each C{ — Bfe we actually have

Wor = X f(r:) @ri + g(r) e, qor = Xih(r;))  for r; € [a,; &], (2.3.3)
with
1 B
Jir) = —= (A 1’*7;‘) + C,

r

. 5 (2.3.4)
g(ri):_AIOgri_EFz_”%C"iz—‘_D: h(ri):_r?—‘tcv

14
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with
82 82  _2C
A=—— =—e =1
o [l +o()] B o [1 + o(D)],
(2.3.5)
c—tusomy po1-T8 L
=g lto®)  D=1——=[+o0]
Then, for k = 1,2 we define the “difference” functions (w;, g), by
We = Wi — W 4k = 4k — bk (2.3.6)
which belong to [H)(CP)I* xLX(C)) with [ gi =0, and satisfy
ct
owg, .
Vait — it = (2 — e 7
or; in each control volume C;, (2.3.7)
Vew=0
e . 0 N(s)
{ w,k } elsewhere in 2 — \/ Cf
=0 i=1

where d7¢ is the measure defined as the unit mass concentrated on the sphere
OB, i.e.,
0%, 82 peady = [ #(s)ds for any ¢€ D(RM).
oB%

In the sequel we prove that the difference functions (W, ¢;); <k <, actually
converge strongly to (0, 0) in [H'(2)]* x L*(£2). In the verification of Hypotheses
(H1)—(H5), this means that there are almost no differences between the case of
spherical holes (corresponding to the functions (wg, g6x)1 <x<2) and the general
case of arbitrary holes (corresponding to the functions (wy, 451 <r<2)-

Lemma 2.3.1. Let the model hole T contain a small ball. Then the functions
W @i <k<a defined in (2.3.6), which belong to [Hy(Q)PXL*(Q), satisfy
”ql’:”L?‘(.Q) = Ce, ”vw;ce”Lz(Q) = Ces, and ”W;f”Lq(Q) = C¢?

for 1 £qg<< -+ oo, (2.3.8)
where C does not depend on & (but does depend on q).

Proof. A brief computation gives

3W8k . 282
e i ay _ ag 2.3,
( or, quer) 0; Cot, [1+ o(1)] e 0, (239

From (2.3.7) we deduce that in each C;

’ awak i ’ 282 ’
el2 L aE i) e __ . &
[1owep= | (@ri que,) Wit = G [+ o(1)] [ecwie. 2310

(o4 oB% ep’e
i i i
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Because T contains a small ball, we may use the Poincaré inequality in By — T
for obtaining the following trace estimate:

Iwlleaesy = CIVWas, -y for any we H'(B, — T) such that w = 0 on oT.
We rescale this estimate at size a, and use it for w;’. It implies that

| e

op’e
H

wi| = Ca, |Vw]] (2.3.11)

12(B ;‘6 ~T%)

where the constant C does not depend on . As (B — T7) C G, it follows from
(2.3.10) that

VWi lpagery = Ce2. (2.3.12)

Lemma 2.2.4 leads to an inequality equivalent to (2.3.12) for ¢;°. Recalling that
the number of holes is given by (2.1.2), we obtain the desired result:

”q ”LZ(Q) (‘2 )]2 [1 4 o(D] “q ”L;(C’g) = Cé?,
\.Q
(20)?

Furthermore, the continuous embedding of H}(£) into L) leads to the following
estimate:

[Vwk le(g) [l |- 0(1) ]V é C82.

k22 ce
L2(CH)

flwe laa = Ce  for 1 =g < +oo.

We can improve this estimate by applying, in each cell, the Sobolev inequality
to wi’, which belongs to [H}(P))?, for g = 2, orby applying the Hélder inequality
for ¢ << 2. Then, from (2.3.12) we obtain |w,° HLq(PE) < Ce¥*%, which im-

plies that [[w;]] = Ce? for any ¢ =1. Q.E.D.

