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ques-Louis LionsAbstra
tIn this paper, we study the homogenization and lo
alization of a spe
tral transportequation posed in a lo
ally periodi
 heterogeneous domain. This equation models theequilibrium of parti
les intera
ting with an underlying medium in the presen
e of a
reation me
hanism su
h as, for instan
e, neutrons in nu
lear rea
tors. The physi
al
oeÆ
ients of the domain are "-periodi
 fun
tions modulated by a ma
ros
opi
 variable,where " is a small parameter. The mean free path of the parti
les is also of order ".We assume that the leading eigenvalue of the periodi
ity 
ell problem admits a uniqueminimum in the domain at a point x0 where its Hessian matrix is positive de�nite.This assumption yields a 
on
entration phenomenon around x0, as " goes to 0, at anew s
ale of the order of p" whi
h is superimposed with the usual " os
illations of thehomogenized limit. More pre
isely, we prove that the parti
le density is asymptoti
allythe produ
t of two terms. The �rst one is the leading eigenve
tor of a 
ell transportequation with periodi
 boundary 
onditions. The se
ond term is the �rst eigenve
tor ofa homogenized di�usion equation in the whole spa
e with quadrati
 potential, res
aledby a fa
tor p", i.e., of the form exp �� 12"M(x� x0) � (x� x0)�, where M is a positivede�nite matrix. Furthermore, the eigenvalue 
orresponding to this se
ond term gives a�rst-order 
orre
tion to the eigenvalue of the heterogeneous spe
tral transport problem.Introdu
tionThis paper is devoted to the homogenization of a transport equation in a lo
ally periodi
medium. We 
onsider the following eigenvalue problem for the transport equation8>>>><>>>>: "v � r�"(x; v) + �"(x; v)�"(x; v) � ZV �"(x; v0; v)�"(x; v0) dv0= �" ZV f"(x; v0; v)�"(x; v0) dv0 in 
� V�" = 0 on �� = f(x; v) 2 �
� V , v � n(x) < 0g (1)where 
 is a bounded 
onvex domain, V is the velo
ity spa
e, and the 
oeÆ
ients (or 
ross-se
tions) are periodi
ally os
illating fun
tions de�ned by�"(x; v) = ��x; x" ; v� , �"(x; v0; v) = � �x; x" ; v0; v� , f"(x; v0; v) = f �x; x" ; v0; v� : (2)�Centre de Math�ematiques Appliqu�ees, E
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The "-s
aling in front of the adve
tion term in (1) means that the mean free path is ofthe same order as the period ". In nu
lear rea
tor physi
s, (1) is known as the 
riti
alityproblem for neutron transport. It expresses the balan
e between the produ
tion of neutronsby �ssion (the right hand side of (1)) and its absorption or s
attering in the rea
tor 
ore andleakage at the boundary (the left hand side of (1)). The unknowns are the neutron density(or 
ux) �"(x; v) and the eigenvalue �" (the inverse of whi
h is 
alled multipli
ation fa
tor),whi
h measures the balan
e between the produ
tion and removal of neutrons. Sin
e onlypositive densities have a physi
al meaning, the only relevant solution turns out to be the �rsteigenve
tor (positive and unique up to a multipli
ative 
onstant). There are of 
ourse otherphysi
al motivations for the study of (1), in
luding photon transport, radiative transfer, andsemi-
ondu
tors.Sin
e the pioneering work of Larsen [19, 20, 21℄ (not to mention the previous physi
sliterature), many papers have been devoted to the time evolution version of problem (1)(see e.g. [8℄, [12℄, [17℄, [16℄, [27℄). The eigenvalue problem (1) was studied in [2℄, [7℄. Inall these papers, there is always an assumption of pure periodi
ity, whi
h means that the
oeÆ
ients in (2) depend solely on the fast variable y = x=" and not on the slow variablex. In truth the papers [17℄ and [16℄ do not make pre
isely su
h an assumption but ratherassume that the resulting lo
al behavior is not os
illating, i.e. depends on x but not ony = x=". In any 
ase, the possibility of a strong 
oupling of the fast and slow variableshas never been explored in full generality with 
oeÆ
ients de�ned by (2). We address thisproblem under a suitable stru
tural assumption and show that the homogenized limit is verydi�erent from that obtained in the purely periodi
 
ase. To explain our results we introdu
ethe 
ell eigenvalue problem whi
h is de�ned for ea
h x 2 
 by8<: v � ry +� = ZV � dv0 + �1(x) ZV f dv0 in Yy 7!  (x; y; v) Y � periodi
; (3)where (�1(x);  (x; y; v)) is the �rst or leading eigen
ouple and Y = (0; 1)N . Our stru
turalassumption is that the fun
tion x 7! �1(x) admits a unique minimum at x0 2 
 and that itsHessian matrix is positive de�nite at x0. We also make a no-drift assumption whi
h amountsto a phase-spa
e symmetry 
ondition (this assumption 
an be removed as was shown in[7℄). Our main result (see (32) for a formal asymptoti
 result and Theorem 3.2 for a pre
isestatement) is that, asymptoti
ally as " tends to zero, the �rst eigenfun
tion of (1) behavesas �"(x; v) �  �x0; x" ; v� exp��M(x� x0) � (x� x0)2" �; (4)whereM is a positive de�nite matrix depending on some homogenized properties and on theHessian of �1 at x0. It is 
lear from (4) that �" is lo
alized near x0 at a length s
ale of orderp". Furthermore, the �rst eigenvalue 
an be expanded as�" = �1(x0) + "�1 + o(");where �1 is expli
it in terms of M and other homogenized quantities (see (26), (31), andremark 3.1). Even when the 
oeÆ
ients do not os
illate (i.e. are fun
tions of x but not ofx=") the asymptoti
 result (4) is non trivial and new to the best of our knowledge. Ourresults extend a previous study made in [4℄ on a similar eigenvalue problem for a di�usionequation. Related results on di�usion equations may be found in [3℄, [18℄, and [24℄.The paper is organized as follows. In the next se
tion we introdu
e our notation and de-tailed assumptions, and we re
all some basi
 mathemati
al properties of transport equations.Se
tion 2 is devoted to the homogenization of (1) by means of asymptoti
 expansions. Thismethod is formal but it has the advantage of being easily a

essible without any knowledge2



of fun
tional analysis. Se
tion 3 is devoted to a detailed presentation of the rigorous 
onver-gen
e results 
on
erning the homogenization of (1). The proofs of these results are given inse
tions 4 and 5. More pre
isely, se
tion 4 fo
uses on a priori estimates for a sour
e problemasso
iated with (1), while se
tion 5 is 
on
erned with the proof of the homogenization pro-
ess, using the two-s
ale 
onvergen
e method. Finally, Se
tion 6 is devoted to some auxiliary
ell problems.1 Assumptions and notationThis se
tion is devoted to a pre
ise statement of our main assumptions and to a brief presen-tation of our notation and of 
lassi
al results in transport theory that are ne
essary for ouranalysis. We in
lude these known results (without proofs) for 
ompleteness, and we refer to,e.g., [2, 6, 11℄ for details. We �rst give the detailed assumptions on the physi
al parametersthat are used throughout this paper.(H1) The domain 
 is a 
onvex bounded open set of RN , and the velo
ity spa
e V is a
ompa
t subset of RN whi
h does not 
ontain 0. Furthermore V is assumed to be the
losure of an open set, and its N -dimensional measure is normalized to have jV j = 1.(H2) The 
ross-se
tions �(x; y; v), �(x; y; v0; v), and f(x; y; v0; v) are of 
lass C2 in x 2 
and measurable in y. They are positive, bounded Y -periodi
 fun
tions in y, whereY = (0; 1)N is the unit 
ube, and there exists a positive 
onstant C > 0 su
h that, fora.e. (x; y; v; v0), f(x; y; v0; v) � C;�(x; y; v)� ZV �(x; y; v0; v) dv0 � C;�(x; y; v)� ZV �(x; y; v; v0) dv0 � C: (5)Remark 1.1 There are possible variants of assumption (H2) whi
h may be more appropriatefor some appli
ations. For example, as it stands, (H2) implies that parti
le 
reation o

urseverywhere, whi
h is not the 
ase in neutron transport where �ssion takes pla
e only in thenu
lear fuel and not in the moderator. This 
an easily be 
orre
ted by repla
ing the �rstinequality in (5) by �(x; y; v0; v) + f(x; y; v0; v) � C; a.e. (x; y; v; v0)with f � 0 and f 6� 0. This implies that the sum of �ssion and s
attering is positiveeverywhere. Up to some additional te
hni
alities, all our results also hold in this framework.Introdu
ing the Hilbert spa
eW 2(
� V ) = fu 2 L2(
� V ), v � ru 2 L2(
� V )g; (6)assumptions (H1) and (H2) allow to state the following existen
e result.Theorem 1.2 The spe
tral problem (1) has at most a 
ountable number of eigenvalues andof asso
iated eigenve
tors in W 2(
�V ). Furthermore, there exists a real and positive eigen-value, of smallest modulus, with multipli
ity one, and su
h that its asso
iated eigenve
tor isthe unique (up to a multipli
ative 
onstant) positive eigenve
tor of (1).The proof of Theorem 1.2, whi
h is in the spirit of other results in [11, 
hapter 21℄, 
an befound in [6℄. As a 
onsequen
e of Theorem 1.2, only the �rst eigenve
tor of (1) has a physi
almeaning as a parti
le density. 3



