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This paper generalises the notion of two-scale convergence to the case of multiple separated
scales of periodic oscillations. It allows us to introduce a multi-scale convergence method for
the reiterated homogenisation of partial differential equations with oscillating coefficients.
This new method is applied to a model problem with a finite or infinite number of
microscopic scales, namely the homogenisation of the heat equation in a composite material.
Finally, it is generalised to handle the homogenisation of the Neumann problem in a
perforated domain.

1. Introduction

This paper is a contribution to the theory of homogenisation for partial differential
equations (p.d.e.). In many fields of physics, mechanics, or engineering sciences,
physical phenomena occur in highly heterogencous media, the properties of which
vary on many different length scales. Quite often these phenomena are correctly
modelled by a set of p.d.e. at some microscopic level (where there is no heterogeneity),
while the relevant quantities or behaviours which the physicist or engineer wants to
measure or evaluate are intrinsically macroscopic. Between these two levels of descrip-
tion, there may be several orders of magnitude and very complicated patterns or
hierarchies of heterogeneities. Therefore, the direct numerical computation and pre-
diction of effective macroscopic quantities can be very costly or even out of reach.
In this case, it is preferable to analyse further the available microscopic models and
deduce, by some averaging or asymptotic process, suitable ‘homogenised’ macro-
scopic laws.

This is precisely the purpose of the mathematical theory of homogenisation. Three
branches of this theory can be distinguished: the most general is that of G or
H-convergence, which places no restriction on the size or arrangement of the hetero-
geneities (see e.g. [22, 26, 27, 297); the second one deals with probabilistic and stoch-
astic descriptions of heterogeneous media (see e.g. [8,20,24]); the third one is
devoted to periodic structures (see e.g. [5,7,25]). Although the latter approach is
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certainly the less gencral one, since periodicity is a very strong assumption not
always encountered in real media, it has acquired a paramount importance for at
least three reasons. First of all, it is the easiest to work with, thanks to the celebrated
two-scale asymptotic expansions method (consequently, it is the most well-known
among non-mathematicians). Secondly, it can handle very complicated models which
are not amenable to the other methods. Last, but not least, its importance goes far
beyond periodic materials since, in some cases, it has been proved that there is no
loss of generality in considering only periodic media (for example, in the study of
effective properties of composite materials, see the theorems on ‘the local character
of G-closure’ in [14, 17]). There is thercfore a considerable amount of literature
concerning homogenisation in periodic structures (for example, see the formidable
bibliography in [16]). The present paper pertains to that ‘periodic’ approach of
homogenisation.

Let us describe more precisely a model problem in this framework. For example,
we consider a conduction problem in composite material which, of course, is assumed
to have a periodic structure. Denoting by & the microstructure lengthscale, and by
Y=1[0,1]" the reference unit cell, our composite material occupics a bounded
domain Q in R" and has a periodicity of ¢Y. In other words, its conductivity tensor
A,(x), describing its pointwise structure, is given by

A(x,%) for any x € Q, (1.1)

where A(x, y) is the Y-periodic, with respect to the variable y, conductivity tensor in
the unit cell Y. The conduction problem is then to find the potential u, solution of

{_div AVu,=f inQ

(1.2)
u,=0 on 0Q,

where f'e [*(Q) is a given source term. Under a standard hypothesis on the tensor
A, this problem is known to have a unique solution in H}(Q). Its homogenisation
consists in an asymptotic analysis of (1.2) as the parameter ¢ goes to zero. The
sequence of solutions u, is easily scen to be bounded in Hg(Q). Thus, up to a
subsequence, it converges weakly to some limit u. The question is to find which
homogenised equation is satisfied by u.

The answer can be obtained by means of formal asymptotic expansions, but
recently a new method, called ‘two-scale convergence’ has been introduced by Allaire
[2] and Nguetseng [ 23] which, in some sense, is the mathematically rigorous version
of this ‘ansatz’ method. The name of this method makes reference to the two natural
lengthscales in the model problem: the macroscopic one, corresponding to the
x variable in the domain £, and the microscopic one associated to the y variable in
the reference period Y. The very fact that there are only two lengthscales in this
problem has been enforced by the modeclling, somechow arbitrarily. Indeed, there
may well be several microscopic scales instead of just one. For example, just think
of a composite medium made of different types of inclusions in a matrix material,
having different sizes and different periodicities.

