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Abstract

In this paper, we study the homogenization and localization of a spectral transport
equation posed in a locally periodic heterogeneous domain. This equation models the
equilibrium of particles interacting with an underlying medium in the presence of a
creation mechanism such as, for instance, neutrons in nuclear reactors. The physical
coefficients of the domain are e-periodic functions modulated by a macroscopic variable,
where ¢ is a small parameter. The mean free path of the particles is also of order .
We assume that the leading eigenvalue of the periodicity cell problem admits a unique
minimum in the domain at a point xo where its Hessian matrix is positive definite.
This assumption yields a concentration phenomenon around zo, as € goes to 0, at a
new scale of the order of /¢ which is superimposed with the usual ¢ oscillations of the
homogenized limit. More precisely, we prove that the particle density is asymptotically
the product of two terms. The first one is the leading eigenvector of a cell transport
equation with periodic boundary conditions. The second term is the first eigenvector of
a homogenized diffusion equation in the whole space with quadratic potential, rescaled
by a factor /z, i.e., of the form exp (—5- M (z — xo) - (x — x0)), where M is a positive
definite matrix. Furthermore, the eigenvalue corresponding to this second term gives a
first-order correction to the eigenvalue of the heterogeneous spectral transport problem.

Introduction

This paper is devoted to the homogenization of a transport equation in a locally periodic
medium. We consider the following eigenvalue problem for the transport equation

ev - V¢& (z,v) + X (z,v) ¢° (z,v) — / o (z,v',v) ¢° (z,v") dv'
1%
= /\E/ fo(z, v, v) ¢t (z,0")dv in @ xV (1)
%
=0 onT_ ={(z,0) €00 xV,v-n(z) <0}

where  is a bounded convex domain, V' is the velocity space, and the coefficients (or cross-
sections) are periodically oscillating functions defined by

Y (z,0) =% (m,g,v) , o (z,0',v) =0 (x,g,v',v) , fe(z, v 0) = f (x,g,v',v) . (2
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The e-scaling in front of the advection term in (1) means that the mean free path is of
the same order as the period £. In nuclear reactor physics, (1) is known as the criticality
problem for neutron transport. It expresses the balance between the production of neutrons
by fission (the right hand side of (1)) and its absorption or scattering in the reactor core and
leakage at the boundary (the left hand side of (1)). The unknowns are the neutron density
(or flux) ¢°(z,v) and the eigenvalue A* (the inverse of which is called multiplication factor),
which measures the balance between the production and removal of neutrons. Since only
positive densities have a physical meaning, the only relevant solution turns out to be the first
eigenvector (positive and unique up to a multiplicative constant). There are of course other
physical motivations for the study of (1), including photon transport, radiative transfer, and
semi-conductors.

Since the pioneering work of Larsen [19, 20, 21] (not to mention the previous physics
literature), many papers have been devoted to the time evolution version of problem (1)
(see e.g. [8], [12], [17], [16], [27]). The eigenvalue problem (1) was studied in [2], [7]. In
all these papers, there is always an assumption of pure periodicity, which means that the
coefficients in (2) depend solely on the fast variable y = z/e and not on the slow variable
z. In truth the papers [17] and [16] do not make precisely such an assumption but rather
assume that the resulting local behavior is not oscillating, i.e. depends on z but not on
y = x/e. In any case, the possibility of a strong coupling of the fast and slow variables
has never been explored in full generality with coefficients defined by (2). We address this
problem under a suitable structural assumption and show that the homogenized limit is very
different from that obtained in the purely periodic case. To explain our results we introduce
the cell eigenvalue problem which is defined for each = € Q) by

v-Vyp + X = / o dv' -|-A°°(:c)/ fdv' in Y
14 v
Y= ¢(w7yav) Y — periOdiC,

(3)

where (A (z),4(z,y,v)) is the first or leading eigencouple and Y = (0,1)N. Our structural
assumption is that the function z — A\*°(z) admits a unique minimum at zy €  and that its
Hessian matrix is positive definite at 5. We also make a no-drift assumption which amounts
to a phase-space symmetry condition (this assumption can be removed as was shown in
[7]). Our main result (see (32) for a formal asymptotic result and Theorem 3.2 for a precise
statement) is that, asymptotically as ¢ tends to zero, the first eigenfunction of (1) behaves
as

(4)

& (2,v) zzﬁ(azo,g,v) exp (_M(x—mo).(aj—xo)>’

2¢e

where M is a positive definite matrix depending on some homogenized properties and on the
Hessian of A* at zg. It is clear from (4) that ¢ is localized near g at a length scale of order
V€. Furthermore, the first eigenvalue can be expanded as

A° = A%(zg) + A + o(e),

where A; is explicit in terms of M and other homogenized quantities (see (26), (31), and
remark 3.1). Even when the coefficients do not oscillate (i.e. are functions of z but not of
z/e) the asymptotic result (4) is non trivial and new to the best of our knowledge. Our
results extend a previous study made in [4] on a similar eigenvalue problem for a diffusion
equation. Related results on diffusion equations may be found in [3], [18], and [24].

The paper is organized as follows. In the next section we introduce our notation and de-
tailed assumptions, and we recall some basic mathematical properties of transport equations.
Section 2 is devoted to the homogenization of (1) by means of asymptotic expansions. This
method is formal but it has the advantage of being easily accessible without any knowledge



of functional analysis. Section 3 is devoted to a detailed presentation of the rigorous conver-
gence results concerning the homogenization of (1). The proofs of these results are given in
sections 4 and 5. More precisely, section 4 focuses on a priori estimates for a source problem
associated with (1), while section 5 is concerned with the proof of the homogenization pro-
cess, using the two-scale convergence method. Finally, Section 6 is devoted to some auxiliary
cell problems.

1 Assumptions and notation

This section is devoted to a precise statement of our main assumptions and to a brief presen-
tation of our notation and of classical results in transport theory that are necessary for our
analysis. We include these known results (without proofs) for completeness, and we refer to,
e.g., [2, 6, 11] for details. We first give the detailed assumptions on the physical parameters
that are used throughout this paper.

(H1) The domain € is a convex bounded open set of RN, and the velocity space V is a
compact subset of RV which does not contain 0. Furthermore V is assumed to be the
closure of an open set, and its N-dimensional measure is normalized to have |V| = 1.

(H2) The cross-sections X(z,y,v), o(z,y,v',v), and f(z,y,v',v) are of class C?> in z € Q
and measurable in y. They are positive, bounded Y -periodic functions in y, where
Y = (0,1)" is the unit cube, and there exists a positive constant C' > 0 such that, for
a.e. (;r)y7v7vl))

f(xayavlav) Z 07
E(f,y,’l}) _/ O'(JJ,y,UI,U) dv' > Ca (5)
S(z,y,v) —fd(w,y,v,v')dv' > C.
Vv

Remark 1.1 There are possible variants of assumption (H2) which may be more appropriate
for some applications. For example, as it stands, (H2) implies that particle creation occurs
everywhere, which is not the case in neutron transport where fission takes place only in the
nuclear fuel and not in the moderator. This can easily be corrected by replacing the first
inequality in (5) by

o-(x)y7vl7v) + f(x3y7vl7v) Z C’ a.e. (;r)y7v7v,)

with f > 0 and f # 0. This implies that the sum of fission and scattering is positive
everywhere. Up to some additional technicalities, all our results also hold in this framework.

Introducing the Hilbert space
W2 QxV)={uec L*(QxV),v-Vuec L*(Q xV)}, (6)
assumptions (H1) and (H2) allow to state the following existence result.

Theorem 1.2 The spectral problem (1) has at most a countable number of eigenvalues and
of associated eigenvectors in W2(Q x V'). Furthermore, there exists a real and positive eigen-
value, of smallest modulus, with multiplicity one, and such that its associated eigenvector is
the unique (up to a multiplicative constant) positive eigenvector of (1).