As we shall see in the sequel, the asymptoti
 behavior of the eigenve
tors of (1) is partlygoverned by the �rst eigenve
tor of another eigenvalue problem, similar to (1) but posedin the unit periodi
ity 
ell Y with periodi
 boundary 
onditions. Denoting by �1(x) and (x; y; v) its �rst eigenvalue and eigenve
tor, the in�nite medium problem is de�ned for ea
hparameter x 2 
 by8>>>><>>>>: v � ry (x; y; v) + �(x; y; v) (x; y; v) = ZV �(x; y; v0; v) (x; y; v0) dv0+�1(x) ZV f(x; y; v0; v) (x; y; v0) dv0y 7!  (x; y; v) Y � periodi
: (7)We shall also need an adjoint problem to (7), whi
h has the same �rst eigenvalue �1(x) witha di�erent �rst eigenve
tor  �(x; y; v). Introdu
ing the adjoint 
ross-se
tionsf�(x; y; v0; v) = f(x; y; v; v0) and ��(x; y; v0; v) = �(x; y; v; v0);this adjoint problem is de�ned by8>>>><>>>>: �v � ry �(x; y; v) + �(x; y; v) �(x; y; v) = ZV ��(x; y; v0; v) �(x; y; v0) dv0+�1(x) ZV f�(x; y; v0; v) �(x; y; v0) dv0y 7!  �(x; y; v) Y � periodi
: (8)As a 
orollary of Theorem 1.2 there exist leading eigenvalues and eigenve
tors for the 
ellproblems (7) and (8), whi
h 
an be 
hosen positive.Theorem 1.3 There exists a 
ommon eigenvalue �1(x) to both problems (7) and (8), whi
his real, positive, of smallest modulus, with multipli
ity one, and su
h that the respe
tiveeigenve
tors  and  � are positive elements of W 2(Y � V ).We are now in a position to give our next assumptions.(H3) We assume that x 7! �1(x) admits a unique minimum at x0 2 
 and that its Hessianmatrix is positive de�nite at x0. Without loss of generality, we suppose that x0 = 0�1(x) = �1(0) + xkxl �2kl + o(jxj2);and (�2kl)1�k;l�N is a positive de�nite matrix.(H4) Finally, we need the additional hypothesis that the drift 
uxJ(x) = ZY ZV v (x; y; v) �(x; y; v) dydv (9)vanishes at x = 0, i.e. J(0) = 0.Remark 1.4 Assumption (H3) is somehow generi
 as soon as we are interested in non-
onstant eigenvalues �1(x). Let us mention at least one (simple) 
ase when it holds true:take �(x; y; v) = �0(y; v), �(x; y; v0; v) = �0(y; v0; v) and f(x; y; v0; v) = k(x)f0(y; v0; v) sothat �1(x) = �0=k(x), and (H3) is satis�ed for a properly 
hosen fun
tion k(x).Remark 1.5 The assumption (H4), J(0) = 0, 
an be interpreted as a symmetry 
onditionin the phase spa
e (or a no-drift 
ondition), as explained in [2℄ or [6℄. It is quite usual in thistype of problem (for example, it is imposed in [17℄, [16℄). In most pra
ti
al 
ases, assumption4



(H4) holds true. For example, J(0) = 0 when V = �V (in the sense that v 2 V ) �v 2 V )and the 
ross se
tions do not depend on the velo
ity variable (this is the so-
alled one-velo
ityisotropi
 
ase), or when the 
ross-se
tions are symmetri
 with respe
t to v, and the 
ell Yhas 
ubi
 symmetry. The paper [7℄ addresses the 
ase when the drift J(0) is not zero andthe 
oeÆ
ients are purely periodi
 fun
tions. We brie
y dis
uss another possible hypothesiswhen J(0) 6= 0 in Se
tion 6.In the sequel we shall also need the following results. Sin
e the smallest eigenvalue �1(x)is simple, the 
lassi
al Fredholm alternative for 
ompa
t operators yields an existen
e resultfor (7) with a sour
e term.Proposition 1.6 Let x 2 
 be �xed and let �1(x) and  (x; y; v) be the �rst eigenvalue andeigenve
tor of (7). Let S(x; y; v) be a sour
e term in L2(Y �V ). Then there exists a solution'(x; y; v) 2W 2(Y � V ) of8>>>><>>>>: v � ry'(x; y; v) + �(x; y; v)'(x; y; v) = ZV �(x; y; v0; v)'(x; y; v0) dv0+�1(x)ZV f(x; y; v0; v)'(x; y; v0) dv0 + S(x; y; v)y 7! '(x; y; v) Y � periodi
if and only if S is orthogonal to the �rst eigenve
tor  � of (8), i.e., S satis�es the 
ompatibility
ondition ZY ZV S(x; y; v) �(x; y; v) dydv = 0:Furthermore, if it exists, the solution ' is unique up to the addition of a multiple of  .The �rst eigenve
tors  and  � are bounded from above and below by positive 
onstants asstated in the following proposition, based on the averaging lemma [14℄ and Sobolev inequal-ities, the proof of whi
h 
an be found in [2℄.Proposition 1.7 Let  and  � be the �rst positive eigenve
tors of problems (7) and (8),respe
tively. Then there exist two positive 
onstants 0 < C � C 0 su
h that, for a.e. (x; y; v),0 < C �  (x; y; v) � C 0 and 0 < C �  �(x; y; v) � C 0:Finally, we state a 
ompa
tness result for transport equations whi
h is a straightforwardvariation of the 
lassi
al velo
ity averaging lemma of [14, 15℄.Lemma 1.8 Let u"(z; v) be a family of fun
tions of W 2(RN � V ) su
h that there exists apositive 
onstant C independent of " satisfyingk (1 + jzj)u"(z; v) kL2(RN�V ) + k v � ru"(z; v) kL2(RN�V )� C:Then the family RV u"(z; v) dv is relatively 
ompa
t in L2(RN ).In the sequel, we always assume that hypotheses (H1)-(H4) hold.2 Asymptoti
 expansionTo address the phenomenon of 
on
entration and homogenization for (1) the simplest ap-proa
h is the 
lassi
al te
hnique of two-s
ale asymptoti
 expansions, 
oupled with Taylorexpansions around the 
on
entration point x = 0. This is a formal method whi
h has theadvantage of avoiding all the �ne points of fun
tional analysis that are required for a 
onver-gen
e proof. Therefore, we believe it is interesting even though we shall not use the results5



of this se
tion in our 
onvergen
e theorem of Se
tion 3. Remark that it is possible to justifythe asymptoti
 expansion by a 
areful study of the remainder terms, but this method hastwo drawba
ks. First, it requires smoother physi
al data. Se
ond, it gives a full justi�
ationonly of the �rst term in the expansion although the expansion 
ontains four terms. Thisphenomenon is well do
umented in [4℄.The �rst step of the derivation is to approximate the following fun
tions around x = 0by their Taylor expansions (the Einstein 
onvention of summation over repeated indi
es isused)8>>>>>>><>>>>>>>: � (x; y; v) = �0 (y; v) + xk�1k (y; v) + xkxl �2kl (y; v) + o(jxj2)� (x; y; v0; v) = �0 (y; v0; v) + xk�1k (y; v0; v) + xkxl �2kl (y; v0; v) + o(jxj2)f (x; y; v0; v) = f0 (y; v0; v) + xkf1k (y; v0; v) + xkxl f2kl (y; v0; v) + o(jxj2) (x; y; v) =  0(y; v) + xk 1k(y; v) + xkxl  2kl(y; v) + o(jxj2)�1(x) = �1(0) + xkxl �2kl + o(jxj2): (10)Here we use the following notation. For any fun
tion g(x), we de�ne g1k = �g�xk (x = 0), andg2kl = 12 �2g�xk�xl (x = 0). We also de�ne 2(�2kl) as the Hessian matrix of x 7! �1(x) at x = 0,where �1 is assumed to rea
h its minimum.Following [4℄, where a similar problem for the di�usion equation is 
onsidered, we intro-du
e the following ansatz for the �rst eigenpair of (1)8>>><>>>: �"(x; v) = exp��Mx � x2" � h�0 �x" ; v�+ xk�1k �x" ; v�+ xkxl �2kl �x" ; v�+ "�3 �x" ; v�+ r"(x; v)i�" = �0 + "�1 + o(") (11)where �0, �1k, �2kl, and �3 are Y -periodi
 fun
tions in their �rst argument to be determined,M is an unknown symmetri
 positive de�nite matrix, and r" is a small remainder term. Thematrix M being positive de�nite, we noti
e that, for any p 2 N,k xp exp ��Mx�x2" � kLr(
)k exp ��Mx�x2" � kLr(
) � O(" p2 ) for any r 2 [1;+1℄:Assuming that the �rst term �0 in the asymptoti
 expansion is normalized su
h that itsL2-norm is 1, then the se
ond term �1 = (�1k) will be of order p", and the third and fourthterms �2 = (�2kl) and �3 of order ". After some algebra, we �ndr(�") = 1" exp��Mx � x2" �hry�0 �x" ; v�+ (xkry�1k �Mx�0)�x" ; v�+ �xkxlry�2kl �Mxxk�1k� �x" ; v�+ " ��1 +ry�3� �x" ; v�+ r0"(x; v)i ;where, as usual, rx and ry denote partial derivatives with respe
t to the slow variable xand fast variable y, respe
tively, and r0" is a remainder term. Identifying all terms a

