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1 Introdu
tion

The homogenization method for topology optimization in stru
tural design is

by now well established (see [2℄, [3℄, [7℄, [8℄, [15℄, [16℄, [17℄, [18℄ and referen
es

therein). However, the theory is restri
ted to 
omplian
e or eigenfrequen
y

optimization (in the single or multiple loadings 
ase). The problem is that

optimal mi
rostru
tures are unknown for general obje
tive fun
tions. Of 
ourse,

in numeri
al pra
ti
e, many generalizations have appeared: they often rely on

the use of �
titious materials (so-
alled power-law materials, see e.g. [18℄) or of

sub-optimal materials (for example, obtained by homogenization of a perforated

periodi
 
ell). Working with a sub
lass of mi
rostru
tures is 
alled a partial

relaxation of the problem. This sub
lass needs to be ri
h enough in order to

approximate as mu
h as possible the true optimal mi
rostru
tures, whi
h yields

good numeri
al properties (fast 
onvergen
e, global minima). On the other

hand it must be as expli
it as possible for a good eÆ
ien
y. The idea of partial

relaxation is not new but somehow has never been explored systemati
ally. The

purpose of this work is to des
ribe su
h a pro
edure for the 
lass of so-
alled

sequential laminates (of any order) whi
h are delivered by an expli
it formula

and are optimal in a number of important 
ases. We des
ribe the numeri
al

implementation of this method of partial relaxation and dis
uss its appli
ation

on several examples. Part of this work was written up in Aubry's thesis [5℄.

2 Setting of the problem

We 
onsider a bounded domain 
 2 IR

N

, with N = 2 or 3, o

upied by two

linearly elasti
 isotropi
 phases A and B. Their Hooke's laws are also denoted

1



by A and B and satisfy for any symmetri
 matrix �

A� = 2�

A

� +

�

�

A

�

2�

A

N

�

(tr�) I

2

; B� = 2�

B

� +

�

�

B

�

2�

B

N

�

(tr�) I

2

;

where 0 < �

A

< �

B

are the shear moduli and 0 < �

A

< �

B

are the bulk moduli.

It is 
onvenient to introdu
e a Lam�e 
oeÆ
ient, proportional to the Poisson's

ratio, de�ned by

�

A

= �

A

�

2�

A

N

; �

B

= �

B

�

2�

B

N

:

Let � 2 L

1

(
; f0; 1g) be the 
hara
teristi
 fun
tion of phase A. We de�ne an

overall Hooke's law in 
 by

A

�

= �A+ (1� �)B:

The 
orresponding displa
ement u

�

of this stru
ture is 
omputed as the unique

solution in H

1

0

(
)

N

of

�

� div (A

�

e(u

�

)) = f in 


u

�

= 0 on �
;

where e(u

�

) = (ru +r

t

u)=2 is the strain tensor, and f is a given body for
e

in L

2

(
)

N

(for simpli
ity, we have 
hosen to work with a model problem with

Diri
hlet boundary 
onditions, but more general surfa
e loadings or boundary


onditions are possible). We address the following two-phase optimal design

problem (shape optimization 
orresponds to the degenerate limit A! 0)

inf

�2L

1

(
;f0;1g)

J(�); (1)

with an obje
tive fun
tion J de�ned by

J(�) =

Z




[�(x)g

A

(x; u

�

(x)) + (1� �(x))g

B

(x; u

�

(x))℄ dx + `

Z




�(x)dx;

where ` is a Lagrange multiplier for a volume 
onstraint on phase A, and g

A

; g

B

are smooth fun
tions with suitable growth.

It is a 
lassi
al matter to show that (1) is an ill-posed problem whi
h requires

relaxation, i.e. for whi
h there exist only generalized optimal solutions (see e.g.