The proof of Theorem 1.2, which is in the spirit of other results in [11, chapter 21], can be
found in [6]. As a consequence of Theorem 1.2, only the first eigenvector of (1) has a physical
meaning as a particle density.



As we shall see in the sequel, the asymptotic behavior of the eigenvectors of (1) is partly
governed by the first eigenvector of another eigenvalue problem, similar to (1) but posed
in the unit periodicity cell Y with periodic boundary conditions. Denoting by A*°(z) and
¥(z,y,v) its first eigenvalue and eigenvector, the infinite medium problem is defined for each
parameter z € () by

0Vl 0) + S ) Ve = [ ol o))
0@ [ fo vy )a O
Vv
y = Y(z,y,v) Y — periodic.

We shall also need an adjoint problem to (7), which has the same first eigenvalue A>(x) with
a different first eigenvector *(x,y,v). Introducing the adjoint cross-sections

f*(w7y7vl7v) = f(x7y7v7vl) and 0-* (x7y7vl7v) = O-(x7y7v7vl)7

this adjoint problem is defined by

vVt (2, 0) + (@, 5,0) (@, y,0) = / o* (2,9, 0) ¥ (2, ,0') dv’
\%

(@) [ £ o) 0 ')
\7%
y > ¥*(z,y,v) Y — periodic.

(8)

As a corollary of Theorem 1.2 there exist leading eigenvalues and eigenvectors for the cell
problems (7) and (8), which can be chosen positive.

Theorem 1.3 There exists a common eigenvalue A*°(x) to both problems (7) and (8), which
is real, positive, of smallest modulus, with multiplicity one, and such that the respective
eigenvectors 1 and 1* are positive elements of W2(Y x V).

We are now in a position to give our next assumptions.

(H3) We assume that z — A°°(z) admits a unique minimum at zo € Q and that its Hessian
matrix is positive definite at xo. Without loss of generality, we suppose that zqg =0

A®(z) = A*(0) + zpa1 Ay + ol|]?),
and (A\2;)1<r,<n is a positive definite matrix.

(H4) Finally, we need the additional hypothesis that the drift flux

1@ = [ [ votepo* @) dyde Q
vanishes at = 0, i.e. J(0) = 0.

Remark 1.4 Assumption (H3) is somehow generic as soon as we are interested in non-
constant eigenvalues A\°(xz). Let us mention at least one (simple) case when it holds true:
take E(x7y7v) = EO(?J)”)’ U(x7y7/vl7v) = Uo(y7/vl7v) and f(x3y7vl7v) = k(x)fo(y7vl3/v) S0
that X>°(z) = \°/k(z), and (H3) is satisfied for a properly chosen function k(z).

Remark 1.5 The assumption (H/), J(0) = 0, can be interpreted as a symmetry condition
in the phase space (or a no-drift condition), as explained in [2] or [6]. It is quite usual in this
type of problem (for example, it is imposed in [17], [16]). In most practical cases, assumption



(H4) holds true. For example, J(0) =0 when V = =V (in the sense thatv € V = —v e V)
and the cross sections do not depend on the velocity variable (this is the so-called one-velocity
isotropic case), or when the cross-sections are symmetric with respect to v, and the cell Y
has cubic symmetry. The paper [7] addresses the case when the drift J(0) is not zero and
the coefficients are purely periodic functions. We briefly discuss another possible hypothesis
when J(0) # 0 in Section 6.

In the sequel we shall also need the following results. Since the smallest eigenvalue A>°(z)
is simple, the classical Fredholm alternative for compact operators yields an existence result
for (7) with a source term.

Proposition 1.6 Let z € Q be fized and let A°(x) and ¢(x,y,v) be the first eigenvalue and
eigenvector of (7). Let S(z,y,v) be a source term in L?(Y x V). Then there exists a solution
p(z,y,v) € WY x V) of

v-Vyo(z,y,v) + E(z,y,v) p(z,y,v) = / o(z,y,v",v) p(z,y,v") dv'
v
32(0) [ a0, 0) ol ')+ S(o,,0)
v
y — p(z,y,v) Y — periodic

if and only if S is orthogonal to the first eigenvector 1* of (8), i.e., S satisfies the compatibility
condition

| [ s@w0v @y ddo = o
v Jv
Furthermore, if it exists, the solution o is unique up to the addition of a multiple of 1.

The first eigenvectors ¢ and ¢* are bounded from above and below by positive constants as
stated in the following proposition, based on the averaging lemma [14] and Sobolev inequal-
ities, the proof of which can be found in [2].

Proposition 1.7 Let 1 and ¢* be the first positive eigenvectors of problems (7) and (8),
respectively. Then there exist two positive constants 0 < C' < C' such that, for a.e. (x,y,v),

0<C<la,y,v) <C' and 0<C <P (a,y,0) < C.

Finally, we state a compactness result for transport equations which is a straightforward
variation of the classical velocity averaging lemma of [14, 15].

Lemma 1.8 Let u®(z,v) be a family of functions of W2(RN x V') such that there exists a
positive constant C' independent of € satisfying

| (1+ [zDus(2,0) 2@y xvy + || v VU (2,0) 2@y xvy < C.

Then, the family [, u(z,v)dv is relatively compact in L*(RY).

In the sequel, we always assume that hypotheses (H1)-(H4) hold.

2 Asymptotic expansion

To address the phenomenon of concentration and homogenization for (1) the simplest ap-
proach is the classical technique of two-scale asymptotic expansions, coupled with Taylor
expansions around the concentration point z = 0. This is a formal method which has the
advantage of avoiding all the fine points of functional analysis that are required for a conver-
gence proof. Therefore, we believe it is interesting even though we shall not use the results



of this section in our convergence theorem of Section 3. Remark that it is possible to justify
the asymptotic expansion by a careful study of the remainder terms, but this method has
two drawbacks. First, it requires smoother physical data. Second, it gives a full justification
only of the first term in the expansion although the expansion contains four terms. This
phenomenon is well documented in [4].

The first step of the derivation is to approximate the following functions around z = 0
by their Taylor expansions (the Einstein convention of summation over repeated indices is
used)

S(x,y,0) = B (y,0) + 2T} (y,0) + wew B (y,0) + o(|jzf?)
(z,y,0",0) = o (y,0',0) + oy (y,0',0) + 2w ofy (y,0',0) +o(|z]?)
flay,v'v) = 2y, v o) +aify (0", 0) + 2 fiy (y,0',0) + o(|z]) (10)
b(z,y,0) = POy, v) + ey (y, v) + zra i (y,v) + ol|z|?)
\ X2(x) = A%(0) + zpz Ay + o(|z]?).

Here we use the following notation. For any function g(z), we define g, = 99 -(z = 0), and

2
gy = %Bfkgml (z = 0). We also define 2()\3,) as the Hessian matrix of z — )\‘X’(az) at x =0,
where A\*° is assumed to reach its minimum.

Following [4], where a similar problem for the diffusion equation is considered, we intro-

duce the following ansatz for the first eigenpair of (1)

o () [0 () (£) ()
+e¢? (g,v) +rf (x,v)] (11)

¢"(x,v)

A = A4 ed +o(e)

where ¢°, ¢1, ¢7,, and ¢ are Y-periodic functions in their first argument to be determined,
M is an unknown symmetric positive definite matrix, and r° is a small remainder term. The
matrix M being positive definite, we notice that, for any p € N,

|| 2P exp (—22) ||Lr
| exp (— M“) (P2
Assuming that the first term ¢° in the asymptotic expansion is normalized such that its

L2-norm is 1, then the second term ¢' = (¢}) will be of order /¢, and the third and fourth
terms ¢> = (gi)k ) and ¢* of order e. After some algebra, we find

~ O(c*) for any r € [1,400].