L9(2)

Lemma 2.3.2. The functions (Wi, q)1<r<> defined in (2.3.1) satisfy Hypotheses
(HD), (H2), and (H3), i.e.,

HY) wie [H(Q)D, qreLl*(9Q),
(H2) V-wi=0 in2 andwi=0 on the holes T},
(H3) w; — ¢ in [HY(DN weakly, qi — 0 in L*(2)/R weakly.

Moreover,
W — el oy = Ce? |log¢] (2.3.13)

Jorany 1 = p << + oo where the constant C does not depend on ¢ (but does depend
on p).

Proof. By their definition, the functions (w;, ;)<< satisfy (H1) and (H2). In
order to see if (H3) also holds, we remark that Lemma 2.3.1 implies that

we-—>0 in [HY(Q))? strongly, ¢F->0 in L*(Q) strongly.
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It remains to show that (wg,, 46} <x <2 satisfy (H3). An easy but tedious computa-
tion yields
okl = € NVWolly = G wge — eellipy = Ce? |loge].

Thus w, converges weakly to-¢, in [H*(£2)]?. Because g, is P-periodic and bound-
ed in L*(£2), the whole sequence converges weakly to a constant in L3(Q), i.e.,
to 0 in L*(Q)R. Finally, the inequality |wf — ellir0) = W — ecllire) +
[Wellpcoy leads to (2.3.13). Q.E.D.

Before verifying that (H4), (H5), and (HS") hold, we remark that

NO) (wg W
Vot — ot = 30 (S git) 7 + 2 (o — grel) o
%9 101 (2.3.14)
- L ( qlscni) 61'1-55
) W N9 ow] N 1 ow .
i — i = X (G - ) o+ 3 (T - del)
, 2.3.15)
N(e) aws , (
- Z ( o ‘Iks’li) 5T§

where d; and df¢ are the unit masses concentrated on the spheres 4B; and 8B,
0, is the unit mass concentrated on the hole boundary 7T7, and n; is the unit
i

exterior normal to 77. Then the functions uj, and y¢, introduced in (H5"), are defined

by
NG owe NGO [ owg o
Au;:c = Z ( 3,.0.]( - qu r) 6 + Z( Se;) 6?3

i=1 r;

(2.3.16)

€

Ve =

NG oy,

(8” - q;ini) 5Tf-
Thus Vg; — Awp = p — y; in [HY(D)]?, and v;, = 0 in [H~'(£,)]? in the fol-
lowing sense: <y3, ”>H—1,H(‘)(9) =0 for any »¢€ [H)(£2)]* that satisfies v = 0
on each hole 77.

Next we give the following lemma, which immediately implies equality (2.1.8)
in Proposition 2.1.6, concerning the matrix M in the Brinkman-type law.

i=1

Lemma 2.3.3. The functions (Wi, gi)1<r<, defined in (2.3.1) satisfy Hypotheses
(H4), (HS5), and (H5"), i.e.,

' n
= € WTENQP, >y in [HTNQP strongly.
0
Proof. Because yu, is a constant vector, (H4) is obvious. Moreover we know that

14
(H5") implies (HS5), so it remains to prove that ui converges strongly to o
' 4]
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First, we prove that

or

i

NG/ ow®
( Ve e ) 80 in [H(Q)]® strongly. (2.3.17)

i=1

For any sequence , that converges weakly to a limit v in [H}(£2)]* we define the
/@ (aw

sequence of real numbers A, = \E q ’) 85 ”>H‘1,H3(Q)- We now

introduce the map R,, defined in Proposition 2.2.2, which satisfies (H6) not in
N(e) N(e) 2
Q,, but in 2 — \/ B%. Actually Ry, belongs to [H},(.Q —\U B,%” .(Note

i=1 i=1
N(e)

that 2 — \/ Bfs C .Qs.) Definition (2.2.7) implies that
i=1

Ry, =v, on 0B;. (2.3.18)
Thus

N(e) 8w,'f
A, = (
\&

g ;) 5, Ro,)
=1

/H Lake)
Nie)
Integrating equation (2.3.15) by parts, and noting that Ry, =0in \/ B/, we
i=1
obtain