Thus, it is very natural to extend the above model to the more realistic situations
where several microscopic scales have to be taken into account (the intermediate
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scales are sometimes called mesoscales). More precisely, denoting by ¢; > &, > ... >¢,
a set of n ordered lengthscales, which all depend on a single parameter ¢, we consider
the same conduction problem (1.2) where the conductivity tensor is now defined by

Ax(x)=A<x,§,...,f), (13)

21 &n

where A(x, yq, . .., y,) is Y-periodic with respect to each variable y,. Of course, each
of these scales is microscopic in the sense that we have

limeg =0 forl<k=n, (1.4)

£ 0O

but we also make a fundamental hypothesis on the separation of scales, namely

&g +1

lim =0 forlsk=n—1. (1.5)
g0 &

This means that each scale can be distinguished from the others, i.c. they are not of
the same order of magnitude. The purpose of this paper is to generalise the two-
scale convergence method, developed in [2] and [23], to the case of reiterated
homogenisation problems (in the terminology of [7]), for the homogenisation of
p.d.e. whose coefficients oscillate periodically on several scales (a model problem is
precisely equation (1.2) with tensor (1.3)). The main goal of this paper is to provide
the main tools of our new multiscale convergence method which is applied to the
above model problem and to a similar problem stated in a periodically perforated
porous medium. Of course, our method could be equally applied to other problems
of greater interest from a physical point of view! We leave this task to some future
work, and we focus here on the mathematical foundations of the method rather than
its applications. Before introducing our main results, we briefly review the state of
the art on this problem. In the case where the scales &, 1 Sk =<n, are successive
powers of the parameter ¢, ie.

g=2¢ for1=k=n, (1.6)

it is not difficult, at least formally, to homogenise problem (1.2) (1.3) by means of
multiple-scale asymptotic expansions. The rigorous justification of this process is
somechow more delicate. It was done by Bensoussan, Lions and Papanicolaou [7],
in the simpler case of two microscopic scales, and it is quite technical since it involves
Meyers’ Theorem (see the second subsection of Section 2 below for a more complete
discussion). When the scales do not satisfy condition (1.6), the generalisation of both
the asymptotic expansions and the convergence proof is not obvious at all. Some
partial results have been obtained by Murat (unpublished), but the general case was
still an open problem. The multiscale convergence method allows us definitely to
solve this question, while keeping the technicalities to a minimum.

Let us now introduce the notion of multiscale convergence and the basic com-
pactness result:
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THEOREM 1.1. Let u, be a bounded sequence in I*(Q). There exist a subsequence (still
denoted by u,) and a function ug(x, yy,...,y,) in IHQ x Y, x ... x Y,) such that

IimJ u,(x)p (x i )dx

e—+0 9] l‘
J J J‘ uO(x ylﬁ"'syn) (x yl:"'syn) dxclyl d (17)
Q JY,

Sfor any smooth function ¢(x, yy, ..., y,) which is Y-periodic for all variables y,. Such
a sequence is said to multiscale converge to uy.

Theorem 1.1 is a straightforward generalisation of the corresponding result for the
two-scale convergence. However, the following theorem is not so obvious, and its
proof is the most difficult (if not important) result of this paper.

THEOREM 1.2. Let u, be a bounded sequence in HY Q). Up to a subsequence, there
exists a function wu(x) in HYQ) and n functions w(x,yy, ...,y in
PO x Y, x ... x Y_q; Hi(Y,)] such that u, multiscale converges to u and Vu, to

Vu(x + Z uk xayls-"syk)'

Of course, u(x) is also the usual lnmt in HY(Q) of the sequence u,. The other terms
in the multiscale limit of Vu, can be interpreted as being the gradient limits at

each scale.
With these results, the homogenisation of problem (1.2)-(1.3) becomes an easy

task, and we shall prove:

THEOREM 1.3. The sequence u, of solutions of (1.2)-(1.3) weakly converges in H(€2)
to the unique solution u of the homogenised problem

{édiv A¥*Vu=f inQQ,

1.8
u=0 on 092, (18)

where the homogenised matrix A* is computed by homogenising separately and success-
ively the different scales, starting from the smallest one ¢, up to the largest one ¢, ( for
details, see Corollary 2.12).