V(g?) = %exp <— M§Ew> [Vyﬁbo (g v) + (21 Vy ¢}, — Mz ¢°) (g,v)

+ (xkxl Vyzbkl Mxxkgi)k) (— v) +e (¢1 + Vy¢3) ( ) .|_r’s(a:,v)] ,

where, as usual, V, and V, denote partial derivatives with respect to the slow variable z
and fast variable y, respectively, and 7' ¢ is a remainder term. Identifying all terms according
to their power in z and &, we obtain a cascade of equations from which we keep the four first
ones. The zeroth order terms yield

U-Vy¢0+20¢0:/ UO¢O+>\O/ f0¢0- (12)
v 1%
The first order terms in z give for all k € {1,..., N}

0@y 8L — Migd®) + (S06L + SLg%) = /V (008% + a1 ¢°) + X0 /V (PO +716%),  (13)



where 0y, denotes the i-th component of the gradient V,. The second order terms in z give
for all k,l € {1,..., N},

0i(Oy, by — Mady) + (Z°¢%; + Spop + S30°) =

[+ ot o) 30 [ (P + ol + 52 (19

(the formula (14) has to be symmetrized with respect to k,[ since zjz; is itself symmetric),
and the first order terms in ¢ yield

U2(¢2+ayl¢3)+20¢3:/ 0,0¢3_|_>\0/ f0¢3+A1/ f0¢0- (15)
v 14 14

Eventually, solving these equations leads to the asymptotic behavior of ¢°. Equation (12)
allows us to determine ¢° and A\°. Equations (13) and (14) allow us to determine ¢} and ¢3,,
and some compatibility conditions will give us the expression for M. Finally, equation (15)
determines the e order term ¢® and its solvability condition gives the first order corrector \'
for the eigenvalue.

2.1 Zeroth order equation

Since at # = 0 the functions in (10) coincide with the zero-order terms in their Taylor
expansions, the zeroth order equation (12) is simply the periodic cell problem (7) at z = 0.
Thanks to Theorem 1.3, (12) has thus a unique positive solution given by

¢’ (y,v) =9 (y,v), A° =2r2(0), (16)

where 1°(y,v) is equal to ¢(z = 0,y,v) up to some multiplicative constant depending on the
normalization of ¢°.

2.2 First order equation in z

For each k, equation (13) can be written as follows

w%ﬁ+W@=/

w@+ﬁ/ﬁ@+ﬁ, (17)
\% \%

where the source term g} is given by
ok = vias? =S + [ et £ [ gl
v v

According to the Fredholm alternative of Proposition 1.6, these equations can be solved if
and only if the source-term g; is orthogonal to ¢°*(y,v) = 1*(0,y,v), i.e.,

/Y/V v My p® — z}de + (/V gllc@[,o) 420 </V f]wo)] 0% = 0. (18)

Upon differentiating the infinite medium equation (7) with respect to = at x = 0, we obtain

w%@+vﬁ+%w=Aw%+A¢W+WAP%+WAﬁW, (19)

which admits ¢}, = (0,,¢°)(z = 0) as a solution. Still, it admits a solvability condition given

by
/Y/V {_EWO + (/V WO) +° </V fézb“)] ¥ =0. (20)



Thus, (13) is solvable if and only if

/Y /V 0 Mgt =0,
M/Y/Vmpozﬁo* =0.

The latter equation holds thanks to hypothesis (H4), hence (13) admits solutions. We shall
see later on that M is a symmetric positive definite matrix, so (H4) is a necessary and
sufficient solvability condition for equation (13). The solution ¢}, of (17) can be written as
the sum of two terms

or equivalently if and only if

¢ = —Mpx’ + 9y, (21)

where ¢} is defined in (10) and y/ is the solution of the following equation
v Vyx? + 2% = / o'’ + )\0/ FOx7 — w°. (22)
1% 1%

Since J(0) = 0, the solvability condition of this equation is verified, and therefore y7 is
uniquely defined up to a multiple of 1)°. Notice that terms proportional to ¢° can be incor-
porated into ¢° in (16).

2.3 Second order equation in z

For each k,l, equation (14) can be rewritten as
v Vyiy + 007, = /VUO(Z% +\° /V PO + g
where the source term is given by
dis = vt} = Siof =k + [ olol + [ ot [ glopex [ ot 23)

In truth, g7, is symmetric with respect to k,! so that equation (23) should be symmetrized
(for brevity we do not include the symmetric terms in (23)). Again, this equation admits a
solution if and only if g7, is orthogonal to ¢°*. Owing to (21), the source term g7, can be
recast as

g = —viMaMx’ +viMyby + SpMijx? — Shapl — Sie°
+/ (—op Miyx? + o + opyv°) +/\0/ (= fe My + fewr + fav®),
v v
which after reordering yields

g = —MgMjvix’

+My (Uﬂ/ﬁiﬂLE}c i—/ UiXi—AO/ f/%Xi>
v v

n (—z,w; ~stt + [t + ot + 3 [ (rhut + f,zlw)) .

Upon differentiating the infinite medium equation (7) twice in z at x = 0, we obtain

vVl + SOU2, + Skt + 52,40 = / (YR, + obipt + 020
\%

a0 /V (P2, + FLt + o2 + 2, /V o,



which admits a solution by construction. We rewrite this equation as
v Vh+ =0k = [ oo+ [ o
it =i+ [ (bl b+ [ (bl 520043 [ 100

Its solvability condition reads

/ / {_Ek‘/’} - Ty’ +/ (one) + o®)
Y JV v (24)
+A°/ (fetdd +f,3,¢°)+Ai,/ f%O] 0% = 0.
v 1%

Thus, the solvability condition of (14) is

_Milej/lffvain¢0*
+Mu/yfv viy, + S’ - </V 011)8) —A° (/V f;ixi>]w°* (25)
N [ [ ([ ) =0

As explained before, this equation has to be symmetrized with respect to k and [. This yields
a quadratic matrix equation for the unknown M, which reads

My DMy + By My + My By = Ay,
or
MD°M +BM + MB" =4, (26)
where

3 _\2 0 ! 0 0 ! !
Ay = 22, /Y /V /V Py, 00 () (9, o) dy dv d, (27)

= [ [ [wwz,axi—( / a,zxi)—x) ( / f,zxi)]w*, (28)

and D° denotes the symmetrical part of D, which is given by the Kubo Formula (see [8, 19,

27))
Dy = —/Y/Vvi)(jwo*. (29)

Equation (26) is a Riccati Equation, which is classical in Control Theory. The following
theorem, which can be found in [26, pp. 225-235] or in [25], ensures that this equation
admits a unique symmetric positive definite solution.

Theorem 2.1 Let D and A be symmetric definite positive square matrices, and let B be a
square matriz of the same size. Let us consider the Riccati matriz equation

MDM + BM + MB* = A.

Then there exists a unique symmetric definite positive solution M of this equation.



Remark 2.2 In order to compare the results given by asymptotic expansions and two-scale
convergence, it is worth noticing that

— 0J;
B, =
ki axk

(0).-

This result will be proved in section 6. In the case where V,J(0) =0, it allows us to have a
simple expression for M. Indeed, M solves a Riccati Equation now of the form

MD°M =4
and M 1is therefore given by

R AR VSN P
M=D (D *AD ) D e, (30)

2.4 The ¢ order equation

Finally, equation (15) yields the first order corrector to the eigenvalue of our initial problem
(1). Equation (15) can be written as

U_vy¢3+20¢3 :/ 00¢3+AO/ f0¢3+ |:_U£¢11 +A1/ f0¢0:| .
v 1% v
The Fredholm alternative shows that this equation admits a solution if and only if
[ s [ [ ()0
v Jv vJv \Jv
which eventually gives us the following correction to the leading eigenvalue
| [ wote
)\1 — YJV .
/ / (/ f0¢0)¢0*
yJv Ny
We have seen that ¢} = M;;x? + 1}, and therefore, as ¥} = 9,,¢(x = 0),
O e .
Al = Ty v y Jv :TT(MD)+'Y

L L sree)or 7

where @ and 7 are given by (34).