D=~ [qV Ry + [Vwe:V(Rp). (2.3.19)
2 2

We bound (2.3.19) with the help of Lemma 2.3.1:

”As” = Ce ”Rsva]]H(l)(g) =Ce H.'VEHH(I)(Q) > . (2320)

which clearly implies (2.3.17). Now we prove that

NG owe . 21
Z( % qékei) 8 — —e, in [HH]? strongly.
S\ on Co

We compute

OWor . 2¢ , o
(B — dbt) o1 = o (e + e D 111+ 00137, 2321)
i 0

Note that o(1) in the right-hand side of (2.3.21) does not depend on the space va-~
riable x. Rather, o(1) is a sequence of real numbers that tends to zero. Thus, using
Lemma 2.3.4 below leads to the desired result. Q.E.D.

Lemma 2.3.4. Let d be a fixed real number in (0, 1). Let 6% be the unit mass con-

centrated on the sphere dB¥ (of radius de, and centered at the center of the cube P?),

ie, for each ¢ € D(), 0¥, &>p pioy = [ #(s) ds. Let Sy denote the area of
opd
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the unit sphere in RN, For N = 2:

N(e‘) SN dN
D, de 0% — — N in H-Y(Q) strongly, (2.3.22)
i=1
NE o v dY
D> de 6% (e, - €y el — N2 G in [H-Y(Q)" strongly. (2.3.23)
i=1

The proof of (2.3.22) is due to D. CioraNEscU & F. MuraTt, and may be
found in [9]. The proof of (2.3.23) is very similar and left to the reader (see [1],
if necessary).

2.3.2. Other cases: N = 3 (Proof of Proposition 2.1.4)

In this subsection we define the functions (Wi, ¢;); <x<n using the solutions
Wi, @)1 << of the Stokes problem (2.1.5) around the model hole T in the whole
space RY. The system (2.1.5) is the local problem which furnishes the value of the
Matrix M. Because we can easily get estimates and asymptotic behavior at in-
finity for the solutions (W, 4;); <x<n» W€ can overcome the main difficulty of this
paragraph which is to check Hypothesis (HS5). First, we give some properties of
Wis G < <n in the following

Lemma 2.3.5. For k¢c{l,..., N}, the unique solution (w, q,) of system (2.1.5)
at infinity satisfies
1

Fe | op o (!
_ZSNrN_Z[N—2+(k e,)e,]—l— (rN ‘)

1 1
9y = — SNI(Fk €,.)+0( )

1
Vwk =0 (I’—N-:),

owy 1
r W T a5 N

Wi = €
(2.3.25)

1
s [+ N ) o1+ 0 (5x)

ow,
where Fy, is the drag force exerted by the flow on T, i.e., F; = [ (——k *qkn).

Moreover, aT on
Fk'ei: f vwk:VWi for iE{I,...,N},
RV-T
Foregp= [ VweVwe=inf [ Vw:Vw (2.3.24)
RN-T WeFk N _p

with
E, = {we[HL@B®MYY/ V- -w=0inRY, w=0 in T, and w = ¢, at infinity}.