ordingto their power in x and ", we obtain a 
as
ade of equations from whi
h we keep the four �rstones. The zeroth order terms yieldv � ry�0 +�0�0 = ZV �0�0 + �0 ZV f0�0: (12)The �rst order terms in x give for all k 2 f1; :::; Ngvi(�yi�1k �Mik�0) + (�0�1k +�1k�0) = ZV (�0�1k + �1k�0) + �0 ZV (f0�1k + f1k�0); (13)6



where �yi denotes the i-th 
omponent of the gradient ry. The se
ond order terms in x givefor all k; l 2 f1; :::; Ng,vi(�yi�2kl �Mil�1k) + (�0�2kl +�1k�1l +�2kl�0) =ZV (�0�2kl + �1k�1l + �2kl�0) + �0 ZV (f0�2kl + f1k�1l + f2kl�0) (14)(the formula (14) has to be symmetrized with respe
t to k; l sin
e xkxl is itself symmetri
),and the �rst order terms in " yieldvi(�1i + �yi�3) + �0�3 = ZV �0�3 + �0 ZV f0�3 + �1 ZV f0�0: (15)Eventually, solving these equations leads to the asymptoti
 behavior of �". Equation (12)allows us to determine �0 and �0. Equations (13) and (14) allow us to determine �1k and �2kl,and some 
ompatibility 
onditions will give us the expression for M . Finally, equation (15)determines the " order term �3 and its solvability 
ondition gives the �rst order 
orre
tor �1for the eigenvalue.2.1 Zeroth order equationSin
e at x = 0 the fun
tions in (10) 
oin
ide with the zero-order terms in their Taylorexpansions, the zeroth order equation (12) is simply the periodi
 
ell problem (7) at x = 0.Thanks to Theorem 1.3, (12) has thus a unique positive solution given by�0(y; v) =  0(y; v); �0 = �1(0); (16)where  0(y; v) is equal to  (x = 0; y; v) up to some multipli
ative 
onstant depending on thenormalization of �".2.2 First order equation in xFor ea
h k, equation (13) 
an be written as followsv � ry�1k +�0�1k = ZV �0�1k + �0 ZV f0�1k + g1k; (17)where the sour
e term g1k is given byg1k = viMik 0 � �1k 0 + ZV �1k 0 + �0 ZV f1k 0:A

ording to the Fredholm alternative of Proposition 1.6, these equations 
an be solved ifand only if the sour
e-term g1k is orthogonal to  0�(y; v) =  �(0; y; v), i.e.,ZY ZV �viMik 0 � �1k 0 +�ZV �1k 0�+ �0�ZV f1k 0�� 0� = 0: (18)Upon di�erentiating the in�nite medium equation (7) with respe
t to x at x = 0, we obtainv � ry 1k +�0 1k +�1k 0 = ZV �0 1k + ZV �1k 0 + �0 ZV f0 1k + �0 ZV f1k 0; (19)whi
h admits  1k = (�xk 0)(x = 0) as a solution. Still, it admits a solvability 
ondition givenby ZY ZV ���1k 0 +�ZV �1k 0�+ �0�ZV f1k 0�� 0� = 0: (20)7



Thus, (13) is solvable if and only ifZY ZV viMik 0 0� = 0;or equivalently if and only if M ZY ZV v 0 0� = 0:The latter equation holds thanks to hypothesis (H4), hen
e (13) admits solutions. We shallsee later on that M is a symmetri
 positive de�nite matrix, so (H4) is a ne
essary andsuÆ
ient solvability 
ondition for equation (13). The solution �1k of (17) 
an be written asthe sum of two terms �1k = �Mkj�j +  1k; (21)where  1k is de�ned in (10) and �j is the solution of the following equationv � ry�j +�0�j = ZV �0�j + �0 ZV f0�j � vj 0: (22)Sin
e J(0) = 0, the solvability 
ondition of this equation is veri�ed, and therefore �j isuniquely de�ned up to a multiple of  0. Noti
e that terms proportional to  0 
an be in
or-porated into �0 in (16).2.3 Se
ond order equation in xFor ea
h k; l, equation (14) 
an be rewritten asv � ry�2kl +�0�2kl = ZV �0�2kl + �0 ZV f0�2kl + g2kl;where the sour
e term is given byg2kl = viMil�1k � �1k�1l � �2kl 0 + ZV �1k�1l + ZV �2kl 0 + �0 ZV f1k�1l + �0 ZV f2kl 0: (23)In truth, g2kl is symmetri
 with respe
t to k; l so that equation (23) should be symmetrized(for brevity we do not in
lude the symmetri
 terms in (23)). Again, this equation admits asolution if and only if g2kl is orthogonal to  0�. Owing to (21), the sour
e term g2kl 
an bere
ast asg2kl = �viMilMkj�j + viMil 1k +�1kMlj�j � �1k 1l � �2kl 0+ ZV (��1kMlj�j + �1k 1l + �2kl 0) + �0 ZV (�f1kMlj�j + f1k 1l + f2kl 0);whi
h after reordering yieldsg2kl = �MilMkj vi�j+Mil�vi 1k +�1k�i � ZV �1k�i � �0 ZV f1k�i�+���1k 1l � �2kl 0 + ZV (�1k 1l + �2kl 0) + �0 ZV (f1k 1l + f2kl 0)� :Upon di�erentiating the in�nite medium equation (7) twi
e in x at x = 0, we obtainv � ry 2kl +�0 2kl +�1k 1l +�2kl 0 = ZV (�0 2kl + �1k 1l + �2kl 0)+�0 ZV (f0 2kl + f1k 1l + �2kl 0) + �2kl ZV f0 0;8



whi
h admits a solution by 
onstru
tion. We rewrite this equation asv � ry 2kl +�0 2kl = ZV �0 2kl + �0 ZV f0 2kl+���1k 1l � �2kl 0 + ZV (�1k 1l + �2kl 0) + �0 ZV (f1k 1l + f2kl 0) + �2kl ZV f0 0� :Its solvability 
ondition readsZY ZV ���1k 1l � �2kl 0 + ZV (�1k 1l + �2kl 0)+�0 ZV (f1k 1l + f2kl 0) + �2kl ZV f0 0� 0� = 0: (24)Thus, the solvability 
ondition of (14) is�MilMkj ZY ZV vi�j 0�+Mil ZY ZV �vi 1k +�1k�i ��ZV �1k�i�� �0 �ZV f1k�i�� 0���2kl ZY ZV �ZV f0 0� 0� = 0: (25)As explained before, this equation has to be symmetrized with respe
t to k and l. This yieldsa quadrati
 matrix equation for the unknown M , whi
h readsMkjDSjiMil +BkiMil +MkiBil = Akl;or MDSM +BM +MB� = A; (26)where Akl = �2kl ZY ZV ZV f0(y; v0; v) 0(y; v) 0�(y; v0) dy dv dv0; (27)Bki = ZY ZV �vi 1k +�1k�i ��ZV �1k�i�� �0�ZV f1k�i�� 0�; (28)and DS denotes the symmetri
al part of D, whi
h is given by the Kubo Formula (see [8, 19,27℄) Dij = � ZY ZV vi�j 0�: (29)Equation (26) is a Ri

ati Equation, whi
h is 
lassi
al in Control Theory. The followingtheorem, whi
h 
an be found in [26, pp. 225-235℄ or in [25℄, ensures that this equationadmits a unique symmetri
 positive de�nite solution.Theorem 2.1 Let D and A be symmetri
 de�nite positive square matri
es, and let B be asquare matrix of the same size. Let us 
onsider the Ri

ati matrix equationMDM +BM +MB� = A:Then there exists a unique symmetri
 de�nite positive solution M of this equation.9



Remark 2.2 In order to 
ompare the results given by asymptoti
 expansions and two-s
ale
onvergen
e, it is worth noti
ing that Bki = �Ji�xk (0) :This result will be proved in se
tion 6. In the 
ase where rxJ(0) = 0, it allows us to have asimple expression for M . Indeed, M solves a Ri

ati Equation now of the formMDSM = Aand M is therefore given byM = DS � 12 �DS 12ADS 12� 12 DS � 12 : (30)2.4 The " order equationFinally, equation (15) yields the �rst order 
orre
tor to the eigenvalue of our initial problem(1). Equation (15) 
an be written asv � ry�3 +�0�3 = ZV �0�3 + �0 ZV f0�3 + ��vi�1i + �1 ZV f0 0� :The Fredholm alternative shows that this equation admits a solution if and only ifZY ZV vi�1i 0� = �1 ZY ZV �ZV f0 0� 0�;whi
h eventually gives us the following 
orre
tion to the leading eigenvalue�1 = ZY ZV vi�1i 0�ZY ZV �ZV f0 0� 0� : (31)We have seen that �1i =Mij�j +  1i , and therefore, as  1i = �xi (x = 0),�1 = �Mij ZY ZV vi�j 0� + ZY ZV vi 1i  0�ZY ZV �ZV f0 0� 0� = Tr �MD�+ 
� ;where � and 
 are given by (34).2.5 Results of the asymptoti
 expansionWe will not try here to justify the full ansatz (11) for the eigenve
tor �". Instead we willrigorously justify the result of exponential 
on
entration postulated in (11) in the followingse
tions with a di�erent method, and will show that the expressions for M , �0, �0, and �1predi
ted by the asymptoti
 expansion are indeed 
orre
t. Let us mention that we will notseek any justi�
ations for the higher order terms �1k , �2kl, and �3. Indeed, it is shown in [4℄in the similar 
ase of di�usion equations that the error term r" de�ned by�"(x; v) = exp��Mx � x2" ���0 �x" ; v�+ xk�1k �x" ; v�+ xkxl�2kl �x" ; v�+ "�3 �x" ; v��+ r"(32)is of order p" in any Lp norm, and hen
e of the same order as the �rst 
orre
tor term xk�1k.10