2.5 Results of the asymptotic expansion

We will not try here to justify the full ansatz (11) for the eigenvector ¢°. Instead we will
rigorously justify the result of exponential concentration postulated in (11) in the following
sections with a different method, and will show that the expressions for M, ¢°, A\°, and A!
predicted by the asymptotic expansion are indeed correct. Let us mention that we will not
seek any justifications for the higher order terms ¢}, ¢7,, and ¢>. Indeed, it is shown in [4]
in the similar case of diffusion equations that the error term r. defined by

¢°(z,v) = exp (— M;UE' m) ((;50 (g,v) + 10} (g,v) + zpxi0%, (g,v) + e¢? (g,v)) +7e
(32)

is of order /¢ in any L? norm, and hence of the same order as the first corrector term xy, ¢k.
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3 Main results

This section is devoted to the statement of our main result on the homogenization con-
centration in transport. Throughout this paper, the heterogeneous and periodic transport
eigenvectors are normalized in such a way that their L?-norm in the phase space is 1,

| ¢° llz2qaxvy=1 and [ ¥ |lL2(vxv)=1.

We also normalize ¥* in such a way that for all z € Q,

/ / / f(ﬂfayaU’av)¢($,y,vl)¢*(w,y,v) dydvdv' =1.
YJvJV

3.1 The homogenized problem

We introduce the homogenized eigenvalue problem for the transport equation (1)
—div (5Vu) + (Zz.z + 7) U+ z- (E* Vu) = \ou (33)

u € HY(RN)NL2(RN),

where L2(RY) = {u(z) € L*(RY), |z|u(z) € L*(RN)}. This homogenized problem is a
convection-diffusion problem, which is posed on the whole space RY. The homogenized
coefficients are given by the following formulas

(- /] / £(0,5,0',0) $(0,,v') (0, , ) dydude’,

¥y o= f//v Va1p(0,,v) 9*(0,y,v) dydv,

//fO y, v, 0)1(0,y,v") (0, y,v) dydvdy', (34)

//vj xz(¢¢ )(anvv) dydv,
)

S
TR

Sl
[

Y JV
L v Jv

where the functions x/(y,v) are defined as the solutions of the cell problems (22), i.e.,

v-Vyx? +2(0,y,v)x’ =/ a(0,y,v',v)x’ (y,v") dv’

)
v
FX2(0) | F0,y,0, o)X (g, 0') ' = 0726(0,9,0) (35)
%
y — X/ (y,v) Y-periodic.

According to the Fredholm alternative, since .J(0) = 0, equation (35) has a solution x?, which
is unique up to the addition of a multiple of 1)(z = 0). Because J(0) = 0, one can easily
check that adding such a multiple of ¢ does not change the homogenized coeflicients D;;.

Remark 3.1 Equation (33) is well known in quantum mechanics where it is called the har-
monic oscillator equation. The first eigenvector of (33) is explicitly given by (see e.g. [13])

w(e) = e (-222)

where, after some algebra, M is the solution of the same Riccati Equation (26) as in the
previous section. Moreover, the corresponding first eigenvalue is

Tr (MD) +7
E 9

A=

11



and corresponds to the first order eigenvalue corrector given by our asymptotic expansion.

Recall that remark 2.2 states that B = V,.J(0) where J(x) is defined by (9). Therefore,
if we assume that V,J(0) = 0, the convection term in (33) disappear and M is given by the
explicit formula (30).

It is well known that the spectral problem (33) is compact in L2(R") because of the pos-
itive quadratic potential. Remark however that (33) is usually not self-adjoint. Therefore its
spectrum is made of at most a countable number of finite multiplicity eigenvalues (possibly
complex-valued). We label the eigenvalues of (33) by increasing order of their real parts (with
repeated multiplicity). Since (33) satisfies a maximum principle, by the Krein-Rutman the-
orem it admits a first eigenvalue which is real, positive, simple, and such that its eigenvector
can be chosen positive in RV . In particular, this implies that the spectrum of (33) is never
empty. Of course, if (33) is self-adjoint (in the case where B = V.J(0) = 0), then it admits a
countable infinite number of real eigenvalues.

3.2 Main result

The main result of this paper, which justifies many of the homogenization and concentration
features presented in the previous section, is as follows.

Theorem 3.2 We assume that (H1)-(H4) hold. Let (A\*°(x),¢(x,y,v)) be the first positive
eigenpair of (7). Let (Am)i<m<m.. and (X;,)m be the eigenvalues (with repeated multiplicity
and in increasing order) of the homogenized problem (33) and the original problem (1), re-
spectively. Then, for any m € {1,...ms} and for sufficiently small ¢, there exists an m'"
eigenvalue X5, of (1) such that

AL, = A%(0) + e, + 0(e),

and, if ¢5, is a corresponding normalized eigenvector of (1), then it satisfies

& (2,0) = 1) (:c gv) ul, <%v) : (36)

where, up to a subsequence, eN/*uZ, (z,v) (properly extended to RN x V) converges to w,,(z)
strongly in L>(RN x V), and u,, is an eigenvector associated to X\, of the homogenized
convection-diffusion eigenvalue problem (33). Moreover, in the original domain we have the
following convergence

lim
e—0

(T, 0) — 5*N/4w (0, g,v) U, <%) ‘

Remark 3.3 The coefficient eN/* comes from the scaling ¢ llz2@xvy = 1 which implies

L2(QxV) - (37)

that ||5N/4ufn||Lz(RNXv) is of order one.

The convergence of the eigenvectors is obtained up to a subsequence because of the possible
multiplicity of the limit eigenvalue. Since the first eigenvalue A\, is simple, the whole sequence
(X5, us) converges (and not merely a subsequence).

In the sequel, we shall use the following convenient notation: for a function g(z,y,v),
Y -periodic with respect to the fast variable y, we define

g (z,v) =g (va) -
g

To prove theorem 3.2, we first establish that the spectral problem (1) is equivalent to another
problem obtained by factorization.

12



Proposition 3.4 Let ¢(z,y,v) be the positive eigenvector of (7). Then, the linear operator

L*QxV) — L2QxV)

_ ¢(=,v) (38)
¢(z,v) —> u(w,v)—ws(x,v),

is continuous and has a continuous inverse. With this change of unknowns, the problem (1)
is equivalent to the following spectral problem

@) = x2(0)
9

1
v-Vu® +au® + ng(us) Fr(us) =pFe(u®) mQxV

(39)
u®*=0 on I'_,
where we have defined
4 )\E _ )\OO
o (0)
€
mewzgﬁzﬁﬁmmw%mw
{ —W VU;(HJ,UI,U) P° (z,0") u(z,v') dv’ (40)
F(u)(r,0) = %gg%éf$ﬁmwﬂmwumﬂmﬂ
. v (V, x,v
[ (E0) = Ve (z,v)
with the notation
0nc i, 3,0,) = 0,4, 0',0) + X2(2) 2,0 0), "

ol (z,y,v',v) = o*(x,y,v",v) + X\ (z) f*(z,y,v,v).

Proof. The result is obtained by straightforward algebra. Notice that the positivity and
boundedness of i that we stated in Proposition 1.7 are required to justify the change of
unknown function (38). O

We next introduce another change of variables, which will be of crucial importance to display
the concentration effects,
Q0 — =120
T
r o — z=—

NG

For each function g(z,y,v), Y-periodic with respect to the fast variable y, we introduce the
notation

(42)

7 (z,v) =g <\/§z,%,v> , with z = % € 0°.