The proof of this lemma is given in the Appendix.
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In this subsection we use a decomposition of P; into smaller subdomains
that differs from the one used in the two-dimensional case. We set

Pi=T:\JClVUDIVK: (2.3.26)

where C;° is the open ball of radius &/2 centered in P{ and perforated by T%, D:
is equal to B perforated by C;°\U T¢, and K¢ is the remainder, i.e., the corners
of P} (see Figure 3). We define the functions (wy, g;);<x<n in €ach cube P; which
meets 682 by

{wf - e"} in PPN Q
g =0

e |2¢
A
7
2, ce
p = of
oo A e K¢

Fig. 3

and in each cube P; entirely included in 2, by the requirement that (wg, g;) €
[H'(PHIN < LX(P;) with [ gj =0, and by

;
Wi = e . . Vai — Awg = 0} . R
{q;z:o} | vow=of P
we=w(3) |
W=l ,
l in CJ°, :wf = 0} in Te. (2.3.27)
I qk:()

]qﬁ - qu(ea%) |

Definition (2.1.5) of (W, ;)1 <, <n implies that Definition (2.3.27) is meaningful,
and that the functions (W;, ¢;); <<y €xist and are unique.

Lemma 2.3.6. The functions (W, qi)1 <k <y defined in (2.3.27) satisfy Hypotheses
(H1), (H2), and (H3), i.e.,

(HD) wi € [H'@QIY,  q; € L(9),
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(H2) V-wi =0 in 2 and wi = 0 on the holes Tj,
(H3) wi — ¢, in [HY(D] weakly,

g; — 0 in L*(2)/R weakly.
Moreover,

N
2 1= —_
2 for 15p< s,

N2 N
lwi — exllioey = C{ & |loge| ¥ for p= 3 (2.3.28)
2N

- N
p(N—2) -
g Jfor p > )

where the constant C does not depend on s.

Proof. Hypotheses (H1) and (H2) are obviously satisfied. Let us check (H3).

Using the scaling x — ai and the fact that Vw, and ¢, are bounded in L*(RY — T)),

(3

we obtain
VWil ey = Cad ™ = C'7,
(2.3.29)
£ 112 N—-2 __ r N
10312,y = Cal¥ =2 = Ca.
From estimates (2.3.25) we deduce that
Wi — edlPpcey = al Wi — ecll? )«
k k LP(C’S) k k LP(BE—T)
N+2p <
L for 1 S p< V3’
N2 (2.3.30)
< Cle¥?|logs| for p— N
B N-—-2
Nz
‘O"N_2 fOI‘ p > m,

wi(x) = e, + 0(e%), Vwi(x) = O() on 8C;*N oD;. (2.3.31)
It follows from the definition of (wy, ¢;) in Dj, and from (2.3.31) that

2 N+ N —+
”vwlsc”Lz(D‘E) é CS Tz’ ”q;éliz(l)f) g CS +27 ]]W]i - ek”zp(Df) é CSN 2p'

(2.3.32)
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Noting that w; — ell75e = lexl] e = 0¥ ¥~?), and summing (2.3.29),
(2.3.30), and (2.3.32) over all the cubes P; leads to
HVWIEcHiz(Q) =C, - ”‘Ifc”%z(g) =C,

N
2p <L
& fOI‘ 1 = p < N NG
2N N
Wi — ellf o gy = C {77 |loge| for p =5 > (2.3.33)
2N N
N-—-2 —
£ for p > N2

From (2.3.33) we deduce the weak convergence of w§ to e, in [H*(£)]", and because
gy is P{-periodic and bounded in L*(R), the whole sequence weakly converges to
® constant in L*(£2), i.e., to 0 in L?>(Q)/R. Q.E.D.

Before checking Hypotheses (H4), (HS), and (H5") we remark that
Ve — Dw = p — 75 in Q,  with =0 in [H-'(Q)I",

NE (E)wfc

AR . N (2.3.34)
o qker) 0 + V- (x:(qi 1d — Vwp))

Hie =

i=1

where 8¢% is the unit mass concentrated on the sphere 8C;* N\ 8D%, and y, is the
NE©

characteristic function of \ / Df (which is equal to 1 on this set, and 0 elsewhere).
i=1

t:3

. ) ow . .
Note that, in the above expression for uy, the term (_—8rk — q,ie‘,) 052 is a con-
- i

tribution of the inside of the set C;/°. The equality 95 =0 in [H-'(2,)]" means
that (%, v>H41,H(1)(9) =0 for any »¢ [H}]V that satisfies » = 0 on each
hole T73.