3 Main resultsThis se
tion is devoted to the statement of our main result on the homogenization 
on-
entration in transport. Throughout this paper, the heterogeneous and periodi
 transporteigenve
tors are normalized in su
h a way that their L2-norm in the phase spa
e is 1,k �" kL2(
�V )= 1 and k  kL2(Y�V )= 1:We also normalize  � in su
h a way that for all x 2 
,ZY ZV ZV f(x; y; v0; v) (x; y; v0) �(x; y; v) dydvdv0 = 1:3.1 The homogenized problemWe introdu
e the homogenized eigenvalue problem for the transport equation (1)8<: �div �Dru�+ �Az:z + 
�u+ z � �B�ru� = ��uu 2 H1(RN ) \ L2z(RN ); (33)where L2z(RN ) = fu(z) 2 L2(RN ); jzju(z) 2 L2(RN )g. This homogenized problem is a
onve
tion-di�usion problem, whi
h is posed on the whole spa
e RN . The homogenized
oeÆ
ients are given by the following formulas8>>>>>>>>>>>>><>>>>>>>>>>>>>:
� = ZY ZV ZV f(0; y; v0; v) (0; y; v0) �(0; y; v) dydvdv0;
 = ZY ZV v � rx (0; y; v) �(0; y; v) dydv;Aij = �2ij ZY ZV ZV f(0; y; v0; v) (0; y; v0) �(0; y; v) dydvdv0;Bij = ZY ZV vj�xi(  �)(0; y; v) dydv;Dij = � ZY ZV vi �(0; y; v)�j(y; v) dydv; (34)

where the fun
tions �j(y; v) are de�ned as the solutions of the 
ell problems (22), i.e.,8>>>><>>>>: v � ry�j +�(0; y; v)�j = ZV �(0; y; v0; v)�j(y; v0) dv0+�1(0) ZV f(0; y; v0; v)�j(y; v0) dv0 � vj (0; y; v)y 7! �j(y; v) Y -periodi
: (35)A

ording to the Fredholm alternative, sin
e J(0) = 0, equation (35) has a solution �j , whi
his unique up to the addition of a multiple of  (x = 0). Be
ause J(0) = 0, one 
an easily
he
k that adding su
h a multiple of  does not 
hange the homogenized 
oeÆ
ients Dij .Remark 3.1 Equation (33) is well known in quantum me
hani
s where it is 
alled the har-moni
 os
illator equation. The �rst eigenve
tor of (33) is expli
itly given by (see e.g. [13℄)u1(z) = exp��Mz � z2 � ;where, after some algebra, M is the solution of the same Ri

ati Equation (26) as in theprevious se
tion. Moreover, the 
orresponding �rst eigenvalue is�1 = Tr �MD�+ 
� ;11



and 
orresponds to the �rst order eigenvalue 
orre
tor given by our asymptoti
 expansion.Re
all that remark 2.2 states that B = rxJ(0) where J(x) is de�ned by (9). Therefore,if we assume that rxJ(0) = 0, the 
onve
tion term in (33) disappear and M is given by theexpli
it formula (30).It is well known that the spe
tral problem (33) is 
ompa
t in L2(RN ) be
ause of the pos-itive quadrati
 potential. Remark however that (33) is usually not self-adjoint. Therefore itsspe
trum is made of at most a 
ountable number of �nite multipli
ity eigenvalues (possibly
omplex-valued). We label the eigenvalues of (33) by in
reasing order of their real parts (withrepeated multipli
ity). Sin
e (33) satis�es a maximum prin
iple, by the Krein-Rutman the-orem it admits a �rst eigenvalue whi
h is real, positive, simple, and su
h that its eigenve
tor
an be 
hosen positive in RN . In parti
ular, this implies that the spe
trum of (33) is neverempty. Of 
ourse, if (33) is self-adjoint (in the 
ase where B = rJ(0) = 0), then it admits a
ountable in�nite number of real eigenvalues.3.2 Main resultThe main result of this paper, whi
h justi�es many of the homogenization and 
on
entrationfeatures presented in the previous se
tion, is as follows.Theorem 3.2 We assume that (H1)-(H4) hold. Let (�1(x);  (x; y; v)) be the �rst positiveeigenpair of (7). Let (�m)1�m�m1 and (�"m)m be the eigenvalues (with repeated multipli
ityand in in
reasing order) of the homogenized problem (33) and the original problem (1), re-spe
tively. Then, for any m 2 f1; :::;m1g and for suÆ
iently small ", there exists an mtheigenvalue �"m of (1) su
h that �"m = �1(0) + "�m + o(");and, if �"m is a 
orresponding normalized eigenve
tor of (1), then it satis�es�"m(x; v) =  �x; x" ; v�u"m� xp" ; v� ; (36)where, up to a subsequen
e, "N=4u"m(z; v) (properly extended to RN � V ) 
onverges to um(z)strongly in L2(RN � V ), and um is an eigenve
tor asso
iated to �m of the homogenized
onve
tion-di�usion eigenvalue problem (33). Moreover, in the original domain we have thefollowing 
onvergen
elim"!0 


�"m(x; v)� "�N=4 �0; x" ; v�um� xp"�


L2(
�V ) = 0: (37)Remark 3.3 The 
oeÆ
ient "N=4 
omes from the s
aling k�"mkL2(
�V ) = 1 whi
h impliesthat k"N=4u"mkL2(RN�V ) is of order one.The 
onvergen
e of the eigenve
tors is obtained up to a subsequen
e be
ause of the possiblemultipli
ity of the limit eigenvalue. Sin
e the �rst eigenvalue �1 is simple, the whole sequen
e(�"1; u"1) 
onverges (and not merely a subsequen
e).In the sequel, we shall use the following 
onvenient notation: for a fun
tion g(x; y; v),Y -periodi
 with respe
t to the fast variable y, we de�neg"(x; v) = g �x; x" ; v� :To prove theorem 3.2, we �rst establish that the spe
tral problem (1) is equivalent to anotherproblem obtained by fa
torization. 12



Proposition 3.4 Let  (x; y; v) be the positive eigenve
tor of (7). Then, the linear operator8<: L2(
� V ) �! L2(
� V )�(x; v) 7�! u(x; v) = �(x; v) "(x; v) ; (38)is 
ontinuous and has a 
ontinuous inverse. With this 
hange of unknowns, the problem (1)is equivalent to the following spe
tral problem8<: v � ru" + �"u" + 1"Q"(u") + �1(x) � �1(0)" F "(u") = �"F "(u") in 
� Vu" = 0 on ��; (39)where we have de�ned8>>>>>>>>>>>>><>>>>>>>>>>>>>:
�" = �" � �1(0)"Q"(u)(x; v) = u(x; v) "(x; v) ZV �"1(x; v0; v)  "(x; v0) dv0� 1 "(x; v) ZV �"1(x; v0; v) "(x; v0)u(x; v0) dv0F "(u)(x; v) = 1 "(x; v) ZV f"(x; v0; v) "(x; v0)u(x; v0) dv0�"(x; v) = v � (rx )"(x; v) "(x; v) ; (40)

with the notation �1(x; y; v0; v) = �(x; y; v0; v) + �1(x)f(x; y; v0; v);��1(x; y; v0; v) = ��(x; y; v0; v) + �1(x)f�(x; y; v0; v): (41)Proof. The result is obtained by straightforward algebra. Noti
e that the positivity andboundedness of  that we stated in Proposition 1.7 are required to justify the 
hange ofunknown fun
tion (38).We next introdu
e another 
hange of variables, whi
h will be of 
ru
ial importan
e to displaythe 
on
entration e�e
ts, 8<: 
 �! 
" = "�1=2
x 7�! z = xp" (42)For ea
h fun
tion g(x; y; v), Y -periodi
 with respe
t to the fast variable y, we introdu
e thenotation ~g"(z; v) = g�p"z; zp" ; v� ; with z = xp" 2 
":We similarly de�ne the operators ~Q" and ~F " fromQ" and F ". For instan
e, with this notationwe have r( ")(x; v) = �rx + 1"ry ��x; x" ; v� = �(rx )" + 1" (ry )"� (x; v);andr( ~ ")(z; v) = �p"rx + 1p"ry ��p"z; zp" ; v� = �p"^(rx )" + 1p" ^(ry )"� (z; v):A