[15℄, [17℄). These generalized designs are de�ned as 
omposite materials obtained

by mixing on a mi
ros
opi
 s
ale the two phases A and B. The 
omposite

materials are parametrized by two fun
tions: the density �(x) 2 [0; 1℄ of phase

A and the mi
rostru
ture or geometri
 arrangement of the two phases (yielding

di�erent e�e
tive Hooke's laws A

�

(x)) at ea
h point x 2 
. By homogenization

theory, the relaxed formulation of (1) turns out to be

min

(�;A

�

)2CD

J

�

(�; A

�

); (2)
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with an extended obje
tive fun
tion

J

�

(�; A

�

) =

Z




(�g

A

(x; u) + (1� �)g

B

(x; u) + `�) dx; (3)

where u(x) is the unique solution in H

1

0

(
)

N

of the homogenized problem

�

� div (A

�

e(u)) = f in 
;

u = 0 on �
;

(4)

and CD is the spa
e of generalized or 
omposite designs

CD =

�

� 2 L

1

(
; [0; 1℄) ; A

�

(x) 2 G

�(x)

8x 2 


	

; (5)

where, for ea
h 
onstant value 0 � � � 1, G

�

is the set of all homogenized

Hooke's law obtained by mixing the phases A and B in proportions �; 1� �.

The advantages of the relaxed formulation (2) are numerous and well de-

s
ribed in e.g. [3℄, [15℄, [16℄, [17℄. In parti
ular, it always admits an optimal

solution while any 
omposite design is attained as the limit of a sequen
e of


lassi
al designs. This implies that relaxation does not 
hange the problem but

makes it well-posed, and that a nearly optimal 
lassi
al design 
an easily be

re
overed from an optimal 
omposite design by a suitable penalization pro
ess.

There are also many numeri
al algorithms based on this approa
h that 
an be

viewed as topology optimization methods (see e.g. [2℄, [3℄, [7℄, [8℄, [11℄, [12℄).

There is however one serious disadvantage with the relaxed formulation (2)

sin
e the set G

�

of all 
omposite materials is unknown. In a few spe
ial 
ases

(of great pra
ti
al importan
e), the optimality 
onditions allows to repla
e G

�

by its expli
it subset of so-
alled sequential laminates. This is possible if the

obje
tive fun
tion J and J

�

is the 
omplian
e or the �rst eigenfrequen
y (or

even a sum of several of them, see e.g. [1℄, [4℄). In su
h a 
ase, (2) is truly useful

and fully expli
it. Unfortunately, in all other 
ases (whi
h are the vast majority

of 
hoi
es of the fun
tions g

A

; g

B

), this relaxed formulation is useless sin
e we

have no knowledge of this set G

�

of 
omposite materials. By opposition to what

follows, we shall 
all (2) a fully relaxed formulation.

3 Partial relaxation

To obtain a tra
table formulation, we restri
t G

�

to its expli
it subset L

+

�

of

all sequential laminates A

�

, with 
ore A and matrix B, in proportions � and

(1� �) respe
tively, de�ned by formula (6). For a number q of laminations and

unit lamination dire
tions (e

i

)

1�i�q

, as well as lamination parameters (m

i

)

1�i�q

satisfying m

i

� 0 and

P

q

i=1

m

i

= 1, a sequential laminate A

�

is de�ned by

� (A

�

�B)

�1

= (A�B)

�1

+ (1� �)

q

X

i=1

m

i

f

B

(e

i

); (6)
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where f

B

(e

i

) is given by

f

B

(e)� : � =

1

�

B

�

j�ej

2

� (�e � e)

2

�

+

1

2�

B

+ �

B

(�e � e)

2

: (7)

We introdu
e a set LD

+

of sequentially laminated designs, de�ned by

LD

+

=

n

� 2 L

1

(
; [0; 1℄) ; A

�

(x) 2 L

+

�(x)

8x 2 


o

: (8)

The proposed partial relaxation is

inf

(�;A

�

)2LD

+

J

�

(�; A

�

); (9)

with the same obje
tive fun
tion J

�

de�ned by (3). A priori, the existen
e of

a minimizer of the partial relaxation (9) is not guaranteed, whi
h is the main

di�eren
e with the full relaxation (2). It seems that we have gain very little

in repla
ing the ill-posed problem (1) by another ill-posed problem (9). Nev-

ertheless, loosely speaking the latter is less ill-posed than the former sin
e its

integrand has been smoothed or averaged, at least partially, leading to better


onvexity properties. The question of how mu
h qualitatively the partial re-

laxation improves on the original formulation is linked to the question of how

far from optimal are the mi
rostru
tures in L

+

�

. As a possible justi�
ation of

this partial relaxation (9), let us simply re
all that in the 
ases of 
omplian
e

or eigenfrequen
y optimization it 
oin
ides with the full relaxation.