Furthermore, under an additional assumption on the smoothness of the matrix A, we

have

x x
):I —0 in HYQ) strongly, (1.9)

|: o(X) — u(x) — i Fkuk(

where the functions w,, 1 £k <n, are the components of the multiscale limit of Vu,.

rl B

In some sense formula (1.9) gives the leading term of the multiscale asymptotic
expansion of the solution u,. Note that the usual rule of such ansatz suggests that
we should include other terms of the type &f which are smaller than ¢,, but this is
not actually necessary.

Furthermore, following an idea of Bensoussan and Lions [6], we can generalise
Theorem 1.3 to the case where the matrix A,(x) has an infinite number of oscillating
arguments (see the third subsection of Section 2, below).
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To complement our study of the model problem (1.2)—(1.3), we consider a similar
problem in a porous medium, i.c. we replace the domain Q by a multiscale periodically
perforated domain Q,. Actually, homogenisation in porous media (modelled by a
perforated domain) is a problem of paramount importance with many applications
in geophysics or petroleum engineering, and it is another motivation of the present
work. Of course, periodicity is a very crude assumption for modelling porous media,
but our approach has, at least, the advantage of taking in account several lengthscales
of pores (or fractures) as is frequently the case for real porous media. More precisely,
we study the following Neumann problem:

—Au,+u,=f inQ,

1.10
% = on ¢Q,, ( )
on

where the perforated domain €, is defined by its characteristic function y,(x) given

by
X X
1:(x) = 2() 11 (*) . (—)
& &,

where y(x) is the characteristic function of a bounded domain Q, (x(yi))isksn 15 @
family of Y-periodic characteristic functions which corresponds to a family of ‘pat-
terns’ (Y§#),<xsn in the unit cell Y. We assume that for any scale 1<k<n, the
pattern Y#, extended by Y-periodicity in R", yields a connected ‘material’ domain.
However, the ‘holes’ (ie. ¥\ Y#) can be either connected or not. We also assume
that the scales (g);<x<» satisfy assumptions (1.4)-(1.5), and that they are ‘well-
separated’, namely there exists a positive integer m such that

1 fEin V™
limw(rk“) =0 for1<ksn—1. (1.11)

£—=0 & &y

(Assumption (1.11) is stronger than (1.5): see Definition 3.1 for additional comments.)
A well-known difficulty for the homgenisation of equation (1.10) is that the only
available a priori estimate is

lu: |l g1,y = ¢ (1.12)

where ¢ is a constant independent of &. The point is that (1.12) does not imply that
the sequence u, is bounded in a fixed Sobolev space, and thus we cannot extract a
weakly converging subsequence from it. To bypass this difficulty, a possible trick,
due to Tartar (see [27]), is to build an extension operator from H'(Q,) into H'(Q)
such that the extended sequence u, would be bounded in H'(€). This is possible in
the case of a single microscopic scale (see [1, 15]) but it seems to be very delicate
to extend this result to the present situation where there are several microscopic
scales. However, as was recognised in [2], the two-scale convergence method does
not require such extension techniques for the homogenisation of (1.10). Therefore,
without using any extension operator (apart from the trivial extension by 0 in the
holes Q\Q,), we shall prove in Section 4 the following theorem:
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THEOREM 1.4. Denoting by * the extension by zero in the holes Q\Q,, and by 0 the
material volume fraction, i.e.

0= H 7 (Vie) dy,
k=1 Jy

the sequence i, converges weakly in I*(Q) to Ou, where u(x) is the unique solution in
HY Q) of the homogenised problem

—div A*Vu+0u=0f inQ
(1.13)

(A*Vuw)-n=0 on 49,

where the homogenised matrix A* is computed by homogenising separately and success-
ively the different patterns Yi¥ from the smallest one k = n to the largest one k= 1.

Let us now proceed to a brief description of the contents of this paper. The main
results of multiscale convergence are stated in the first subsection of Section 2, while
the second subsection is devoted to the application of these results to the homogenis-
ation of the model problem (1.2) (1.3), and the third subsection investigates the case
of an infinite number of scales. Section 3 focuses on the proof of Theorem 1.2. In
the first subsection of Section 3, a first simplified proof is given in the case of well-
separated scales (see (1.11)). The general case is treated in detail in the second
subsection. Finally, Section 4 generalises the previous results to the case of period-
ically perforated domains and furnishes a proof of Theorem 1.4 above.