ordingly we obtain the following result. 13



Proposition 3.5 With the 
hange of variables (42), the spe
tral equation (39) be
omes8<: 1p"v � r~u" + ~�"~u" + 1" ~Q"(~u") + �1(p"z)� �1(0)" ~F "(~u") = �" ~F "(~u") in 
" � V;~u" = 0 on �"�: (43)The spe
tral equation (43) is re
ast asS"~u" = 1�" + � ~u": (44)Here, the 
ompa
t (see [2, 6℄) operator S" is de�ned byS" : ( L2(
" � V ) �! L2(
" � V )~q(z; v) 7�! ~u"(z; v); (45)where ~u" denotes from now on the solution of the following sour
e problem asso
iated to (39)8<: 1p"v � r~u" + ~�"~u" + 1" ~Q"(~u") + ��1(p"z)� �1(0)" + �� ~F "(~u") = ~F "(~q) in 
" � V~u" = 0 on �"�: (46)Noti
e the presen
e of a positive 
oeÆ
ient � > 0 in equations (44) and (46). This 
oeÆ
ientwill be useful in our energy estimates and is harmless be
ause it simply shifts the eigenvaluesof (43) to the right. The sequen
e ~u" is de�ned on domains 
" � V that depend on ". Toestablish a 
onvergen
e proof, we need to extend ~u" to RN � V as follows. We assume that~u" solves v � r~u" + e 1" ~u" = 0 on (RN n
")� V; (47)and impose the 
ontinuity of ~u"(x; v) a
ross the interfa
e �
" � V . We also assume that noparti
les arrive from in�nity, i.e., ~u"(x; v)! 0 as jxj ! 1.Theorem 3.6 Under the hypotheses of Theorem 3.2, the sequen
e ~u"(z; v) of solutions of(46) 
onverges strongly in L2(RN � V ) to u(z), the solution of the following homogenizedproblem 8<: �div �Dru�+ �Az:z + �� + 
�u+ z � �B�ru� = F (~q);u 2 H1(RN ) \ L2z(RN ); (48)where D, A, B, �, and 
 are given in (34) andF (~q) = ZY ZV ZV f(0; y; v0; v) (0; y; v0) q(z; v0) �(0; y; v) dydvdv0: (49)This theorem will be proved in se
tions 4 and 5.3.3 Proof of theorem 3.2We are now in a position to prove our main result. Let us de�ne the homogenized operatorS by 14



S : ( L2(RN � V ) �! L2(RN � V )~q(z; v) 7�! u(z);where u is the solution of the homogenized equation (48). Then S is a 
ompa
t operatorbe
ause H1(RN )\L2z(RN ) is 
ompa
tly embedded in L2(RN ). We dedu
e from Theorem 3.6that S" 
onverges to S pointwise in L2(RN � V ), in the sense that for all q 2 L2(RN � V ),then S"(q)! S(q) in L2(RN � V ) strongly.Furthermore, as a 
onsequen
e of Corollary 4.3, S" 
onverges 
ompa
tly to S, in thesense that, for every bounded sequen
e ~q" in L2(RN � V ), S"(~q") is relatively 
ompa
t inL2(RN �V ). The following 
lassi
al result in operator theory, re
alled here for 
ompleteness(see [5, 10℄), allows us to 
on
lude that the spe
trum of S" 
onverges to that of S. Eventually,estimate (37) is due to the spe
ial form of the eigenfun
tions of the homogenized problem(33), whi
h are exponentially de
aying away from the 
on
entration point 0, thus allowingto repla
e  (x; x="; v) by  (0; x="; v) in the fa
torization (36).Theorem 3.7 Let X be a Bana
h spa
e, and (Tn)n2N a sequen
e of bounded operators inL(X) 
onverging 
ompa
tly to T . Let �(T ) and �(Tn) be the spe
tra of T and Tn respe
tively.Let � be an isolated eigenvalue of T of �nite (algebrai
) multipli
ity m and let � be a 
losedJordan 
urve in the 
omplex plane en
losing � and leaving outside the rest of the spe
trumof T . Then, for suÆ
iently large values of n, � en
loses exa
tly m eigenvalues of Tn (withrepeated algebrai
 multipli
ity).Moreover, if �n is a sequen
e of eigenvalues of Tn 
onverging to �, and un is a sequen
eof normalized asso
iated eigenve
tors, then, up to a subsequen
e, un 
onverges to a limit uin X whi
h is an eigenve
tor of T asso
iated with �.4 A priori estimatesThe �rst step in the proof of Theorem 3.6 is to derive a priori energy estimates for the sour
eproblem (46). These estimates are as follows.Lemma 4.1 Let ~u" be the unique solution of (46). Then there exists a positive 
onstant Cindependent of " and ~q, su
h thatk ~u" kL2(
"�V ) + k v � r~u" kL2(
"�V ) +


jzj ZV ~u"


L2(
"�V )+ 1p"


~u" � ZV ~u"


L2(
"�V ) + 1" 14 k ~u" kL2(�"+;jv�nj) � C k ~q kL2(
"�V ) : (50)where L2(�"+; jv � nj) is the tra
e spa
e of fun
tions u satisfying R�"+(v � n) juj2d� < 1 with�"+ = f(x; v) 2 �
" � V j v � n(x) > 0g and d� = dvd� (d� being the surfa
e measure on�
").Proof. We multiply equation (46) by ~u" ~ " ~ �", taking into a

ount the notation (40), andintegrate over 
" � V to obtainZ
" ZV 1p"v � r~u"~u" ~ " ~ �" + v � (℄rx )"(~u")2 ~ �" + 1" ~Q"(~u")~u" ~ " ~ �"+��1(p"z)� �1(0)" + �� ~F "(~u")~u" ~ " ~ �" dzdv = Z
" ZV ~F "(~q)~u" ~ " ~ �" dzdv: (51)
15



Let I1 = 1p" Z
" ZV v � r~u"~u" ~ " ~ �" dzdv. Then we haveI1 = 1p" Z�"+(v � n)(~u")2 ~ " ~ �" dzdv � 1p" Z
" ZV v � r(~u" ~ " ~ �")~u" dzdv= 1p" Z�"+(v � n)(~u")2 ~ " ~ �" dzdv � 1p" Z
" ZV v � r~u"~u" ~ " ~ �" dzdv� 1p" Z
" ZV v � r( ~ " ~ �")(~u")2 dzdv= 12p" Z�"+(v � n)(~u")2 ~ " ~ �" dzdv � 12p" Z
" ZV v � r( ~ " ~ �")(~u")2 dzdv= 12p" Z�"+(v � n)(~u")2 ~ " ~ �" dzdv � 12 Z
" ZV v � (r̂x  �)"(~u")2 dzdv� 12" Z
" ZV v � (r̂y  �)"(~u")2 dzdv:Upon multiplying the in�nite medium equation (7) by  � and subtra
ting the adjoint equa-tion (8) multiplied by  , we getv � ry(  �) =  � ZV �1 dv0 �  ZV ��1 �dv0;where �1 and ��1 are de�ned in (41). Thus, it yields the following expression for I1I1 = 12p" Z�"+(v � n)(~u")2 ~ " ~ �" dzdv � 12 Z
" ZV v � r̂x  �"(~u")2 dzdv� 12" Z
" ZV (~u")2� ~ �" ZV ~�"1 ~ "dv0 � ~ " ZV ~��"1 ~ �"dv0� dzdv:Let I2 = 1" Z
" ZV ~Q"(~u")~u" ~ " ~ �" dzdv. Then,I2 = 1" Z
" ZV �(~u")2 ~ �" ZV ~�"1 ~ "dv0 � ~u" ~ �" ZV ~�"1 ~ "~u"dv0� dzdv:We dedu
e thatI1 + I2 = 12p" Z�"+(v � n)(~u")2 ~ " ~ �" dzdv � 12 Z
" ZV v � r̂x  �"(~u")2 dzdv+ 12" Z
" ZV �(~u")2 ~ �" ZV ~�"1 ~ "dv0�2~u" ~ �" ZV ~�"1 ~ "~u"dv0 + (~u")2 ~ " ZV ~��"1 ~ �"dv0� dzdv;and the third term in I1 + I2 is equal to12" Z
" ZV ZV ~u"(z; v)2 ~ �"(z; v)~�"1(z; v0; v) ~ "(z; v0)�2~u"(z; v) ~ �"(z; v)~�"1(z; v0; v) ~ "(z; v0)~u"(z; v0)+~u"(z; v0)2 ~ "(z; v0)~��"1(z; v; v0) ~ �"(z; v) dzdvdv0= 12" Z
" ZV ZV ~ �"(z; v) ~ "(z; v0)~�"1(z; v0; v) j~u"(z; v)� ~u"(z; v0)j2 dzdvdv0:At last, we �ndI1 + I2 = 12p" Z�"+(v � n)(~u")2 ~ " ~ �" dzdv � 12 Z
" ZV v � r̂x  �"(~u")2 dzdv+ 12" Z
" ZV ZV ~ �"(z; v) ~ "(z; v0)~�"1(z; v0; v) j~u"(z; v)� ~u"(z; v0)j2 dzdvdv0; (52)16



and it is straightforward to 
he
k thatI1 + I2 � �C Z
" ZV (~u")2 dzdv + C2" Z
" ZV j~u" � ZV ~u"j2 dzdv + Cp" Z�+" (v � n)(~u")2: (53)Let I3 = Z
" ZV v �℄rx "(~u")2 ~ �" + � ~F "(~u")~u" ~ " ~ �" dzdv. Adding and subtra
ting the
ontribution � R
" RV (~u")2 ~ �" RV ~f" ~ " yieldsI3 = Z
" ZV �v �℄rx " + � ZV ~f" ~ "dv0� ~ �"(~u")2+�~u" ~ �"�ZV ~f" ~ "~u"dv0 � ~u" ZV ~f" ~ "dv0� dzdv: (54)Sin
e ~f", ~ " and ~ �" are bounded from below by positive 
onstants, 
hoosing a suÆ
ientlylarge value of � (whi
h is independent of " and q), we 
an estimate the �rst term in I3 frombelow by C(�) Z
" ZV (~u")2dzdv: (55)The se
ond term in I3 is given by� Z
" ZV ~u" ~ " ~ �" � ~F "(~u")� ~u" ~F "(1)� dzdv= � Z
" ZV ~u" ~ " ~ �"� ~F "(~u" � ZV ~u")� ~F "(1)(~u" � ZV ~u")� dzdv:Its sign is not known a priori, but this term is bounded in absolute value byC k ~u"kL2(
"�V )