The advantage of dealing with generalized designs in LD

+

, instead of CD, is

that we 
an �nd optimality 
onditions whi
h amounts to 
ompute the derivative

of the obje
tive fun
tion and builds numeri
al gradient algorithms. We �rst


ompute the derivatives of J

�

in the 
ontinuous 
ase. For this purpose we

�rst need to obtain a 
onvenient 
ontinuous parameterization of the set L

+

�

of

sequential laminates. Introdu
ing a probability measure � de�ned by

�(e) =

q

X

i=1

m

i

Æ(e� e

i

)

where Æ is the Dira
 mass at the origin, any sequential laminate A

�

in L

+

�

is

parametrized by the proportion � of phase A and by this probability measure

� (positive with unit mass). More pre
isely, following [6℄, one 
an show that

L

+

�

is the set of all symmetri
 fourth-order tensors A

�

su
h that there exists a

probability measure � on the unit sphere S

N�1

= fe 2 IR

N

; jej = 1g satisfying

� (A

�

�B)

�1

= (A�B)

�1

+ (1� �)

Z

S

N�1

f

B

(e) d�(e); (10)

with f

B

(e) de�ned by (7). Re
all that a probability measure � on S

N�1

must be

non-negative, �(e) � 0, and of unit mass,

R

S

N�1

d�(e) = 1. We therefore view �
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and � as the true independent design parameters in LD

+

. In other words, the

partial relaxation (9) is equivalent to

inf

(�;�)

fJ

�

(�; �) = J

�

(�; A

�

(�; �))g :

One 
an 
ompute the partial derivatives of J

�

by introdu
ing an adjoint state

p whi
h is the solution of

�

� div (A

�

e(p)) = �

�g

A

�u

(x; u) + (1� �)

�g

B

�u

(x; u) in 


p = 0 on �
:

(11)

The obje
tive fun
tion J

�

(�; �) is di�erentiable, and denoting by Æ� and Æ�

admissible in
rements, its dire
tional derivative is

ÆJ

�

(�; �) =

Z




r

�

J

�

Æ� dx+

Z




Z

S

N�1

r

�

J

�

d(Æ�) dx; (12)

with the partial derivatives

r

�

J

�

(x) = g

A

(x; u(x)) � g

B

(x; u(x)) + `+

�A

�

��

e(u) : e(p);

r

�

J

�

(x; e) =

�A

�

��

(x; e)e(u) : e(p);

and

�A

�

��

(x) = T

�1

�

(A�B)

�1

+

R

S

N�1

f

B

(e) d�(e)

�

T

�1

;

�A

�

��

(x; e) = ��(1� �)T

�1

f

B

(e)T

�1

;

T = (A�B)

�1

+ (1� �)

R

S

N�1

f

B

(e) d�(e) :

This gives the basis for a numeri
al gradient method whi
h is des
ribed in the

next se
tion. Of 
ourse, sin
e �; � are 
onstrained lo
ally at ea
h point x (� must

stay in the range [0; 1℄, and � is a probability measure) the gradient method must

be 
ombined with a proje
tion step to satisfy these 
onstraints.

For simpli
ity we fo
used on the 
ase of a single load optimization problem.