2. Multiscale convergence

Main results
This subsection contains the definition and the properties of the multiple-scale
convergence which generalises the previous notion of two-scale convergence, intro-
duced by Allaire [2] and Nguetseng [23]. In the following, we denote by:

Q a bounded open set of RY (N = 1);

n the number of scales, a positive integer;

&1,...,8&, n positive functions of £ > 0 which converge to 0 as ¢ does;

Y;,..., Y, n copies of the unit cube [0, 117

Cy(Y; x ... x Y,) the space of continuous functions @(yy,...,y,) which are

Y,-periodic with respect to all its variables y,, for ke {1,...,,n};

H}(Y,) the space of functions ¢(y,) in Hj,.(R") which are Y;-periodic.
Throughout this paper, we assume that the scales are ordered in such a way that ¢,
is the smallest and ¢, is the largest one:

ASSUMPTION 3.1. The functions ¢, . . ., &, arc assumed to be separated, i.e. they satisfy

hn 2 0 Ykell,....n—1kL
g0 &
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DErINITION 2.2. For any Y,-periodic function (for all ke {1,...,n}) (x, 1, ..., V)
the oscillating function [¢], is defined by:

[wjz(x>=<o(x,§,...,z).

Thanks to Assumption 2.1 on the separation of scales, it is easily seen that, at least
four smooth functions g, the function [¢],(x) will converge to its average

j‘ J\ ';a(x~yls"°-:yn)dyl“'dym
Vi Y,

in the sense of distributions in €. This basic property of the oscillating functions
defined above allows us to introduce the next definition.

DerINITION 2.3. A sequence u, of I*(Q) is said to (n+ 1)-scale converge to
Up(X, V1o os V) € LH(Q x ¥y x ... x V) if and only if

lim J u,(x)[¢].(x) dx
=0 Jo

zf j j “o(sth:---ayn)'P(-’C’}’la "'vyn)dxalyl"'dym
Q JY, ¥

for any function ¢ € I?[Q; Cy(Y; x ... x ¥,)]. We denote this convergence by

(n + 1)-scale
Uy u(}(xﬂ ylv"':yn)'

As for the two-scale convergence, this definition makes sense because of the following
compactness theorem:

TuEOREM 2.4. Under Assumption 2.1 of separation of scales, from each bounded
sequence in [*(Q) one can extract a subsequence which (n+ 1)-scale converges to a
limit upe I2(Qx Y, x ... x ¥,).

We also have a corrector result which involves a strong convergence in L*(().

THEOREM 2.5. Let u, be a sequence of functions in L*(Q) with (n + 1)-scale converges
1o uo(X, Vi, - - ., ¥n) and which satisfies

limo [, [l 2 = | Mo | 22 x v, % ... x 7,)-
o

Then, for any sequence v, which (n + 1)-scale converges to vy(x, ¥1, - .-, V,), one has

HE(X)L’,:(X)A j C j uO(xa ,V1= R yn)v()(x9 Vis oo yn) dyl Sk ¥ dyn Weakly in Ll(Q)
¥, Y,
Furthermore, if ug(x, 1, .. ., y,) belongs to L*[Q; C4(Y; x ... x Y,)], one has

]imo |, — (111l 120y = O-
e

The proofs of Theorems 2.4 and 2.5 are simple adaptations of [2, Theorem 1.2 and
Theorem 1.8] and thus do not deserve to be repeated here. For the sake of the
nonexpert reader, we content ourselves with indicating the key ideas of the proof of
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Theorem 2.4. The first point is to recognise that the integral [, u,[¢], dx is a linear
form on the space of test functions I*[€Q; Cy4(Y; x ... x ¥,)]. Thus it can be identified
to a duality product < y,, ¢> where g, is a bounded sequence of measures in the dual
space of L*[€; Cy(Y; x ... x Y,)]. Since this space is separable, one can extract a
weakly convergent sequence to a limit measure p,. The second key point is to check
that o, @) is a linear form on LXQ x Y; x ... x Y,), yielding that p, is indeed a
function ug(x, y1. ..., y,) in IZHQ x ¥, x ... x Y,). This is due to the following well-
known convergence of oscillating functions (see e.g. [187):

j ([¢].(x)? dx—*J J j (0%, 1, -, v )P dx dy, ... dy,
Q Q JY, Yy

for any ¢ e L*[Q; Cy(Y; x ... x Y,)].