~u" � ZV ~u"


L2(
"�V ): (56)Let us de�ne I4 = R
" RV "�1(�1(p"z) � �1(0)) ~F "(~u")~u" ~ " ~ �" dzdv. A

ording to thehypotheses on the fun
tion x 7! �1(x), it is 
lear that �1(x) � �1(0) is bounded frombelow on 
 by a quadrati
 positive de�nite form, i.e.,9C > 0, 8x 2 
, �1(x)� �1(0) � Cx � x:Sin
e ~f", ~ " and ~ �" are also bounded from below by positive 
onstants, and V is boundeda

ording to (H1), we dedu
e thatI4 � C Z
" ZV jzj2~u" ~ �" �ZV ~u" ~f" ~ "dv0� dzdv � C Z
" �jzj ZV ~u"dv0�2 dz: (57)Finally, the right-hand side in (51) is equal to R
" RV ~u" ~ �" �RV ~f" ~ "~q� dzdvdv0, hen
e isbounded by C k ~u" kL2(
"�V )k ~q kL2(
"�V ) : (58)Summing up the estimates in (53), (55), (56), (57), and (58), we dedu
e thatC k ~u" k2L2(
"�V ) +C" 


~u" � ZV ~u"


2L2(
"�V ) + Cp" k ~u" k2L2(�+" ;jv�nj)�C k ~u" kL2(
"�V ) 


~u" � ZV ~u"


L2(
"�V ) + C


jzj ZV ~u"


2L2(
"�V )� C k ~u" k2L2(
"�V )k ~q kL2(
"�V ) : (59)17



Consequently, we haveC" �


~u" � ZV ~u"


� " k ~u" k�2 + (C � C") k ~u" k2 +C


jzj ZV ~u"


2 � C k ~u" k k ~q kThis implies �rst that k ~u" kL2(
"�V )� C k ~q kL2(
"�V ), and then,


jzj ZV ~u"


L2(
"�V ) � C k ~q kL2(
"�V ) :Next we observe thatC �k ~u" k �


~u" � ZV ~u"


�2 +�C" � C�


~u" � ZV ~u"


2 � C k ~u" k k ~q k;whi
h gives us 1p"


~u" � ZV ~u"


L2(
"�V ) � C k ~q kL2(
"�V ) :Finally, the bound for k v � r~u" kL2(
"�V ) is dedu
ed from equation (46) sin
ev � r~u" = �p"v �℄rx "~ " ~u" � 1p" ~Q"(~u")���1(p"z)� �1(0)p" +p"�� ~F "(~u") +p" ~F "(~q):The �rst and fourth term on the right-hand side are easily bounded by p"C k ~u" k andp"C k ~q k and hen
e by p"C. Sin
e ~Q"(~u") = ~Q"(~u" � RV ~u"), the se
ond term is boundedby 1p"C k ~u" � RV ~u" k and hen
e by C. Sin
e �1(x)� �1(0) is bounded on 
 by Cjxj, thethird term is bounded by C k jzj RV ~u" k +p"C k ~u" k and hen
e by C. This 
on
ludes theproof of the lemma.We now extend ~u" to RN as in the pre
eding se
tion by imposing that it solve (47), thatit be 
ontinuous a
ross the interfa
e �
" � V , and that ~u"(x; v) ! 0 as jxj ! 1. The verystrong absorption in RN n
" allows us to prove by integration along 
hara
teristi
s that theabove a priori estimates also hold for the extended fun
tion ~u" (remark that we need theestimates on �+" to establish the following 
orollary). Thus we obtainedCorollary 4.2 Let ~u" be de�ned on RN � V as above. Then we havek ~u" kL2(RN�V ) + k v � r~u" kL2(RN�V ) +


jzj ZV ~u"


L2(RN�V )+ 1p"


~u" � ZV ~u"


L2(RN�V ) � C k ~q kL2(
"�V ) : (60)We 
on
lude this se
tion by stating an important result, whi
h derives from the above apriori estimates,Corollary 4.3 Let ~q" be a bounded sequen
e of L2(RN � V ). Let ~u" be the solution of (46),where ~q is repla
ed by ~q", and then extended to RN � V as above. Then, the sequen
e ~u" isrelatively 
ompa
t in L2(RN � V ).Proof. The previous a priori estimates still hold when ~q is repla
ed by ~q". Therefore,there exists C > 0 su
h thatk ~u" kL2(RN�V ) + k v � r~u" kL2(RN�V ) +


jzj ZV ~u"


L2(RN�V ) � C:Using lemma 1.8, we dedu
e that the sequen
e RV ~u" is relatively 
ompa
t. But we also knowthat k ~u" � RV ~u" kL2(RN�V )� Cp". This proves the relative 
ompa
tness of the sequen
e~u". 18



5 Convergen
e proofThe aim of this se
tion is to prove Theorem 3.6. It is based on the use of the two-s
ale
onvergen
e te
hnique [1, 2℄.We �rst introdu
e some notation and denote by C1# (Y ) the spa
e of in�nitely di�erentiablefun
tions in RN that are Y -periodi
, and L2#(Y ) (respe
tively H1#(Y )) the 
ompletion ofC1# (Y ) for the norm of L2#(Y ) (respe
tively of H1#(Y )). Sin
e our fun
tions os
illate withperiod p" on RN , our de�nition of two-s
ale 
onvergen
e is here:De�nition 5.1 A sequen
e of fun
tions g" in L2(RN � V ) is said to two-s
ale 
onverge toa limit g in L2(RN � Y � V ) if, for any fun
tion  in D(RN � V ; C1# (Y )), we havelim"!0 ZRN ZV g"(x; v) �x; xp"; v� dxdv = ZRN ZY ZV g(x; y; v) (x; y; v) dxdydv:We also re
all here an important result of two-s
ale 
onvergen
eTheorem 5.2 Let g" be a bounded sequen
e in L2(RN � V ). Then there exists a limit g inL2(RN � Y � V ) su
h that, up to a subsequen
e, g" two-s
ale 
onverges to g.The a priori estimates obtained for ~u" will allow us to prove a result of two-s
ale 
onvergen
efor ~u", and to guess what form its limit should have. This is the goal of the next proposition.Proposition 5.3 Let ~u" be a sequen
e in L2(RN � V ) su
h that there exists a 
onstant Cindependent of " satisfying the following energy estimatek ~u" kL2(RN�V ) + k v � r~u" kL2(RN�V ) + 1p"


~u" � ZV ~u"


L2(RN�V )+


jzj ZV ~u"


L2(RN�V ) � CThen, there exists u0(z) in H1(RN ) \ L2z(RN ) and u1(z; y) in L2(RN � V ;H1#(Y )) su
hthat, up to a subsequen
e, ~u"(z; v) strongly 
onverges to u0(z) in L2(RN ), v � r~u" two-s
ale
onverges to v � rzu0 + v � ryu1, and 1p" (~u" � RV ~u") two-s
ale 
onverges to u1 � RV u1.The proof of this proposition follows from minor modi�
ations of that of [2, Proposition 5.3℄.We dedu
e the following result from the above proposition.Proposition 5.4 Assume that hypotheses (H1)-(H4) hold. Let ~u" be the unique solution to(46) extended to RN by imposing that it solve (47), that it be 
ontinuous a
ross the interfa
e�
" � V , and that ~u"(x; v) ! 0 as jxj ! 1. With the notation of Proposition 5.3, u1 isgiven by u1(z; y; v) = NXj=1 �u0�zj (z) �j(y; v);where �j(y; v) is the unique solution of( v � ry�j +Q(0; �j) = �vj in Y � V;y 7! �j(y; v) Y � periodi
; (61)up to an additive 
onstant. The operator Q(x; �) is de�ned byQ(x; u)(y; v) = u(y; v) (x; y; v) ZV �1(x; y; v0; v) (x; y; v0) dv0� 1 (x; y; v) ZV �1(x; y; v0; v) (x; y; v0)u(y; v0) dv0;19