Lemma 2.3.7. The functions (Wi, i) <i<n defined in {2.3.27) satisfy Hypotheses
(H4), (H5), and (H5'), i.e.,
N-2

CO —1,00 N & H 1 N
Mk':TFkG (WL, w—> e in [HH(Q strongly.

Proof. Obviously (H4) is satisfied because y; is a constant vector. Furthermore,
from (2.3.32) we deduce that

[ IVwe? = G [xdai)® = C&2. (2.3.35)
Q Q

Thus V - (g% Id — Vw;)) converges strongly to 0 in [H-'()]"¥. Moreover
Lemma 2.3.5 yields

>

ows . e\ 2NCN-2 o
(5 — aiet) (= 5) = el + MR e )
fi N (2.3.36)

N
where |1, |poog) = CeN—2 .
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Using (2.3.36), we deduce from (2.3.34) that

2NcN 2 N(®
‘ufc - T Z [Fk + N(Fk er) er] £ 68}2 + V- (xE(kud vwk))
N(®

+ X rdx) &2,
i=1

‘According to Lemma 2.3.4 we get

NE) S
2 [F, + N(F, - ) e,]-— 82N F . 2.3.37)
gN Tk
N2
Thus, the strong convergence of uj to =—;N— F, in [HYQV (ie.,

NE)
(H5")) is achieved if we prove that 2 r{x) 8% converges strongly to 0 in

[H-'(D)]". For this purpose we remark that
NE) N NE)
DI = 1 D HEIES Z (x) - e, 82 < C Z S &2 (2.3.38)

i=1 i=
N(e)

2
where, thanks to Lemma 2.3.4, the sequence 2, ¢'T~N-z &/ converges
i=1
N
strongly to 0 in H-1(£2). By adding C Z PR Vs g N p) 66/2 to each side of inequality

(2.3.38), we can use Lemma 2.3.8 (below) to complete the proof.

Lemma 2.3.8. Let x, and f, be two positive functions in H-1(2) such that
0o, =0, (2.3.39)
If B, converges strongly to O in H='(£), then so does «,.

Proof. This is actually a particularly easy case of a more general lemma due to
D. Croranescu & F. MURAT (see Lemma 2.8 in [9]). Let ¢, be any weakly con-
vergent sequence in H3(£2). We decompose each ¢, into its positive and negative
parts, which also belongs to H(£):

¢ =¢" —d; with ¢ =sup($,0) and ¢ =sup(—4,0).
Then using (2.3.39) we obtain
e S = oy = P> SO0 iy — $Fes be Dy 1 iy
= o 60114 — ¥ r 1 k)
= (s b g1 iy — e ¢J>H~1,H5(m
= o b DuLaloy- (2.3.40)
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As ¢, is a weakly convergent sequence in H(Q), its positive and negative parts
are bounded in H{(£2). Then, from (2.3.40) and the strong convergence of j,,
it follows that
(s b)) > 0>
for any sequence ¢, that converges weakly in H{(2). Thus, we deduce that «,
converges strongly to 0 in A-1(%). Q.E.D. |

2.4. Error estimates (Proof of Theorem 2.1.9)

In order to obtain the desired error estimates (2.1.9), we recall the results of
Proposition 1.2.5:

Ipe — P — u- Qellrzoym = Cllullwroogy 1My — Moy + 11d — W.lpao
+ 1Qella- ol
V@, — Wealliaay = Clullwzoogy | My — Mig-oy + |1 1d — W,l12q)
1]
where the constant C depends only on £. It only remains to prove that
UM, — Mllg-sco) + 1d — Wellacoy + 1Qe -] = Ce.