We similarly define the operators Q° and F* from Q¢ and F*. For instance, with this notation
we have

8

V) e0) = (Vawt 29,0) (. 2,0) = (a0 + 29,007 ) (0,
and
V) e0) = (VEVab + 29,0 ) (VEn o) = (VAT + 9,07 ) o)

Accordingly we obtain the following result.

13



Proposition 3.5 With the change of variables (42), the spectral equation (39) becomes

RN 2O ey = i e ) im 07 %V,

1 1~
—v- ViRt + 65+ - Q7 (i) +

NG €
=0 on IZ.
(43)
The spectral equation (43) is recast as
- 1
Seuf = . (44)
pe
Here, the compact (see [2, 6]) operator S¢ is defined by
L2(QF xV L2(QF xV
g | PO XV) — L@ xV) (45)
G(z,v) +— a°(z,v),

where 4 denotes from now on the solution of the following source problem associated to (39)

A*(Vez) = A%(0)

9

%v Vi + 650 + é@s(ﬂf) + (

=0 onl=.

+ n)ﬁf(af) —F°G) i xV

(46)

Notice the presence of a positive coefficient > 0 in equations (44) and (46). This coefficient
will be useful in our energy estimates and is harmless because it simply shifts the eigenvalues
of (43) to the right. The sequence 4° is defined on domains Q° x V' that depend on €. To
establish a convergence proof, we need to extend @° to RN x V as follows. We assume that
@ solves

v- Vi + et =0 on (RV\Q°) xV, (47)

and impose the continuity of @°(x,v) across the interface 90Q° x V. We also assume that no
particles arrive from infinity, i.e., 4¢(z,v) = 0 as |z| = oo.

Theorem 3.6 Under the hypotheses of Theorem 3.2, the sequence u°(z,v) of solutions of
(46) converges strongly in L?>(RN x V) to u(z), the solution of the following homogenized
problem

—div (DVu) + (Azz+ 7 +7) u+ 2 - (F*Vu) = F(§),

(48)
u € HY(RN)N L2(RY),
where D, A, B, @, and ¥ are given in (34) and
F@ = [ [ [ 100020000, a0 6 0.9,0) dydvds’ (49)
vJv /v

This theorem will be proved in sections 4 and 5.

3.3 Proof of theorem 3.2

We are now in a position to prove our main result. Let us define the homogenized operator
S by

14



g { L*®RY xV) — LXRN xV)
' i(z,v) — u(?),

where w is the solution of the homogenized equation (48). Then S is a compact operator
because H'(RV)NL2(RY) is compactly embedded in L2(RY). We deduce from Theorem 3.6
that S° converges to S pointwise in L?(RN x V), in the sense that for all ¢ € L2(RN x V),
then S%(q) — S(q) in L2(RN x V) strongly.

Furthermore, as a consequence of Corollary 4.3, S¢ converges compactly to S, in the
sense that, for every bounded sequence ¢ in L2(RN x V), S¢(§°) is relatively compact in
L?(RN x V). The following classical result in operator theory, recalled here for completeness
(see [5, 10]), allows us to conclude that the spectrum of S€ converges to that of S. Eventually,
estimate (37) is due to the special form of the eigenfunctions of the homogenized problem
(33), which are exponentially decaying away from the concentration point 0, thus allowing
to replace ¢(z,z/e,v) by ¥(0,x/e,v) in the factorization (36).

Theorem 3.7 Let X be a Banach space, and (T,)nen a sequence of bounded operators in
L(X) converging compactly to T. Let o(T) and o(T),,) be the spectra of T and T,, respectively.
Let X\ be an isolated eigenvalue of T' of finite (algebraic) multiplicity m and let T be a closed
Jordan curve in the complex plane enclosing A and leaving outside the rest of the spectrum
of T. Then, for sufficiently large values of n, T' encloses exactly m eigenvalues of Ty, (with
repeated algebraic multiplicity).

Moreover, if A, is a sequence of eigenvalues of T, converging to A\, and u, is a sequence
of normalized associated eigenvectors, then, up to a subsequence, u, converges to a limit u
in X which is an eigenvector of T associated with \.

4 A priori estimates

The first step in the proof of Theorem 3.6 is to derive a priori energy estimates for the source
problem (46). These estimates are as follows.

Lemma 4.1 Let 4° be the unique solution of (46). Then there exists a positive constant C
independent of € and G, such that

1 Nlz2ge vy + 1l v - Vi [lr200xv) +H|z|/ i
\4

1
_l__‘ ,1‘15 _ / ,1‘15
Ve v
where L*(T%, |v - n|) is the trace space of functions u satisfying fri (v-n)|u|>dT < oo with

e ): {(z,v) € 0Q° x V|v-n(z) > 0} and dT' = dvdo (do being the surface measure on
o0e ).

L2(QexV) (50)

1 ~€ ~
ey T o3 N8 2w jonp < C 11 llz2@exv) -

Proof. We multiply equation (46) by Gy *e, taking into account the notation (40), and
integrate over Q° x V' to obtain

1 . — N L
/ E /V S VN o (T0)" @) + Q)
o (A0 peyieeirasin = [ [ F @i
Qe JV

9

(51)
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Let I = / v - Vit a Y dzdv. Then we have

<

R
HQ\

(v - n) (@)% p*e dzdv——/ /v V(@5 )*e)as dzdv

7
. /( n) (i) e zdv—\/_/e/v Vi i e dzdv

/E/vvm/? )dzdv

= 57 FE )2 dzdv — /5/ v - V(5 )*e)(a°)? dzdv
1 *E
= NG Fir( n) (@)% *e dzdv — —/E/ a°)? dzdv

—2—18/5/‘/1)-(Vy1/1w*) (°)? dzdv.

Upon multiplying the infinite medium equation (7) by ¢* and subtracting the adjoint equa-
tion (8) multiplied by ¥, we get

V) = [ v~ v [ arear,
v 1
where o, and o, are defined in (41). Thus, it yields the following expression for I;

L, = # - (v- n)(ﬂs)%zsd*g dzdv — % /E /VU : Vm*s(aE)Q dzdv

5 [, ( [ st~ [ &;&E*Edv'> dzdo.

Let I, = / / Q° (@°)a)°p** dzdv. Then,
QE

/ / ( w*s &€ ’(Lsd’l}l _ ﬂsd;*s &Zolz;sﬂsd’l}l> dzdv.
N v

We deduce that

L+ 1 % - (v - n) (@) dzdv — % /E /Vv . V/,;z\ﬁz*s(ﬂs)2 dzdv

// ( ¢*E/ e ey

—20)* / T T (T / &;Q/?*fdd) dzdv,
\4

1%
and the third term in I; + I is equal to

2_15/5/‘//‘/ @ (2,0) 20 (2,0)6°_ (2,0, 0)

¥ (z,
0 (2, ) (2, 0 v)zg (o) (24
+i° (2,v") 2% (2,0")67 (2, v,0")h*¢ (2, v) dzdvd’

—%//V/V D (2, )0 (2, '), (2, ' 0) [ (2, 0) — @ (2, 0) 2 dedvdy.

At last, we find

1 ~_ o~ 1 —~— £
L+ 1 3 Jo- (v - n) (@°)*p*e dzdv — 3 / /Vv Voo (aF)? dzdv
+

(52)
+2is/a/V/VJ*E(z,v)zﬁg(z,v')&io(z,v',v) i (2,v) — @ (2,v")|* dzdvdy’,

16



and it is straightforward to check that

L +1,> C’// dzdv-l-—/ /| / E|2dzdv+— (v-n)(a)? (53)
e € F+

Let Is = / / v Vot 1/1 2% + nF (af)ifp Y™ dzdv. Adding and subtracting the

contribution n [o. [, (a° )2ap*e Iy feye yields

Lol (5w [ ira) iy 54

+77ﬂ612;*6 (/‘; fgi/‘;gﬂgd’l}, _ ﬂg\/vfgd;gdd) dzdv.