The next theorem, which investigates the casc of bounded sequences in H(Q), is
of paramount importance for applications to homogenisation problems (see the next
subsection).

THEOREM 2.6. For any bounded sequence u, in H'(Q), there exists a function
u(x) € H'(Q) and n functions w(x, yy, ..., y) € P[Qx Y, x ... x ¥,_;; H}(Y,)] such
that, up to a subsequence,

(n + 1)-scale

U, u(x),
(n+ 1)-scale n
Vuz VM(X)+ Z Vykuk{x': Yis-- '1yk)'
k=1
Furthermore, any such (n+ 1)-scale limit (u,u,,...,u,) is attained by a bounded

sequence u, in H'(Q).
THEOREM 2.7. Let &, be a bounded sequence in I*(Q)" which (n+ 1)-scale converges
to a limit Eo(X, yy, ..., y) in P[Q LY, x ... x Y,)V]. Assume that ¢, is divergence-
free, ie.

divé, =0 in Q.
Then, the limit &, satisfies the ‘generalised’ divergence-free condition

div,, é=0,

J J‘ divy, Sodygsy...dy,=0 1ZkZn—1
Yis1 Y,

j J div, &g dyy ... dy,=0.
61 ¥,

Furthermore, any function Eo(X, ¥y, . .., V) in I2[Q; LE(Y; x ... x Y,)V] which satisfies
the ‘generalised’ divergence-free condition is attained as the (n+ 1)-scale limit of a
divergence-free bounded sequence &, in L2 (Q)Y.

RemArk 2.8. There is a subtle point in Theorem 2.7 concerning the periodicity of a
function ¢, satisfying the ‘generalised’ divergence-free condition. This is reflected in
our meaningless notation &y(x, yi,. .., ¥,) € [*[€; L#(Yi % ... x Y)¥]. Indeed, as is
well known, 1? functions do not have trace properties, and the space Lj(Y;) coincides
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with the usual space L*(Y;) in which functions are extended by periodicity. However,
a divergence-free function ¥ € L*(Y,)" has a normal trace ¥ -v in H™"*(@¥;). Thus,
the normal components of the vector field &, must satisfy some type of periodicity
conditions. These conditions are incluced in the ‘generalised’ divergence-frec con-
dition above if equalities are taken in the sense of distributions in RY, or equivalently

J. J &0V 0 dyy...dy,=0 forany pe Hy(Y,) and 1 Sk<n.
Y Y,

More precisely, they are

Egev takes opposite values on opposite faces of ¥,

J e '[ £,+v  takes opposite values on opposite faces of ¥, 1=k=n—1.
Y1 Y,

REMARK 2.9. Contrary to Theorems 2.4 and 2.5, Theorem 2.6 is not a simple general-
isation of the equivalent results available in the two-scale case (see [2, Proposition
1.14]). The proof of Theorem 2.6 is very delicate due to the possible interactions
between the different oscillating scales. This proof is the focus of Section 3. In the
first subsection, an elementary proof of Theorem 2.6 is given under an additional
assumption on the scales (see Definition 3.1 on well-separated scales). In the second
subsection, taking advantage of the insight into the problem provided by the first
subsection, we complete the proof of Theorem 2.6 for any type of simply separated
scales.

REMARK 2.10. Theorem 2.7 is a key ingredient for the homogenisation of Stokes
equations describing the flow of an incompressible fluid. However, this problem is
not addressed in the present paper. Thus, our main motivation for stating this result
is the complementarity of Theorems 2.6 and 2.7. As is well known, ‘gradients are
orthogonal to divergence-free fields’, and in Lemma 3.7 below, we shall prove a
similar result for (n+ 1)-scale limits. In other words, the ‘generalised’ gradients of
Theorem 2.6 are orthogonal in 2[4 L}(Y; x ... x ¥,)¥] to the ‘generalised’ diver-
gence-free fields of Theorem 2.7. This describes completely the set of possible (n + 1)-
scale limits.