There is obviously no diÆ
ulty in extending the previous analysis to multiple

load problems. This approa
h 
an also be extended to problems where the

obje
tive fun
tion involves strain or stress tensors. This 
auses additional dif-

�
ulties sin
e one need so-
alled 
orre
tor results to de�ne the generalized or

relaxed obje
tive fun
tions. However, these 
orre
tors are expli
itly known for

laminates (see [9℄). We will report on this topi
 in a future work.
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4 Numeri
al algorithm

To obtain a numeri
al method we must, as usual, dis
retize in spa
e the design

variables � and �, but the measure � must also be dis
retized with respe
t

to its se
ond argument, the unit ve
tor e. Therefore, we dis
retize the unit

sphere S

N�1

by a number q of �xed dire
tions (e

j

)

1�j�q

, and we repla
e the

"
ontinuous" measure � by a "dis
rete" measure whi
h is a sum of Dira
 masses

�

dis
rete

(e) =

q

X

i=1

m

i

Æ(e� e

i

) (13)

where (m

i

)

1�i�q

is a 
olle
tion of parameters satisfying m

i

� 0 and

P

q

i=1

m

i

=

1. Of 
ourse, this amounts to repla
e the "
ontinuous" lamination formula (10)

by its "dis
rete" analogue (6). In order to keep a small number of dire
tions q

(of the order of 4 in pra
ti
e) and yet have good results, we 
an also introdu
e a

global rotation of the mi
rostru
ture, namely use the following rotated version

of (6)

� (A

�

�B)

�1

= (A�B)

�1

+ (1� �)

q

X

j=1

m

j

R

t

f

B

(e

j

)R : (14)

where R is the fourth order tensor 
orresponding to a rotation matrix Q in the

physi
al spa
e (with Q

�1

= Q

t

), i.e. R� = Q

�1

�Q for any symmetri
 matrix

�. This introdu
es another design parameter, denoted by �, whi
h 
orresponds

to one angle in 2-D or two angles in 3-D ne
essary to parameterize a rotation

Q(�) in the physi
al spa
e. Adding this rotation parameter � requires the


omputation of another partial derivative of J

�

whi
h is easily seen to be

r

�

J

�

(x) =

�A

�

��

(x)e(u) : e(p);

with

�A

�

��

= ��(1� �)T

�1

�M

��

T

�1

;

T (�) = (A�B)

�1

+ (1� �)

P

q

j=1

m

j

R

t

(�)f

B

(e

j

)R(�);

M(�) = R

t

(�)

�

P

q

j=1

m

j

f

B

(e

j

)

�

R(�):

Upon dis
retization of the unit sphere S

N�1

, a measure � is now 
ompletely

determined by the ve
tor m = (m

i

)

1�i�q

whi
h appears in (13). Therefore, the

partial derivative r

�

J

�

is repla
ed by

r

m

J

�

(x) =

�A

�

�m

(x)e(u) : e(p); (15)
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with

�A

�

�m

=

�

�A

�

�m

i

�

1�i�q

=

�

��(1� �)T

�1

R

t

f

B

(e

i

)RT

�1

�

1�i�q

:

Re
all that (13) is a probability measure if the ve
tor m satis�es m

i

� 0 and

P

q

i=1

m

i

= 1. This gives the required proje
tion for the gradient algorithm. We

now have all the ingredients to de�ne the proposed numeri
al algorithm.

1. Initialization of the design parameters �

0

; �

0

;m

0

(for example, we take

them 
onstant satisfying the 
onstraints).

2. Iteration until 
onvergen
e, for k � 0:

(a) Computation of the state u

k

and the adjoint state p

k

, solutions of (4)

and (11) respe
tively, with the previous design parameters �

k

; �

k

;m

k

.

(b) Updating of these parameters by

�

k+1

= max (0;min (1; �

k

� t

k

r

�

J

�

k

)) ;

�

k+1

= �

k

� t

k

r

�

J

�

k

;

m

i;k+1

= max (0;m

i;k

� t

k

r

m

i

J

�

k

+ `

k

) :

where `

k

is a Lagrange multiplier (iteratively adjusted) for the 
on-

straint

P

q

i=1

m

i;k

= 1, and t

k

> 0 is a small step su
h that

J

�

(�

k+1

; �

k+1

;m

k+1

) < J

�

(�

k

; �

k

;m

k

):

A good des
ent step t

k

is 
omputed through a line sear
h that may be

expensive sin
e ea
h evaluation of the obje
tive fun
tion requires the solution of

the dire
t and adjoint equation. In pra
ti
e, we stop as soon as J

�

k+1

� J

�

k

and

we divide the step by two if not. Of 
ourse, more 
lever optimization s
hemes


ould be used (see e.g. [20℄).