and the adjoint operator Q�(x; �) byQ�(x; u)(y; v) = u(y; v) (x; y; v) ZV �1(x; y; v0; v) (x; y; v0) dv0� (x; y; v) ZV ��1(x; y; v0; v) 1 (x; y; v)u(y; v0) dv0:Proof. Let �(x; y; v) be a smooth Y -periodi
 fun
tion with 
ompa
t support in its �rstvariable. Multiplying (46) by p"�(z; zp" ; v) and integrating over RN � V yieldsZRN ZV v � r~u"� dzdv + ZRN ZV ~Q"( ~w")� dzdv = p"ZRN ZV ~S"�; dzdv; (62)where ~w" = ~u"�RV ~u"p" , and where the sour
e term is~S" = �~�"~u" ���1(p"z)� �1(0)" + �� ~F "(~u") + ~F "(~q):The di�eren
e �1(p"z)��1(0)p" is 
learly bounded in 
" by Cp"z �z. Thus, sin
e � has 
ompa
tsupport, the right-hand side in (62) 
onverges to 0 as " goes to 0. The �rst term in (62)
onverges to RRN RY RV (v � rzu0 + v � ryu1)� dzdydv as " goes to 0.To study the 
onvergen
e of the se
ond term, we need to introdu
e some notation. We de�ne~ "0(z; v) =  �0; zp" ; v� ;and similarly ~ �"0 , ~�"10, f"0 , and the operators ~Q"0 and ~F "0 . By Lips
hitz regularity of allphysi
al parameters, we dedu
e that��� ZRN ZV ( ~Q" � ~Q"0)( ~w")� dzdv��� � C(�)p" k ~w" kL2(RN�V ) :Introdu
ing the adjoint s
attering kernel ~Q�"0 , we obtainZRN ZV ~Q"( ~w") � dzdv = ZRN ZV ~w" ~Q�"0 (�) dzdv +O(p"):Next we 
he
k that ~Q�"0 (�(z; zp" ; v)) two-s
ale 
onverges to Q�(0; �)(z; y; v) and thatlim"!0 k ~Q�"0 (�(z; zp"; v)) kL2(RN�V )=k Q�(0; �)(z; y; v) kL2(RN�V ) :This last property allows us to pass to the limit in a produ
t of two weakly 
onvergingsequen
es [1℄. Sin
e w" two-s
ale 
onverges to u" � RV u", we get in the limit thatZRN ZY ZV (v � rzu0 + v � ryu1)� dzdydv + ZRN ZY ZV Q(0; u1 � ZV u1)� dzdydv = 0:Thus u1 is a solution of the following equation( v � ryu1 +Q(0; u1) = �v � rzuoy 7! u1(z; y; v)Y � periodi
:Sin
e u0 depends only on z, we dedu
e that u1(z; y; v) =PNj=1 �u0�zj (z)�j(y; v), where �j is asolution of the following equation( v � ry�j +Q(0; �j) = �vjy 7! �j(y; v)Y � periodi
:20



It is easy to see that �j = �j 0, and therefore, thanks to hypothesis (H4), this last equationis solvable, and has a unique solution, up to an additive 
onstant. This 
on
ludes the proofof our proposition.Proposition 5.5 With the same hypotheses as in the previous proposition, the sequen
e~u"(z; v) 
onverges strongly in L2(RN � V ) to u0(z) 2 H1(RN ), solution of the followingproblem8<: �div �Dru0�+ �Az:z + 
 + ���u0 + �div �B�z u0�� div(J)(0)u0� = F (~q)u0 2 H1(RN ) \ L2z(RN ); (63)where the 
oeÆ
ients are de�ned in (34) and (49).Proof. Let us �rst de�ne, for 1 � i � n, the adjoint 
ell problem at x = 0( �v � ry(  ���i) +Q�(0;   ���i) = vi  �y 7! ��i(y; v)Y � periodi
; (64)whi
h admits a unique solution, up to an additive 
onstant, sin
e RY RV vi  �dy dv = 0 atx = 0. Let �(z) be a smooth fun
tion with 
ompa
t support in RN . We de�ne�"(z; v) = �(z) +p" NXj=1 ���zj (z) ��j � zp" ; v� :Upon multiplying (46) by �" ~ " ~ �" and integrating over RN � V , we obtainZRN ZV 1p"v � r~u"�" ~ " ~ �" + ZRN ZV ~�"~u"�" ~ " ~ �" + ZRN ZV 1" ~Q"(~u")�" ~ " ~ �"+ ZRN ZV ��1(p"z)� �1(0)" + �� ~F "(~u")�" ~ " ~ �" = ZRN ZV ~F "(~q)�" ~ " ~ �"; (65)Denoting these integrals by J"i in the same order, (65) readsJ"1 + J"2 + J"3 + J"4 = J"5 :We now pass to the limit in ea
h term J"i . The right-hand side is given byJ"5 = ZRN ZV ZV f�p"z; zp" ; v0; v� �p"z; zp" ; v0�~q(z; v0) ��p"z; zp" ; v���h�(z) +p" NXj=1 ���zj ��j� zp" ; v�idzdvdv0;By Lips
hitz regularity of the fun
tions f ,  , and  �, we haveJ"5 = ZRN ZV ZV f�0; zp"; v0; v� �0; zp"; v0�~q(z; v0) ��0; zp" ; v��(z) dzdvdv0 + C(�)p";Thus, it 
onverges toJ5 = ZRN ZY ZV ZV f (0; y; v0; v)  (0; y; v0) ~q(z; v0) � (0; y; v) �(z) dzdvdv0:21



The fourth term isJ"4 = ZRN ZV ZV ��1(p"z)� �1(0)" + �� f �p"z; zp" ; v0; v� �p"z; zp" ; v0� ~u"(z; v0)�(z) ��p"z; zp" ; v� dzdvdv0+p"ZRN ZV ZV ��1(p"z)� �1(0)" + �� f �p"z; zp" ; v0; v� �p"z; zp" ; v0� ~u"(z; v0) NXj=1 ���zj ��j ��p"z; zp" ; v� dzdvdv0;or, by Lips
hitz regularity,J"4 = ZRN ZV ZV ��1(p"z)� �1(0)" + �� ~u"(z; v0)�(z)f �0; zp" ; v0; v� �0; zp" ; v0� ��0; zp"; v� dzdvdv0 +O(p");and, thus, 
onverges toJ4 = ZRN ZY ZV ZV (�2ijzizj + �)f(0; y; v0; v) (0; y; v0) �(0; y; v)u0(z)�(z) dzdydvdv0:The se
ond term isJ"2 = ZRN ZV v � rx  �p"z; zp" ; v� ~u"(z; v)�(z)(  �)�p"z; zp" ; v� dzdvdv0+p"ZRN ZV v � rx  �p"z; zp"; v� ~u"(z; v) NXj=1 ���zj ��j � zp"; v� (  �)�p"z; zp" ; v� dzdvdv0;or, by Lips
hitz regularity,J"2 = ZRN ZV v � rx  �0; zp"; v� ~u"(z; v)�(z)(  �)�0; zp" ; v� dzdvdv0 +O(p");and thus 
onverges toJ2 = ZRN ZY ZV v � rx (0; y; v) �(0; y; v)u0(z)�(z) dzdydv:Let us next deal with the sum J"1 + J"3 . After integrating by parts, J"1 
an be written as thesum of seven integrals8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

K"1 = � 1p" ZRN ZV ~u"v � rz� ~ " ~ �"K"2 = � ZRN ZV ~u"v � NXj=1rz ���zj ��j ~ " ~ �"K"3 = � 1p" ZRN ZV ~u"v � NXj=1 ���zjry��j ~ " ~ �"K"4 = � ZRN ZV ~u"v � �(r̂x  �)"K"5 = �1" ZRN ZV ~u"v � �(r̂y  �)"K"6 = �p" ZRN ZV ~u"v � NXj=1 ���zj ��j(r̂x  �)"K"7 = � 1p" ZRN ZV ~u"v � NXj=1 ���zj ��j(r̂y  �)"22



and J"3 is the sum of two integrals8>>><>>>: K"8 = 1" ZRN ZV ~Q"(~u")� ~ " ~ �"K"9 = 1p" ZRN ZV ~Q"(~u") NXj=1 ���zj ��j ~ " ~ �":We �rst observe that K"6 
onverges to 0. Now, re
alling that�v � ry(  �) +Q�(  �) = 0;for ea
h x 2 
, we have K"5 +K"8 = 0:Again, we use Lips
hitz regularity to show that K"2 and K"4 
onverge toK2 = � ZRN ZY ZV vi ��j(y; v) (0; y; v) �(0; y; v)u0(z) �2��zizj (z) dzdydvand K4 = � ZRN ZY ZV v � rx(  �)(0; y; v)u0(z)�(z) dzdydv= � ZRN div(J)(0)u0(z)�(z) dzdydvrespe
tively. Sin
e we assume that our data are of 
lass C2 with respe
t to the slow variablex, we have for instan
e8>><>>: (̂  �)"(z; v) =   ��0; zp" ; v�+p"z � rx(  �)�0; zp"; v�+O(")~Q�"(h)(z; v) = Q�(0; h)�0; zp" ; v�+p"z � rxQ�(0; h)�0; zp" ; v�+O("):Therefore, the sum K"1 +K"3 +K"7 +K"9 is equal to S"1p" + S"2 +O(p"), whereS"1 = ZRN ZV �~u"(z; v)v � (rz�)(z)(  �)�0; zp" ; v��~u"(z; v)v � NXj=1 ���z (zj)ry(��j  �)�0; zp" ; v�+~u"(z; v) NXj=1 ���zjQ�(0; ��j  �)( zp" ; v);and S"2 = ZRN ZV �~u"(z; v)v � (rz�)(z)z � rx(  �)�0; zp" ; v��~u"(z; v) NXj=1 ���zj (z)v � ry(��jz � rx(  �))�0; zp" ; v�+~u"(z; v) NXj=1 ���zj z � rx(Q�)(0; ��j  �)( zp" ; v)+~u"(z; v) NXj=1 ���zjQ�(0; ��jz � rx(  �)( zp" ; v):23



