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1 Introduction

The homogenization method for topology optimization in structural design is
by now well established (see [2], [3], [7], [8], [15], [16], [17], [18] and references
therein). However, the theory is restricted to compliance or eigenfrequency
optimization (in the single or multiple loadings case). The problem is that
optimal microstructures are unknown for general objective functions. Of course,
in numerical practice, many generalizations have appeared: they often rely on
the use of fictitious materials (so-called power-law materials, see e.g. [18]) or of
sub-optimal materials (for example, obtained by homogenization of a perforated
periodic cell). Working with a subclass of microstructures is called a partial
relaxation of the problem. This subclass needs to be rich enough in order to
approximate as much as possible the true optimal microstructures, which yields
good numerical properties (fast convergence, global minima). On the other
hand it must be as explicit as possible for a good efficiency. The idea of partial
relaxation is not new but somehow has never been explored systematically. The
purpose of this work is to describe such a procedure for the class of so-called
sequential laminates (of any order) which are delivered by an explicit formula
and are optimal in a number of important cases. We describe the numerical
implementation of this method of partial relaxation and discuss its application
on several examples. Part of this work was written up in Aubry’s thesis [5].

2 Setting of the problem

We consider a bounded domain Q € RY, with N = 2 or 3, occupied by two
linearly elastic isotropic phases A and B. Their Hooke’s laws are also denoted



by A and B and satisfy for any symmetric matrix &

AE =2uA€ + <I€A — QHTA> (tré) I, BE =2upé+ (nB — QMTB> (tré) I,

where 0 < u4 < pp are the shear moduli and 0 < k4 < kp are the bulk moduli.
It is convenient to introduce a Lamé coefficient, proportional to the Poisson’s
ratio, defined by
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Let x € L*>®(Q;{0,1}) be the characteristic function of phase A. We define an
overall Hooke’s law in Q by

A, =xA+(1-x)B.

The corresponding displacement u, of this structure is computed as the unique
solution in Hg ()N of

—div (4ye(uy)) =f inQ
uy =0 on 01,

where e(u,) = (Vu + Vtu)/2 is the strain tensor, and f is a given body force
in L2(Q)N (for simplicity, we have chosen to work with a model problem with
Dirichlet boundary conditions, but more general surface loadings or boundary
conditions are possible). We address the following two-phase optimal design
problem (shape optimization corresponds to the degenerate limit A — 0)

() (1)

inf
XE€L>(Q;{0,1})

with an objective function J defined by

100 = / D(@)ga (2, (2)) + (1 — x(2)) g (s uy ()] dt + € / x(@)dz,

where £ is a Lagrange multiplier for a volume constraint on phase A, and g4, gB
are smooth functions with suitable growth.

It is a classical matter to show that (1) is an ill-posed problem which requires
relaxation, i.e. for which there exist only generalized optimal solutions (see e.g.
[15], [17]). These generalized designs are defined as composite materials obtained
by mixing on a microscopic scale the two phases A and B. The composite
materials are parametrized by two functions: the density #(z) € [0, 1] of phase
A and the microstructure or geometric arrangement of the two phases (yielding
different effective Hooke’s laws A*(z)) at each point z € Q. By homogenization
theory, the relaxed formulation of (1) turns out to be

i (0, A* 2
(e,irfirécp‘] (6,A%), (2)



with an extended objective function
758, A%) = / (Bga(z,u) + (1= 8)gp(x,u) + (6) da, 3)
Q

where u(z) is the unique solution in H}(Q)"™ of the homogenized problem

—div(A*e(u)) = f in Q,
{ u=20 on 092, (4)

and CD is the space of generalized or composite designs
CD = {6 € L>*(M%[0,1]), A*(z) € Go(a) VT € Q}, (5)

where, for each constant value 0 < 8 < 1, Gy is the set of all homogenized
Hooke’s law obtained by mixing the phases A and B in proportions 6,1 — 6.