Lemma 2.4.1. Let (W}, 3); <<y be the functions defined in (2.3.1) if N=2, or in
(2.3.27) if N=3. Then

We — exllpacey = Ce, 24.1D)
gillg-1o = Ce (2.4.2)
where the constant C does not depend on .

Proof. From the previous results (2.3.13) (for N = 2) and (2.3.28) (for N = 3)
we immediately have (2.4.1). On the other hand, from their definitions we have

fai=0 for N=2 and fq}’;:"[q,i for N=3. (4.3)

P; Pf ct
Using estimates (2.3.25) from Lemma 2.3.5 we ecasily obtain | [ gi] < CeV*+1.
Then for any value of the dimension N, ce
1 |
I_P,;P f gi| < Ce. (2.4.4)
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Because g is equal to 0 in the cubes P; that intersect the boundary 22, we have
for any ¢¢€ HY(2) that

N(&)

{qz» ¢>H‘1,Hé(9) qu¢ = ZI f‘]k¢ 2.4.5)
I PE
5 1 1
= i~ /] + ¢ 7 il
E el «(f)mte]
But
1
9k = [ ¢ @ ey 16— 75 [ ¢ (2.4.6)
P:!k( IP’ f )l k llz2cpf) ’Pilp:,ﬂ et
Using the Poincaré-Wirtinger inequality, we convert (2.4.6) to
E(d’ l 16‘1 P_E[ ¢>‘< Ce ”quI_z(pe) ”vd)”LzUﬁ . (247)
With the help of (2.4.4) and (2.4.7) we obtain from (2.4.5) that
N
quis ¢>H‘1’H(1)(Q)I é Ce Z] [”qli ”L2(Pf) ”vd)”Lz(pf) + ] f ¢ l]
i= Pf
N(e)
= Ce [§ £NI2 llW”Lz(Pf) + Qf |¢\] (2.4.8)

= Ce[[Vllraay + 9o

From (2.4.8) we deduce the desired result [g;llg-1 (g = Ce. Q.E.D.

Lemma 2.4.2. Let H 1‘,(P) be the space of functions belonging to H'(P) that are
restrictions to P of functions belonging to H, (R™) and have period P = (—1, +1)".
Let <-,->, denote the duality product between H W(P) and its dual. Let h belong to
the dual of H(P), and be such that

<h, 15, =0, (2.4.9)
Then there exists a unique solution v of the problem:

Find v € H(P) such that

2.4.10
~Ay="h in P. ( )

Let h, be the distribution defined by

Chey by = &N (B(x), $(x)>  for each & ¢ D@RY). (2.4.11)
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Formally (2.4.11) is equivalent to hJ(x) = h (—;C—) Then for each cube Q of RN
we have

1/2
el = € (JZQNJ) 1Vl Lagpy - (2.4.12)

The proof of this lemma is due to R. V. KouN & M. YogGeLius [17], and may
also be found in [15].

Lemma 2.4.3. Let (u3) <, <n be the functions defined by

. N(s) 5W0k . NE ow ,E A
tuk_i:ZI(arl _qur)6+2(ari )6 forN—‘25
N@ 1owg,
e = é ( 5 ) 87 4+ V- (xlgild — VYwg))  for N=3

(see (2.3.16) and (2.3.34)) where &; is the unit mass concentrated on the sphere 0B;,
042 is the unit mass concentrated on the sphere 0C/* N\ 9D:, and y, is the charac-
N(e)
teristic function of \J Di. Then
i=1
ek — tell-1coy = Ce (2.4.13)

where the constant C does not depend on .