Since f%, 1)° and ¢¥*¢ are bounded from below by positive constants, choosing a sufficiently
large value of n (which is independent of € and ¢), we can estimate the first term in I3 from

below by
/ / )2 dzdv. (55)
The second term in I3 is given by

’7/5 /Vuw (Ff(af) —ffﬁf(l)) dzdv
n/s/vﬂ%%*f (135(115—/ ) — FE(1) (& —/Va€)> dzdv.

Its sign is not known a priori, but this term is bounded in absolute value by

ol P L (56)

L2(QeEx V)

Let us define Iy = [,. [, e '(A®(VE2) — X*(0))F* (@°)a9p"p** dzdv. According to the
hypotheses on the function z — A>(z), it is clear that A>°(z) — A>°(0) is bounded from
below on Q by a quadratic positive definite form, i.e.,

3C>0,Vze Q, A°(x) —A*°(0) > Czx - z.

Since f¢, ¢)° and ¢*¢ are also bounded from below by positive constants, and V is bounded
according to (H1), we deduce that

2
I > C’/ / B (/ ﬂsfszzsdv'> dzdv > C <|z|/ ﬁsdv'> dz. (57)
e JV \%4 Qe 14

Finally, the right-hand side in (51) is equal to [,. [, e (fv fsz/;s(j) dzdvdv', hence is
bounded by

C 11 s s | @ llzecaexv) - (58)

Summing up the estimates in (53), (55), (56), (57), and (58), we deduce that
2

c
~c 112 Q ~E ~c
C || n ||L2(QE><V) +E U /VU 120 xV) + — \/— || a’ ||L2 T |vnl)

af—/ @ ‘|z|/
v L2( QEXV)

< O 172wyl G 220 xv) -
17
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Consequently, we have

C /- _
_Ow_/w
€ %

This implies first that || 4 ||£2(- xv) < C || § ||L2(q- xv), and then,

Hm/m
1%

) +(¢-0)]
f_Am

Finally, the bound for || v - V& [|z2(q-xv) is deduced from equation (46) since
v ms e 1
i€ — —

v QE(ﬂE) _ (}\oo(\/gz) — AOO(O)
e LT Ve

The first and fourth term on the right-hand side are easily bounded by /eC' || @° || and

VEC || G || and hence by /eC'. Since Q°(a°) = Q°(a° — [, u°), the second term is bounded

by \/LEC | a* — [, @° || and hence by C. Since A*°(z) — A*°(0) is bounded on ©Q by Clz], the

third term is bounded by C'|[| |z] f;, @° || +1/€C || @° || and hence by C. This concludes the

proof of the lemma. 0O

2 2
—HWWO-HC—OQHWH”%W4AﬂE <clallql

< Ol ez xvy -

L2(QexV) —
ﬂs—/ u°
|4

<Ol qllezexvy -

Next we observe that

o@fuwm—/m
1%

which gives us

2
< a1l

1

L2(QexV)

0. Vit = —/& —H@OﬁWﬂ+ﬁﬁ@)

We now extend @° to RV as in the preceding section by imposing that it solve (47), that
it be continuous across the interface 90° x V, and that 4°(x,v) — 0 as |z| — co. The very
strong absorption in RV \Q¢ allows us to prove by integration along characteristics that the
above a priori estimates also hold for the extended function @° (remark that we need the
estimates on T'} to establish the following corollary). Thus we obtained

Corollary 4.2 Let @° be defined on RN x V as above. Then we have

12 sy + 0 Vi assry +|1o [ 3
g

1
_I__‘ ,l“l‘/E _ / ,l“l‘/E
Ve v
We conclude this section by stating an important result, which derives from the above a
priori estimates,

L2(RNxV) (60)
< C 17 llrz@exv) -

L2(RNxV)

Corollary 4.3 Let ¢° be a bounded sequence of L*>(RN x V). Let i€ be the solution of (46),
where § is replaced by G, and then extended to RN x V as above. Then, the sequence i° is
relatively compact in L>(RY x V).

Proof. The previous a priori estimates still hold when ¢ is replaced by ¢°. Therefore,
there exists C' > 0 such that

<C.

L2RNxV) —

12 sy + 0 Vi asgessry +[12] |
14

Using lemma 1.8, we deduce that the sequence | v 4 is relatively compact. But we also know
that || a° — fV U ||p2@~xv)< Cy/e. This proves the relative compactness of the sequence
wf. O
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5 Convergence proof

The aim of this section is to prove Theorem 3.6. It is based on the use of the two-scale
convergence technique [1, 2].

We first introduce some notation and denote by C3° (Y") the space of infinitely differentiable
functions in RV that are Y-periodic, and L3(Y) (respectively HJ(Y)) the completion of
CP(Y) for the norm of LZ(Y) (respectively of H}(Y)). Since our functions oscillate with
period v/ on RV, our definition of two-scale convergence is here:

Definition 5.1 A sequence of functions g° in L2(RN x V) is said to two-scale converge to
a limit g in L2 (RN x Y x V) if, for any function 1 in D(RN x V;CE(Y)), we have

lim/ / (z,v) < ) dzdv —/ / / x,y,v) Y(x,y,v) dedydv.
e—0 RN RN

We also recall here an important result of two-scale convergence

Theorem 5.2 Let g° be a bounded sequence in L*(RN x V). Then there exists a limit g in
L2(RN xY x V) such that, up to a subsequence, g° two-scale converges to g.

The a priori estimates obtained for @° will allow us to prove a result of two-scale convergence
for 4, and to guess what form its limit should have. This is the goal of the next proposition.

Proposition 5.3 Let ii° be a sequence in L2(RN x V) such that there exists a constant C
independent of € satisfying the following energy estimate
| % [[r2@yxyy + || v V@ ||p2@yxyy + ‘U —/ u°
v
+i / <c

Then, there exists u®(z) in H'(RV) N L2(RN) and u'(z,y) in L2(RN x V;H;E(Y)) such
that, up to a subsequence, u°(z,v) strongly converges to u®(z) in L2(RN), v - Vﬂ two scale
converges to v -V u® +v - Vyu', and \}- (a° — [}, @) two-scale converges to u' — [, u'

L2(RNxV)

L2(RNxV) —

The proof of this proposition follows from minor modifications of that of [2, Proposition 5.3].
We deduce the following result from the above proposition.

Proposition 5.4 Assume that hypotheses (H1)-(Hj) hold. Let 4° be the unique solution to
(46) extended to R by imposing that it solve (47), that it be continuous across the interface
99f x V, and that @°(z,v) — 0 as |z| — oo. With the notation of Proposition 5.3, u'
given by

0
2) 67 (y,v),

°’\

N
Y(z,y,v Z

where 87 (y,v) is the unique solution of

v-Vy0 +Q(0,07) = —v; inY xV,
y 0 (y,v) Y — periodic,

up to an additive constant. The operator Q(z,-) is defined by

Q(m,u)(y,v) = %/‘/Uoo(x,y’v"v) '(,b(ﬂf,y,’l)l) d’Ul
_m/‘/gw(w’y’vl’v)d}(x’yvvl) u(y,v') dv',
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and the adjoint operator Q*(x,-) by

@) = 270 [ o o) vl
’ 1 ! !
—(z,y, )/VO' z,y,v, v)mu(y,v)dv

Proof. Let ¢(z,y,v) be a smooth Y-periodic function with compact support in its first
variable. Multiplying (46) by 1/z¢(z, %, v) and integrating over RN x V yields

/RN/VU.Vﬂfgbdzdv+/RN/VQE(HJE)QSdsz:\/g/]RN/‘/Ss¢,dzdv, (62)

where we = & 7\;‘5—’ v , and where the source term is
~ A — >0 - -
§° = —atir — < (‘/Ez)g O n) F (@) + F= (q).