Figure 1: Boundary 
onditions for the 
antilever problem.

We have tested this numeri
al method on various 2-D problems (3-D would

work as well). Several obje
tive fun
tions are available (see e.g. the design of

7




ompliant me
hanisms in [19℄). Here we restri
t ourselves to the minimization of

the displa
ement �eld. The Young modulus of material B is normalized to 1 and

its Poisson ratio is �xed to 0:3. Material A is assumed to be void, and to avoid

degenera
y the lowest admissible value of the material density (1��) is 10

�3

.The

algorithm is initialized with a working domain full of material (�

0

= 0). We

study a medium 
antilever problem (see the boundary 
onditions on Figure 1):

the domain size is 20�10 dis
retized with a re
tangular 120�60 mesh, and the

Lagrange multiplier ` is iteratively adjusted so that the weight of the stru
ture

is 
onstrained to be 40% of that of the full working domain. We minimize the

L

m

(
)-norm of the displa
ement, whi
h 
orresponds to the following 
hoi
e:

g

A

(x; u) = 0 and g

B

(x; u) = juj

m

. In truth, the obje
tive fun
tion is res
aled

in order to avoid the e�e
ts of rounding errors for large values of m, i.e. we

minimize

J

�

(�; A

�

) =

�

Z




(1� �)juj

m

dx

�

1=m

;

with a volume 
onstraint. As expe
ted, the "
omposite" solutions (i.e. the

numeri
al output of the partial relaxation) exhibit large areas of intermediate

densities (whi
h indi
ates that in pra
ti
e the laminated 
omposites are often

optimal for this problem). To re
over 
lassi
al designs (i.e. with pure material

and void) we apply a penalization pro
edure as in e.g. [2℄, [21℄ whi
h for
es the

density � to take only the values 0 or 1. We tried two di�erent penalization

pro
edures. The �rst one amounts to add a penalizing term to the standard

obje
tive fun
tion J

�

(�; A

�

) of the type




pen

Z




(1� �)

q

�

q

dx

where 


pen

is a positive 
onstant and q is an exponent larger or equal to 1. We

prefer a se
ond more eÆ
ient pro
edure whi
h 
hanges the lamination formula

giving the value of the homogenized tensor A

�

. Instead of (6) (or its rotated

version (14)) we use

�

q

(A

�

�B)

�1

= (A�B)

�1

+ (1� �

q

)

q

X

i=1

m

i

f

B

(e

i

); (16)

where q > 1 is typi
ally 3 or 5. The e�e
t of (16) is that the resulting "�
titious"


omposite A

�

is mu
h weaker than the usual laminate. Therefore, it is not

advantageous to use any su
h 
omposite of intermediate density. Using the

modi�ed formula (16) results in a very e�e
tive penalization s
heme: almost

all grey areas in the homogenized design disappear to yield a bla
k and white

"penalized" design as 
an be seen in the following pi
tures.

In all 
omputations we �x the number of lamination dire
tions to 4. Figure 2

displays the results for m = 2, Figure 3 for m = 10, and Figure 4 for m =

100. Remark that the optimal designs for m = 100 are very 
lose to those of

8




omplian
e optimization (Figure 5) as it should be sin
e for su
h a point load

minimizing the 
omplian
e of the maximal displa
ement is the same.

Figure 2: Optimal shape of the 
antilever for m = 2: 
omposite (left) and

penalized (right).

Figure 3: Optimal shape of the 
antilever for m = 10: 
omposite (left) and

penalized (right).

Figure 4: Optimal shape of the 
antilever for m = 100: 
omposite (left) and

penalized (right).
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