The advantages of the relaxed formulation (2) are numerous and well de-
scribed in e.g. [3], [15], [16], [17]. In particular, it always admits an optimal
solution while any composite design is attained as the limit of a sequence of
classical designs. This implies that relaxation does not change the problem but
makes it well-posed, and that a nearly optimal classical design can easily be
recovered from an optimal composite design by a suitable penalization process.
There are also many numerical algorithms based on this approach that can be
viewed as topology optimization methods (see e.g. [2], [3], [7], [8], [11], [12]).

There is however one serious disadvantage with the relaxed formulation (2)
since the set Gy of all composite materials is unknown. In a few special cases
(of great practical importance), the optimality conditions allows to replace Gy
by its explicit subset of so-called sequential laminates. This is possible if the
objective function J and J* is the compliance or the first eigenfrequency (or
even a sum of several of them, see e.g. [1], [4]). In such a case, (2) is truly useful
and fully explicit. Unfortunately, in all other cases (which are the vast majority
of choices of the functions g4, gg), this relaxed formulation is useless since we
have no knowledge of this set Gy of composite materials. By opposition to what
follows, we shall call (2) a fully relaxed formulation.

3 Partial relaxation

To obtain a tractable formulation, we restrict Gy to its explicit subset L; of
all sequential laminates A*, with core A and matrix B, in proportions 6 and
(1 — 0) respectively, defined by formula (6). For a number ¢ of laminations and
unit lamination directions (e;)1<;<q, as well as lamination parameters (m;)1<i<q
satisfying m; > 0 and )7, m; = 1, a sequential laminate A* is defined by

0(A"=B)~" = (A=B)" +(1-0) Y mifsle:), 6)



where fg(e;) is given by

Fole) €= == (6P = (60 ) + g(Ge e (D)
We introduce a set LDV of sequentially laminated designs, defined by
LDt = {9 € L (20,1)), A*(x) € L, ¥z € Q} . 8)
The proposed partial relaxation is
inf  J*(9,A%), 9)

(0,A*)eLD+t

with the same objective function J* defined by (3). A priori, the existence of
a minimizer of the partial relaxation (9) is not guaranteed, which is the main
difference with the full relaxation (2). It seems that we have gain very little
in replacing the ill-posed problem (1) by another ill-posed problem (9). Nev-
ertheless, loosely speaking the latter is less ill-posed than the former since its
integrand has been smoothed or averaged, at least partially, leading to better
convexity properties. The question of how much qualitatively the partial re-
laxation improves on the original formulation is linked to the question of how
far from optimal are the microstructures in L'G". As a possible justification of
this partial relaxation (9), let us simply recall that in the cases of compliance
or eigenfrequency optimization it coincides with the full relaxation.

The advantage of dealing with generalized designs in £LD™, instead of CD, is
that we can find optimality conditions which amounts to compute the derivative
of the objective function and builds numerical gradient algorithms. We first
compute the derivatives of J* in the continuous case. For this purpose we
first need to obtain a convenient continuous parameterization of the set LZ of
sequential laminates. Introducing a probability measure v defined by

v(e) = Zmié(e —e;)

where § is the Dirac mass at the origin, any sequential laminate A* in Lg' is
parametrized by the proportion 6 of phase A and by this probability measure
v (positive with unit mass). More precisely, following [6], one can show that
L is the set of all symmetric fourth-order tensors A* such that there exists a
probability measure v on the unit sphere Sy_; = {e € R", |e| = 1} satisfying

(A*—B)' = (A-B) '+(1- 9)/5 fe(e)dv(e), (10)

with fp(e) defined by (7). Recall that a probability measure v on Sy_1 must be
non-negative, v(e) > 0, and of unit mass, fSN—l dv(e) = 1. We therefore view 6



and v as the true independent design parameters in £D". In other words, the
partial relaxation (9) is equivalent to

inf {J°(0.0) = T (6.4 (B.0)}.