The difference L\}gv"(o) is clearly bounded in QF by C'v/zz-z. Thus, since ¢ has compact

support, the right-hand side in (62) converges to 0 as £ goes to 0. The first term in (62)
converges to [~ [y [, (v Veu® +v - Vyu')d dzdydv as e goes to 0.
To study the convergence of the second term, we need to introduce some notation. We define

Giteo) = (0. 220)

and similarly ¢0 , 050> [, and the operators Qo and F By Lipschitz regularity of all
physical parameters, we deduce that

‘/RN/ (bdzdv‘ < C(AVE | 57 ||panny) -

Introducing the adjoint scattering kernel Q*E, we obtain

/RN/ Q° (w ¢dzdv—/RN/ W Qi (¢) dzdv 4+ O(VE).

Next we check that QSE (o(z, ﬁ, v)) two-scale converges to Q@*(0, ¢)(z,y,v) and that

. A *E < *
glg}) | Q6% (#(z, %7’”)) 2@~ xv)=Il @ (0, 8)(2,4,v) L2~ vy -

This last property allows us to pass to the limit in a product of two weakly converging
sequences [1]. Since w® two-scale converges to u. — [{, u., we get in the limit that

/RN/Y/V(U-Vzuo+v-Vyu1)¢dzdydv+/RN/Y/VQ(0,u1—/Vul)qﬁdzdydvzo_

Thus u' is a solution of the following equation

v-Vyu' +Q(0,u') = —v - V,u’
y — u'(z,y,v) Y — periodic.

Since u° depends only on z, we deduce that u'(z,y,v) = Z;Vﬂ g—‘j(z)m (y,v), where 67 is a
J

solution of the following equation

vV, 0 +Q0,67) = —v;
y = 07 (y,v) Y — periodic.
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It is easy to see that x/ = #7¢°, and therefore, thanks to hypothesis (H4), this last equation
is solvable, and has a unique solution, up to an additive constant. This concludes the proof
of our proposition. 0O

Proposition 5.5 With the same hypotheses as in the previous proposition, the sequence

@ (z,v) converges strongly in L>(RN x V) to u®(z) € H'(RN), solution of the following
problem

—div (DVu®) + (Az.z + 7+ no) u® + (div (F*z uo) - div(J)(O)uO) = F(q)

(63)
u® € HY(RN) N L2(RN),
where the coefficients are defined in (34) and (49).
Proof. Let us first define, for 1 < i < n, the adjoint cell problem at z =0
—v - Vy (pp*0*°) + Q*(0,9p1p*8**) = vipip* (64)
y = 0% (y,v) Y — periodic,

which admits a unique solution, up to an additive constant, since fY fv vivY*dydv = 0 at
x = 0. Let ¢(z) be a smooth function with compact support in RY. We define

N
. 0¢ i [ %
o) =6+ VEY 507 (Z0)-
Upon multiplying (46) by ¢ Y71* and integrating over RN x V, we obtain

[ ] Lovwsros [ [awseer [ [ lowwir
/RN/V ( wes) - 370 +’7> Fe ()¢ ) ™ =/ / ()" g,

€ RN JV

(65)

Denoting these integrals by J¢ in the same order, (65) reads
Ji+J5 + J5 4+ Jf = JE.

We now pass to the limit in each term J;. The right-hand side is given by

N ﬁz,i,v',v)w(ﬁz,%,v')q“(z,v'w*(ﬁz,%,v)-
[ _|_\/_Z 0*7( )]dzdvdv',

By Lipschitz regularity of the functions f, ¥, and ¢*, we have

s = /RN/V/Vf(O’%7 v)w (o, \i[ o)z, 0" (Q%,U)q&(z) dzdvdv’ + C($)V/z,

Thus, it converges to

s = /RN/Y/V/V“O’?”’”"”) ¥ (0,y,v") 4(z,0") ¢* (0,y,v) ¢(2) dzdvdv'.
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The fourth term is

LT (e ) s

(8 (x/EZ, %,v’) @€ (2,v")p(2)* <\/§z, %,v) dzdvdy'
] e ) e )

(0 (\/52, %,v'> a° (z,0") 2 g—iﬁ*%ﬁ* <\/§z, %,v) dzdvdv',

or, by Lipschitz regularity,

i=[ ][ (IR L e

Flo, 2o vv) o (0,220 ) v* (0, 22 0) dedvde’ + O(V7),
NG
and, thus, converges to

VE' Ve
Jy = /RN/ // (A7 2z + 1) (0 L ,0, ) (0,y,0") *(0,y,v) up(2) ¢(z) dzdydvdv’.

The second term is

s=[ [o2
RN JV

o () e

Jj=1

, v> dzdvdy’,

ap
Sl

or, by Lipschitz regularity,

=[] oS (0 Ze) i e @) (0, o0 ) deded + O(B)

and thus converges to

o= [ [ ] v 0,007 0,0) ) 6(2) dedy
RNJY JV

Let us next deal with the sum J§ + J5. After integrating by parts, J{ can be written as the

sum of seven integrals
F L f e s
K = —— ’U/E’U . v ¢,¢}E¢*E
b Vel
K; = / / Zv —0% P*e
RN

- [ Elnerie

Ki-—[ [ T

Ki=-2 [ [ @ o0y

€ JRN JV

Kg:_\/g/RN/ ﬂsv_za_ég*j(v%*)s
/RN/ Z 0*] y¢¢*)s
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and J5 is the sum of two integrals

/ | @ @er ¢*f
RN
3¢
K& = € s 9*] *e
9 \/_ ]RN/ Q = a w ¢
We first observe that K¢ converges to 0. Now, recalling that

—v - Vy (") + Q" (¥y") = 0,

for each = € Q, we have
K: + Kg =0.

Again, we use Lipschitz regularity to show that K5 and Kj converge to

[ ] et 50,070,000 5 (2) dedyde
RN JyY Jv Zi%j

and

K= - [ //v V. (") (0,y,v) u(2) 6(2) dzdydo
- - Z div (1) (0)u° (2) 6(2) dzdydy

respectively. Since we assume that our data are of class C? with respect to the slow variable
x, we have for instance

@9 (2,0) = po* (o, =
0% (h)(=,v) = Q*(0, ) (o,

v) ez Vo () (o, %v) +0(e)

%,v) + /2 V,Q*(0, h) (o, %v) +0(e).

SE
Therefore, the sum K§ + K35 + K: + K is equal to —= + S5 + O(,/¢), where

NG

si=[.f —ffzvv-(zz)()( ) (0. 220)
—u°(z,v)v Za—¢ 9*]¢¢)< ,%,v)
N
g % Q0,070 20,

and

si=[ [ i @oe: Ve (0.220)

N

S ) Y g @0 07 9, 00) (0,200
=l J

HE () 3 g Q)08 0 (S2o0)
];1 J

i (210) Y 5006705 V") (S0,
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Recalling that 6*/ is the solution of the adjoint cell problem (64)
—v -V (Y9*0*7) + Q* (i 0™) = vjy*,

we obtain that S7 = 0. Next, S5 converges to

=),

09
62,’

P (0,0 20 200 (2)

—u (z)Zgi ()0 V(0% T () 0,,0)

b4 I

#0(:) 3 G )z V@0, 00 0.)

0

<j

+u’(2) (2)Q*(0,8% 2 - Vo (v10*))(y, v)dzdydv.