Application to the multiscale homogenisation
We immediately apply the results of the previous subsection to a model problem in
homogenisation theory. We consider a conduction problem in a multiply-periodic
domain.

The conductivity tensor of this domain is a matrix-function [4],(x), where
A(X, 1, ..., V) is Y-periodic for all ke {1, ..., n}, not necessarily symmetric, and
satisfies for some f = o >0

W|EP S A, Yy, V) ESBIEPR ae.inQx ¥ x...xY,forany £ e RY.
(2.1)

Since assumption (2.1) does not guarantee that the function [A], is measurable in
Q. we add the following assumption:

[4], € L*(Q)". (22)
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For a given source term fe [X(Q), we consider the following linear second-order
elliptic equation

{dlv [A].Vu,=f inQ, (2.3)

u,=0 on 0Q,

which, as is well-known, admits a unique solution u, € Hj(€2). When the parameter
¢ goes to 0 (i.e. the different scales &;,....¢&, go to zero), it is easily seen that the
sequence of solutions u, remains bounded in H}(€2). The homogenisation problem
for (2.3) is to investigate what is the limit (or homogenised) equation satisfied by
the limit of the sequence u, (if any).

This problem has already been investigated by Bensoussan, Lions and
Papanicolaou in [7], where it is called a reiterated homogenisation problem (see [7,
Section 8, Chapter 7). Let us briefly describe their method: as a first step, they carry
on the homogenisation of (2.3) for a sequence of smooth coefficients matrices A,
which approximate the original matrix 4 as  goes to zero; in a second step, they
show that one can pass to the limit with respect to ¢ in the homogenisation process.

The main tool of their first step is the so-called energy method of Tartar [27], i.c.
they consider a family of test functions w, such that [4,],Vw, has a compact
divergence in H ™ }(Q). They obtain such functions by using an asymptotic develop-
ment based on scales of the type ¢ = &* for all ke {1,...,n}. Remarking that the
homogenisation process with respect to a single scale depends continuously on the
other variables (corresponding to the other scales), they obtained the homogenised
problem for (2.3) by successively homogenising the different scales, from the smallest
to the largest one. The main difficulty in their second step comes from the fact that
the original matrix is not continuous in general, but simply bounded. Since continu-
ous functions are not dense in L, one needs to estimate the difference (A — A4;) in
some IP-norm for a finite p. Thus, to control the energy integral

f [A1.(x)Vu,* Vu, dx,

a better estimate than u, e H}(Q) is required. For this reason, a key ingredient in
their proof is Meyers® Theorem [21], as generalised in [ 7, Section 4, Chapter I7].

The method of [7] is thus very technical and, furthermore, is restricted to the
following situation: the scales are successive powers of ¢ (ie. g = &), and the matrix
A is continuous at all scales but one. For two oscillating scales, Murat has extended
their method to the case of & and &, being well-separated (a stronger assumption
than Assumption 2.1, see Definition 3.1) by using a clever asymptotic expansion
(unpublished). It seems difficult (or, at least, very tedious) to extend this method to
more general situations. On the contrary, the multiscale convergence method covers
a wide range of situations while keeping the technicalities to a strict minimum. In
particular, we will not use Meyers’ Theorem in the sequel. We recall that, as far as
the scales are scparated (sec Assumption 2.1), their choice is completely free.
Concerning the matrix 4, our main results hold in many different situations (sce
Remark 2.13).
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THEOREM 2.11. Under Assumption 2.1 on the separation of scales, and assuming further
that the matrix A satisfies (2.1), (2.2), and the following condition:

(n+1)-scale

[4]. A and lim [[([A]);j ] 2o = | As;ll 726 % RN AT (24)

=0

the solution u, of the conduction problem (2.3) converges weakly to a function u of
HL(Q) and its gradient Vu, (n + 1)-scale converges to a limit

VH(X) % Z Vykuk(xa Visevos yk):
k=1
where (u, uy, ..., u,) is the unique solution in the space
Ve Q) x [] PIAx i x oo X g Hi(Y,)/R] (2.5)
k1

of the so-called (n + 1)-scale homogenised system (composed of (n+ 1) p.d.e)