Proof. We begin- with the case N = 3. We have

i — willg-1c0) = v - (xe(qi 1d — Vw,‘i)) -2

N(e) 8
Y ( Vi )58/2 " (2.4.14)
=1\ 0r; H-Y($)

From (2.3.35) we deduce that
IV - (elgi 1d — Vwidlla-co) = 129k acoy + 2. VWilliae) = Ce. (2.4.15)

Now we apply Lemma 2.4.2 in order to estimate the last term of (2.4.14). We set

NE) ot .
b= ( 8rk ‘ ;) 52— . (2.4.16)
=1 i

Using the asymptotic expansion (2.3.36), we decompose A, into two parts
h(x) = hi(x) 4 K5(x) with

N —2 N(s)

() = T 2, [+ NP ) ) e 0 —

N()

B(x) = 2 r(x) 87

i=1
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N
with |r,| 000 = CsV™2. By taking differences in (2.3.36), we see that the average
of #, on each sphere 8C;"/N\ 0D is equal to zero. Following to (2.4.11), for
y€ P, we choose
N—2c(1)\l——2
hl(y) = __:g—— [Fk + N(Fk b €,.) er] 5(1)/2 — Hxs
N

h(y) = ro(») 5(1)/2
1/2:

where d¢/* is the measure defined as the unit mass on the sphere of radius 1 centered

at the origin. From the properties of r,, we deduce that r, has a zero average on
2

the sphere of radius 4, and that |ry| ey = Ce¥ 2. Then, it is straightforward

to check that both & and 4, belong to the dual of H,(P) and <h,, 1>, = <hy, 1),

= 0. Applying Lemma 2.4.2 twice we get

(2.4.17)

A ”H"l(.()) = Ce ||V, l2cpy and ||/ -1 = Ce ”v”znu(}’) (2.4.18)

where v, and », are defined as the solutions of (2.4.10) with 4, and 4, as the right-
hand sides. Then summing inequalities (2.4.15) and (2.4.18) we obtain the desired
result.

Now we consider the case N = 2. In view of (2.3.16) we have

NO owl
2 (G, — o) o
@ 6w8k e i &

2 ar, ot 0 — My

i=1

N — el -0y =

H1(D)

H(2)

From (2.3.20) we get

NG 1 owe .
> ( Brk — q,fe;) bk < Ce. (2.4.19)

i=1

H-1(2)

NG (g
We set h(x) = X, (—F()k

i=1 i

— qf,keﬁ> & — we; according to (2.4.11) we find

2
ho) = & (—eu + 4ex e) &) 11+ o] 8} — go e, for ye P (2.4.20)

where 4} is the measure defined as the unit mass on the sphere 0B, and o(1) does
not depend on y, as in (2.3.21). It is straightforward to check that % belongs to
the dual of HI(P) and that <A, 1>, = 0. Then we can apply Lemma 2.4.2, and
arguing as previously for N = 3, we finally obtain [[uf — sy [g-10y = Ce. Q.E.D.

Appendix

This appendix is devoted to the proof of Lemma 2.3.5. Throughout this
discussion, we assume that the space dimension N = 3. Recall the Stokes prob-
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lem (2.1.5):
Find (w;, ¢q,) such that

IVWellpe@y - < +o0  and g [2@N-n < + o0,
Vg, — Dw, =0 in RY — T,
V-w,=0 inRV_T,
w, =0 on o7,
w, = ¢, at infinity.

The existence and uniqueness of a solution of (2.1.5) is classical (see, e.g., Theorem 4,
p. 40 in [18], or Section 2 in [13]) if one weakens the condition g, € LXRY — T)
into Vg, € [H (RN — T)I". The assumption that N = 3 is essential, because
existence of a solution of (2.1.5) fails if N = 2 (this is the the well-known Stokes
paradox). To the best of my knowledge the only way previously known to prove
that g, actually belongs to L* (RN — T) is to use the asymptotic behavior (2.3.25).
We give here a new proof of this fact, relying only upon variational arguments,
and more precisely upon Lemma 2.2.4.