'Efz

<
Il
-

It is straightforward to verify that the last three terms in Sy vanish. After integrating by
parts, we have

Sa =/ //8zi(vi8$j(¢¢*)zju0)¢0 dzdydvz/ div (E*zuo) #° dz.
RN Jy Jv RN

Eventually, passing to the limit yields

Ko+ Jo+Jy+ S+ Ky = Js5,

or equivalently,

0%¢
*] "
/R ) / /V W 2084 (g, 00,05 (0, 9,0) 5 ey

/@ % u®(2)v - Vo) (0,y,0)9* (0, y,v)¢(2) dzdydv
J

/// (A\Zjzizj +m) F(0,9,0",0)(0,y,0")9* (0, y,v)u’ (2)$(2) dzdydv (66)
v
f // div B zu®) — div(J)(0 )uo) #° dzdydv
N v
L] f 0,0, w)b(0, ) (0., )z, ') (2) ddyd.
RN
To conclude the proof, we remark that

/Y/va*jdnp*=_/Y/ij¢¢*0i:_/Y/Vvﬂp*xizﬁji’

which we obtain by multiplying (64) by #7 and integrating by parts. Thus, (66) is nothing
but the homogenized equation (63). O

6 Cell problems with drift

This section is devoted to the so-called drift or f-exponential cell problems, which allow us
to prove that the asymptotic expansions and the two-scale method yield the same results.
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6.1 f-exponential cell problems

Let 6 be a constant vector in RV . We introduce the following §-exponential cell problem

v-V%bg—l—E@Z;a=/Va¢gdv'+)\°°(m,9)/vf¢gdv'

(67)
y > u(e,y,v) exp(6 - y) ¥ — periodic,
and its adjoint problem
—v-Vyy +S¢p = / oy dv' + /\°°(x,9)/ Ay dv’
v v (68)

y = p(x,y,v)exp(—6 -y) Y — periodic.

It is convenient to perform the following change of unknowns ¢y (z,y,v) = g (z,y,v) exp(0-y)
and ¢} (z,y,v) = ¢;(z,y,v) exp(—0 - y). They solve the following problems

U-Vytpe—v-chg-l-Ecpg:fvcrgogdv’-l-)\oo(x,G)/ foodv
v

y = ¢o(,y,v) Y — periodic,

(69)

and

—U-Vygos—v-&ps—l—ilgp;:fvo*gozdv'—l—)\‘x’(a:ﬁ)/ fropdv'
v

Yy = QO; (ZL', Y, U) Y — periOdiC.

(70)

Such problems were studied in [7], where, among other properties, it is proved that, for any
x € , the function 6 — A>°(x,#) admits a unique critical point 6y (depending on z) which
is a maximum and that

Vo2 (2,0) = J(z,0) = /Y /V e (71)

Therefore, 6y is uniquely characterized by J(z,8y) = 0. Our previous notation J(z), defined
by (9), coincides with J(z,0) as defined in (71). Our assumption (H4) just means that for
= x9 = 0 we have 6y = 0.

6.2 On a relation between the limit drift B and the cell drift .J

We are now in position to prove a result announced in remark 2.2, namely that

= 0J;
Bij = 8_37?(1‘ = 0)

Deriving (69) with respect to 6; yields

v-Vy0p; 00 —vips —v 009,09 + 30,00 = /030j<99+>\°°($,9)/f391¢9
v v

+0g; A / fes.
v

(72)

Multiplying by ¢j, and integrating on Y x V' yields

_/Y/ijcpgcpgzagj)\""/y/v</vf<pe> ©p;
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or equivalently

[ i [ ([)s o

Deriving (72) with respect to z;, we obtain

v vyaglﬂfPG - ’Ujaftisoo —U- 083{01‘900 + Zagioﬁ% + aiti 2807‘@9 = / (Uagigng + 8961'0'805 900)
+/\oo/ (f63i0j<p9 + amifa9j<p9) + azleo/ fa9j‘p'9 + 89]'/\00/ (fafl‘z(pe + amifaﬂj‘pé)
Vv 14 14
+6§i9/\°o/ feo.

\%4

We write this equation at (z,6) = (x9,6p) = (0,0). Therefore, assumptions (H3) and (H4)
imply that the terms 0,;A° and 0y, A\*° vanish. Multiplying by ¢j and integrating on ¥ x V'
yields at z =0

//—Ujazﬂpo%"‘zzl@eﬂpo% // /060 ®o) <Po+>\°°/f39 o)
Y JV (74)
+529>\°o///f<ﬂ0<ﬂo

Remember our normalization for the eigenvectors

/Y/V(W)Qdydvzl and /Y/V(/Vfiﬁe)@/};dydvzl.

With this convention, deriving (73) with respect to z; yields

L9 9
Bazi o Bazlaﬁj

(75)

At (z,0) = (0,0), we have obviously 8,,¢p = 1} by comparing (19) and (69). Similarly,
comparing (22) and (72), we have 9,9 = —x?. And thus, (74) and (75) yield

B, = / / (v} + Shxd / ol — X* / P = 8,7,
Y JV \% \%

which is the desired result.

Remark 6.1 If we assumed, instead of (H4), the much stronger assumption that the drift flux
J(x) vanishes in a neighborhood of x = 0, it would be possible to prove in a much simpler way
(avoiding 8-exponential cell problems) that B = V,.J(0) = 0. Indeed, the following equation,
similar to (22) is solvable in a neighborhood of x =0,

U-ij+2)(j:/
1%

ax’ +/\°°(a?)/ X =
v
Thus, differentiating this equation with respect to x; at x = 0 yields

vV X! + X0, % = /
%

00X +>\°°/ fOr X —SiX +/ oix’ +>\°°/ X = vy,
1% 1% 1%

which is also solvable by definition. Therefore, the solvability condition of this last equation
is satisfied, and this precisely means that B;; = 0.

26



6.3 On a generalization of the convergence result

In view of the properties of A>°(x,#), it is natural to replace our hypotheses (H3) and (H4)
by a new one, (H5), which states that there exists a unique couple (zg,68y) € 2 x RV, such
that

0 — A\°°(z, 8) reaches its maximum at § = g

and
(H5) N
x — A (z,6p) reaches its minimum at z = xo

with V, VA% (z0,6) positive definite.

Notice that (H3) and (H4) are indeed equivalent to (H5) when (zq,6p) = (0,0).

We now explain a new phenomenon occurring when hypothesis (H3) and (H4) are not
satisfied, but are replaced by (H5). Of course, we still need the hypotheses (H1), (H2).
Instead of writing the first eigenfunction ¢° of (1) in the form

x

¢ (2,0) = (v, Z,0) u'(@,0),
we introduce a new factorization and write

= _ T £

¢ ($,U) — wﬂo (l‘, gav) UGO(Z‘,U),

where 1y, is the solution of (67). At (zo,6p), by definition we have J(x,6y) = 0, and thus
our whole study is still valid with this new factorization principle. Remark that (H4) was of
crucial importance in the previous section because it was a Fredholm solvability condition,

but it is now replaced by J(xg,00) = 0 which is a consequence of the first assumption in
(H5). Therefore, we can prove that

ug, (z,v) ~ exp (—%{fo)(x —z9) - (- x0> . (76)

We skip the details for the sake of brevity. Formally, this indicates that, in the limit ¢ — 0,
the asymptotic behavior of ¢ is changed and we have

& (z,v) ~ o, (a:o, gv) exp (-eo L ;’“’) exp (-%ﬁ“(m —20) - (z — x0> . (1T

where ¢y, is periodic. Note that the approximation sign in (77) is purely formal and has no
real justification since we can not pass easily from (76) to (77) by multiplying by a function,
exp (=0 - (x — zo)/e), which is widely unbounded as € goes to zero. At least, (77) is an
indication that there is a competition between the concentration term and the drift term and
it seems to induce a new concentration point for ¢°. Formally, (77) suggests that this new
concentration point x; is given by

1 = 2o + M(00)7100,
but a more detailed analysis is required to find the precise value of x1. Remark also that it
is not clear how to check assumption (H5) on specific examples of coefficients.
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