Re
alling that ��j is the solution of the adjoint 
ell problem (64)�v � ry(  ���j) +Q�(  ���j) = vj  �;we obtain that S"1 = 0. Next, S"2 
onverges toS2 = ZRN ZY ZV �vi �(  �)�xj (0; y; v) ���zi zju0(z)�u0(z) NXj=1 ���zj (z)v � ry(��jz � rx(  �))(0; y; v)+u0(z) NXj=1 ���zj (z)z � rx(Q�)(0; ��j  �)(y; v)+u0(z) NXj=1 ���zj (z)Q�(0; ��jz � rx(  �))(y; v)dzdydv:It is straightforward to verify that the last three terms in S2 vanish. After integrating byparts, we haveS2 = ZRN ZY ZV �zi(vi�xj (  �)zju0)�0 dzdydv = ZRN div �B�zu0��0 dz:Eventually, passing to the limit yieldsK2 + J2 + J4 + S2 +K4 = J5;or equivalently,� ZRN ZY ZV u0(z)vi��j(y; v) (0; y; v) �(0; y; v) �2��zi�zj dzdydv+ ZRN ZY ZV u0(z)v � rx (0; y; v) �(0; y; v)�(z) dzdydv+ ZRN ZY ZV ZV (�2ijzizj + �)f(0; y; v0; v) (0; y; v0) �(0; y; v)u0(z)�(z) dzdydv+ ZRN ZY ZV �div �B�z u0�� div(J)(0)u0��0 dzdydv= ZRN ZY ZV ZV f(0; y; v0; v) (0; y; v0) �(0; y; v)~q(z; v0)�(z) dzdydv: (66)
To 
on
lude the proof, we remark thatZY ZV vi��j  � = � ZY ZV vj  ��i = � ZY ZV vj ��i = Dji;whi
h we obtain by multiplying (64) by �j and integrating by parts. Thus, (66) is nothingbut the homogenized equation (63).6 Cell problems with driftThis se
tion is devoted to the so-
alled drift or �-exponential 
ell problems, whi
h allow usto prove that the asymptoti
 expansions and the two-s
ale method yield the same results.
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6.1 �-exponential 
ell problemsLet � be a 
onstant ve
tor in RN . We introdu
e the following �-exponential 
ell problem8<: v � ry � +� � = ZV �  � dv0 + �1(x; �) ZV f  � dv0y 7!  �(x; y; v) exp(� � y) Y � periodi
; (67)and its adjoint problem8<: �v � ry �� +� �� = ZV ��  �� dv0 + �1(x; �) ZV f�  �� dv0y 7!  �� (x; y; v) exp(�� � y) Y � periodi
: (68)It is 
onvenient to perform the following 
hange of unknowns '�(x; y; v) =  �(x; y; v) exp(��y)and '��(x; y; v) =  ��(x; y; v) exp(�� � y). They solve the following problems8<: v � ry'� � v � �'� +�'� = RV � '� dv0 + �1(x; �) ZV f '� dv0y 7! '�(x; y; v) Y � periodi
; (69)and 8<: �v � ry'�� � v � �'�� +�'�� = RV �� '�� dv0 + �1(x; �) ZV f� '�� dv0y 7! '��(x; y; v) Y � periodi
: (70)Su
h problems were studied in [7℄, where, among other properties, it is proved that, for anyx 2 
, the fun
tion � 7! �1(x; �) admits a unique 
riti
al point �0 (depending on x) whi
his a maximum and that r��1(x; �) = J(x; �) = ZY ZV v � �� : (71)Therefore, �0 is uniquely 
hara
terized by J(x; �0) = 0. Our previous notation J(x), de�nedby (9), 
oin
ides with J(x; 0) as de�ned in (71). Our assumption (H4) just means that forx = x0 = 0 we have �0 = 0.6.2 On a relation between the limit drift B and the 
ell drift JWe are now in position to prove a result announ
ed in remark 2.2, namely thatBij = �Jj�xi (x = 0):Deriving (69) with respe
t to �j yieldsv � ry��j'� � vj'� � v � ���j'� +���j'� = ZV ���j'� + �1(x; �) ZV f��j'�+��j�1 ZV f'�: (72)Multiplying by '��, and integrating on Y � V yields� ZY ZV vj'�'�� = ��j�1 ZY ZV �ZV f'��'��;25



or equivalently �J(�; x) = � ZY ZV v � �� = r��1 ZY ZV �ZV f �� �� : (73)Deriving (72) with respe
t to xi, we obtainv � ry�2xi�j'� � vj�xi'� � v � ��2xi�j'� +��2xi�j'� + �xi���j'� = ZV (��2xi�j'� + �xi���j'�)+�1 ZV (f�2xi�j'� + �xif��j'�) + �xi�1 ZV f��j'� + ��j�1 ZV (f�xi'� + �xif��j'�)+�2xi�j�1 ZV f'�:We write this equation at (x; �) = (x0; �0) = (0; 0). Therefore, assumptions (H3) and (H4)imply that the terms �xi�1 and ��j�1 vanish. Multiplying by '�� and integrating on Y �Vyields at x = 0ZY ZV �vj�xi'0'�0 +�1i ��j'0'�0 = ZY ZV (ZV �1i ��j'0)'�0 + �1(ZV f1i ��j'0)'�0+�2xi�j�1 ZY ZV ZV f'0'�0: (74)Remember our normalization for the eigenve
torsZY ZV ( �)2 dydv = 1 and ZY ZV (ZV f �) �� dydv = 1:With this 
onvention, deriving (73) with respe
t to xi yields��Jj�xi = �2�1�xi��j : (75)At (x; �) = (0; 0), we have obviously �xi'� =  1i by 
omparing (19) and (69). Similarly,
omparing (22) and (72), we have ��j'� = ��j . And thus, (74) and (75) yieldBij = ZY ZV (vj 1i +�1i�j � ZV �1i �j � �1 ZV f1i �j) 0� = �xiJj ;whi
h is the desired result.Remark 6.1 If we assumed, instead of (H4), the mu
h stronger assumption that the drift 
uxJ(x) vanishes in a neighborhood of x = 0, it would be possible to prove in a mu
h simpler way(avoiding �-exponential 
ell problems) that B = rxJ(0) = 0. Indeed, the following equation,similar to (22) is solvable in a neighborhood of x = 0,v � r�j +��j = ZV ��j + �1(x) ZV f�j � vj :Thus, di�erentiating this equation with respe
t to xi at x = 0 yieldsv � r�xi�j +��xi�j = ZV ��xi�j + �1 ZV f�xi�j � �1i�j + ZV �1i �j + �1 ZV f1i �j � vj 1i ;whi
h is also solvable by de�nition. Therefore, the solvability 
ondition of this last equationis satis�ed, and this pre
isely means that Bij = 0.26



6.3 On a generalization of the 
onvergen
e resultIn view of the properties of �1(x; �), it is natural to repla
e our hypotheses (H3) and (H4)by a new one, (H5), whi
h states that there exists a unique 
ouple (x0; �0) 2 
� RN , su
hthat (H5) � 7�! �1(x0; �) rea
hes its maximum at � = �0andx 7�! �1(x; �0) rea
hes its minimum at x = x0with rxrx�1(x0; �0) positive de�nite.Noti
e that (H3) and (H4) are indeed equivalent to (H5) when (x0; �0) = (0; 0).We now explain a new phenomenon o

urring when hypothesis (H3) and (H4) are notsatis�ed, but are repla
ed by (H5). Of 
ourse, we still need the hypotheses (H1), (H2).Instead of writing the �rst eigenfun
tion �" of (1) in the form�"(x; v) =  �x; x" ; v� u"(x; v);we introdu
e a new fa
torization and write�"(x; v) =  �0 �x; x" ; v� u"�0(x; v);where  �0 is the solution of (67). At (x0; �0), by de�nition we have J(x0; �0) = 0, and thusour whole study is still valid with this new fa
torization prin
iple. Remark that (H4) was of
ru
ial importan
e in the previous se
tion be
ause it was a Fredholm solvability 
ondition,but it is now repla
ed by J(x0; �0) = 0 whi
h is a 
onsequen
e of the �rst assumption in(H5). Therefore, we 
an prove thatu"�0(x; v) � exp��M(�0)2" (x � x0) � (x� x0� : (76)We skip the details for the sake of brevity. Formally, this indi
ates that, in the limit "! 0,the asymptoti
 behavior of �" is 
hanged and we have�"(x; v) � '�0 �x0; x" ; v� exp���0 � x� x0" � exp��M(�0)2" (x� x0) � (x� x0� ; (77)where '�0 is periodi
. Note that the approximation sign in (77) is purely formal and has noreal justi�
ation sin
e we 
an not pass easily from (76) to (77) by multiplying by a fun
tion,exp (��0 � (x� x0)="), whi
h is widely unbounded as " goes to zero. At least, (77) is anindi
ation that there is a 
ompetition between the 
on
entration term and the drift term andit seems to indu
e a new 
on
entration point for �". Formally, (77) suggests that this new
on
entration point x1 is given by x1 = x0 +M(�0)�1�0;but a more detailed analysis is required to �nd the pre
ise value of x1. Remark also that itis not 
lear how to 
he
k assumption (H5) on spe
i�
 examples of 
oeÆ
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