For anyreal R = 1, let By be the open ball of radius R, centered at the origin.
Let ¢ € [Hy(Bg — T)]". Multiplying the equation of system (2.3.24) by ¢, and
integrating the product by parts, we find that

[ &V-éd= [ Vw.:V¢. (A1)
Br-T

Bp—T

1 1
Now we apply Lemma 2.2.4 in the open set B, — R T= —R—(BR — 7). After

rescaling we obtain that for each f€ L*(B, — T) with f f =0, there exists
Bp-T

a 4)6 [Hé(BR — T)]N such that \Y% -(i):fin BR — T and ”v‘b”Lz(BR_T) § C”f”L2(BR—T)

where the constant C does not depend on R. Then we deduce from (A.1) that

lailizap—m = CIVWillage -1 = C where the constant C does not depend

on R. Letting R—> -+ oo, we easily see that g, belongs to LXRY — T)/R. 4
priori the pressure g, is defined up to a constant (that is why the space L? is factored
by the set R of real constants). However, because in the present case constants
(except 0) do not belong to LX(RN — T), there exists only one representative of
the class g, in L}R™ — T)/R that belongs to LXRN — 7).
Next, we seek the pointwise estimates (2.3.25), namely
1 F, 1
7 _‘2?1\,’,'_1\7?2 [—“— + (Fk'er)er] + 0(;‘ﬁ>,

M= N—2

1 1
G = *W(Fk'er)ﬂLO(;ﬁ),

/1
Vwk: O(’—N——T)’

w, n 1
o e =-‘S—N—rﬁ:—1[Fk + N(Fi-e)e]+ O ~
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. “(ow, . .
where F; is the drag force, i.e., F, = / (7’: — qkn) with # the unit exterior nor-
éT

mal to T. For this, we use the theory of hydrodynamical potentials due to B. K. G.
OpqvisT & L. LICHTENSTEIN (see [13] and [18] for details and references). Consider
the fundamental singular solutions of the Stokes equations

P — X — Yk
Sy lx —yV
N ¥ | (A.2)
. L [ 5,"‘ (e — i) (xj - yj)J
28y ((N=2)x —y]¥? e — ¥
which satisfy .
Vp, — Dy = 0(x — ) e, V-u, =0 inRY, (A.3)
and
X — i
= — fme— 4
V4 6(x y), U; Ska—y‘N (A )
which satisfy
Vp—0u=0, V-u=2dx—y) inR", (A.5)

By convolving these fundamental singular solutions (A.2) and (A.4) with the
source terms (provided that they are smooth enough), we obtain solutions of the
Stokes systems in the whole space.

Let 0¢ D(B;) such that #==1 in the vicinity of 7. We set

Ge=(1—0
{ilk ( ) 4 }, which implies that
{ék € C*(RY), g = g in RV — Bl} .
we € [CPBMY, W, =w, in BY — B}’
We set also
fe=Vae —Dwey {ka (DB
{gk _ VW }, which implies Fhat 2. € D(B,) } (A.7)
Then it is easy to check that in RY — B,,
L (e=9 40,
x) = g(¥) + <& »
4 = 809 + 5 R{ T
1 5
1 x — ) - fiy)
( e (x — ) dy. (A.8)

_!_
28y e [x —y[V
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Asymptotically (A.8) becomes

! xv-Blffk(y)dy i
W) =5 T “’(W)’

i /() dy x -Bf J() dy !
. By 1 —
wilx) = % TAN—2)8y A2 +2SN( X[ )+ O(Ix;N—l)’

1

Introducing F, = — f S dy and r=|x]| in (A.9) leads to the desired esti-
5 .

mates (2.3.25). _
It remains to prove equalities (2.3.24). Multiplying equation (2.1.5) by w;,
integrating the result by parts, and using estimates (2.3.25), we obtain

Foreg= [ Vwe:Vw, for i€{l,...,N}. (A.10)

RY¥ -1

It is well-known that
Firgo= [ Vw:Vw, =inf [ Vw:Vw (A.1D)
RN RN-T
with

E, = {(we[HiooBM)Pfw=01in T,V-w=0 in RY — T and w = ¢, at infinity}.
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