One can compute the partial derivatives of J* by introducing an adjoint state
p which is the solution of

. . _ 8!]—‘41"111 _ B-Q_B;UU, in
{;il\(;(A e(p))_ec’)u(’ )+(1-9) BU( ) on%ﬂ. (D

The objective function J*(#,v) is differentiable, and denoting by 60 and dv
admissible increments, its directional derivative is

0J*(0,v) =/V9J*60da:+// V., J*d(6v) dz, (12)
Q QJSN_1

with the partial derivatives

VoJ* (@) = gl u(x) ~ g, u(x) + 0+ Tpolu)  e(p),
VoI (06 = o, e)e(u) s efp),

and 94
Sr@ = T (A=B) "+ [y fale)dv(e) T,
0A*

(x,€) —9(1 - 0T Lfp(e)T 1,

ov
T = (A-B)""+01-9)[s, , frle)dv(e).

This gives the basis for a numerical gradient method which is described in the
next section. Of course, since 6, v are constrained locally at each point z (# must
stay in the range [0, 1], and v is a probability measure) the gradient method must
be combined with a projection step to satisfy these constraints.

For simplicity we focused on the case of a single load optimization problem.
There is obviously no difficulty in extending the previous analysis to multiple
load problems. This approach can also be extended to problems where the
objective function involves strain or stress tensors. This causes additional dif-
ficulties since one need so-called corrector results to define the generalized or
relaxed objective functions. However, these correctors are explicitly known for
laminates (see [9]). We will report on this topic in a future work.



4 Numerical algorithm

To obtain a numerical method we must, as usual, discretize in space the design
variables 6 and v, but the measure v must also be discretized with respect
to its second argument, the unit vector e. Therefore, we discretize the unit
sphere Sy_1 by a number ¢ of fixed directions (e;)i1<j<q, and we replace the
” continuous” measure v by a ”discrete” measure which is a sum of Dirac masses

q
Vdiscrete (6) = Z mz(s(e - ei) (13)
i=1

where (m;)1<i<q is a collection of parameters satisfying m; > 0 and Y./, m; =
1. Of course, this amounts to replace the ”continuous” lamination formula (10)
by its ”discrete” analogue (6). In order to keep a small number of directions ¢
(of the order of 4 in practice) and yet have good results, we can also introduce a
global rotation of the microstructure, namely use the following rotated version

of (6)
0(A*—B)™" = (A=B)"'+(1-60)>_ m;R'fp(e;)R. (14)

=1

where R is the fourth order tensor corresponding to a rotation matrix @ in the
physical space (with Q71 = Q?), i.e. RE = Q1£Q for any symmetric matrix
&. This introduces another design parameter, denoted by ¢, which corresponds
to one angle in 2-D or two angles in 3-D necessary to parameterize a rotation
Q(¢) in the physical space. Adding this rotation parameter ¢ requires the
computation of another partial derivative of J* which is easily seen to be

oA

Vol (@) = - ()ew) : e(p),
with
0A*
o5 = —0(1 - )T~ G,
T(¢) = (A=B)™'+ (160Xl myR(9)fn(e;)R(9),
M(g) = R'() (Xii msfule;)) R(6).

Upon discretization of the unit sphere Sy_1, a measure v is now completely
determined by the vector m = (m;)1<i<, which appears in (13). Therefore, the
partial derivative V,J* is replaced by

Vol (@) = P (w)e(u) : e(p), (15)




with

gA* (04" e
L _( )199_( 01— TR fp(e) RT™) ..

8mi

Recall that (13) is a probability measure if the vector m satisfies m; > 0 and
7, m; = 1. This gives the required projection for the gradient algorithm. We
now have all the ingredients to define the proposed numerical algorithm.

1. Initialization of the design parameters 6y, g, mo (for example, we take
them constant satisfying the constraints).

2. Tteration until convergence, for k > 0:

(a) Computation of the state uy and the adjoint state py, solutions of (4)
and (11) respectively, with the previous design parameters 6y, ¢y, my,.

(b) Updating of these parameters by

Or41 = max (0, min (1,0 —thQJg)),
Grr1 = Ok — Ve,
Mi 41 = Mmax (O,mLk —tk Vi, J,: + gk) .

where £}, is a Lagrange multiplier (iteratively adjusted) for the con-
straint Y i_, m; = 1, and ¢, > 0 is a small step such that

T (Ors1s Orr1, mer1) < J*(Ok, br, mi).

A good descent step tp is computed through a line search that may be
expensive since each evaluation of the objective function requires the solution of
the direct and adjoint equation. In practice, we stop as soon as J;, | < Ji and
we divide the step by two if not. Of course, more clever optimization schemes
could be used (see e.g. [20]).

Figure 1: Boundary conditions for the cantilever problem.

We have tested this numerical method on various 2-D problems (3-D would
work as well). Several objective functions are available (see e.g. the design of



compliant mechanisms in [19]). Here we restrict ourselves to the minimization of
the displacement field. The Young modulus of material B is normalized to 1 and
its Poisson ratio is fixed to 0.3. Material A is assumed to be void, and to avoid
degeneracy the lowest admissible value of the material density (1—6) is 10~3.The
algorithm is initialized with a working domain full of material (fy = 0). We
study a medium cantilever problem (see the boundary conditions on Figure 1):
the domain size is 20 x 10 discretized with a rectangular 120 x 60 mesh, and the
Lagrange multiplier £ is iteratively adjusted so that the weight of the structure
is constrained to be 40% of that of the full working domain. We minimize the
L™(Q)-norm of the displacement, which corresponds to the following choice:
ga(z,u) = 0 and gp(x,u) = |u|™. In truth, the objective function is rescaled
in order to avoid the effects of rounding errors for large values of m, i.e. we

minimize Y
J*(6, A%) = (/ (1- 9)|u|mda:> ,
Q

with a volume constraint. As expected, the ”composite” solutions (i.e. the
numerical output of the partial relaxation) exhibit large areas of intermediate
densities (which indicates that in practice the laminated composites are often
optimal for this problem). To recover classical designs (i.e. with pure material
and void) we apply a penalization procedure as in e.g. [2], [21] which forces the
density € to take only the values 0 or 1. We tried two different penalization
procedures. The first one amounts to add a penalizing term to the standard
objective function J*(6, A*) of the type

cpen/(l —6)10%dx
Q

where ¢,,, is a positive constant and ¢ is an exponent larger or equal to 1. We
prefer a second more efficient procedure which changes the lamination formula
giving the value of the homogenized tensor A*. Instead of (6) (or its rotated
version (14)) we use

0" (4" =B)"" = (A=B)7" + (1-0) > mifs(er), (16)

where ¢ > 1is typically 3 or 5. The effect of (16) is that the resulting ”fictitious”
composite A* is much weaker than the usual laminate. Therefore, it is not
advantageous to use any such composite of intermediate density. Using the
modified formula (16) results in a very effective penalization scheme: almost
all grey areas in the homogenized design disappear to yield a black and white
”penalized” design as can be seen in the following pictures.

In all computations we fix the number of lamination directions to 4. Figure 2
displays the results for m = 2, Figure 3 for m = 10, and Figure 4 for m =
100. Remark that the optimal designs for m = 100 are very close to those of



compliance optimization (Figure 5) as it should be since for such a point load
minimizing the compliance of the maximal displacement is the same.

Figure 2: Optimal shape of the cantilever for m = 2: composite (left) and
penalized (right).

Figure 3: Optimal shape of the cantilever for m = 10: composite (left) and
penalized (right).

Figure 4: Optimal shape of the cantilever for m = 100: composite (left) and
penalized (right).
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