[ . n
—div, A (Vu(x) + Y Vy,-”j) =0,

F=1

{ divy"[j j A(Vu(x)+ i ijuj)dyk+1...dy":|=0 1sksn—1,
Yi+1 ¥, j=1
-divx[J J‘ A(Vu(x)+ i Vyjuj) a’yl...dy,,};f.
¥y ¥ j=1
(2.6)

COROLLARY 2.12. The limit u of the sequence u, is also the unmique solution of the
‘usual’ limit equation in H(Q)

{—div A*Vu=f inQ,
u=>0 on Q,

(2.7)

where the matrix A* = A¥ is defined by the inductive homogenisation formulae
A:{ =A(x’ ylv .. 1yn)1
AszI?(xvyla--'vyk)

Z
{ obtained by periodic homogenisation of Af, (x, Viso oo Voo —), (2.8)
£

7
A¥ = A% (x) obtained by periodic homogenisation of AF (x, f);
"
in other words:
A= j Aik+1(£+vykuwf+1)dh+1
Yies

for all vector &, with w, ;€ *[Qx Y, x ... X Y; Hi(Y,+)/R] solution of
{divyk+1 I:A;:'*'l(é + V)’k ' 1W-E*”1):| =0 inY L

Wi, Yy.i-periodic.
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REMARK 2.13. (1) We do not know of any explicit characterisation of the matrices
A which satisfy assumption (2.4) in Theorem 2.11. However, apart from A being a
smoth matrix-function, we know several sufficient conditions for (2.4) to hold:

(i) A L[ Cy(¥y x Yo x ... x Y, )I¥;
(ii) Ae L*[Y; Cy@x Yy x ... X Koy x Byp X .o X Y,,)]Nz for 1Zk=n;

the entries of A are finite sums of products of the type
(iii) 8 )
Po(x) n ei(ye) with poe L*(Q) and ¢ e LF(Y,).
k=1
(2) Let us emphasise that Corollary 2.12 shows that the homogenised matrix-
function 4* is obtained by reiteration of n periodic homogenisation problems,
successively from the smallest to the largest scale, as already proved in [7].

The following result is a consequence of Theorem 2.5 on corrector results for
(n + 1)-scale convergence.

THEOREM 2.14. Assume that the solution (u, uy, . . ., u,) of the (n + 1)-scale homogenised
problem (2.6) is smooth, say w, € I*[Q; CH(Y; x ... x )] for all ke {1,...,n}. Then,
one has the following corrector result:

|:u£(x)——u(x)~— Y et (xgi):l 0 strongly in HY(Q).

k=1 1 &k
Proof of Theorem 2.11. From Theorem 2.6, the following convergences hold true, up
to a subsequence,

(n+ 1)-scale
A u(x),

U

(n+1)-scale

Vus Vu(“)'*‘ Z Vykuk(xs yls---ayk)s
k=1

where (u, 4y, ..., u,) € V defined by (2.5).

Let e 2(Q) and ¢, € P[Q: CF(Y; x ... x Y]] for 1 £k =n. Plugging the test
function

q; & z Ek[q?k]a
k=1

into the variational formulation of problem (2.3) gives (with the notation &, =1,
Yo =X)

J\ [A}SVuE'V(§0+ i Ek[wk}a) dx: j [A:[evua‘(vxw-i- i i%[vyﬁﬂk]c) dx
Q k=1 Q

k=1 j=1%j

. f .f'(fp+ 3 ak[gak]a) dx.
Q k=1

Owing to the condition (2.4) satisfied by [4], and Theorem 2.5, the (n + 1)-scale
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convergence applied to the previous equality gives

j J J A(qu+ y Vykuk)-(vxq)+ ¥ Vykgak)dxdyl...dy
o Jy, Y, k=1 k=1
=jj .f f@dxdyl...dy"=jf¢dx. (2.9)
Q Jy, Y, o

By density, the equality (2.9) holds for any (¢, ¢4, . . ., @,) € V. Since A4 is coercive by
(2.1), the bilinear form defined by the left-hand side of (2.9) is coercive on V endowed
with the norm

n
IVelizay+ 2 1V clliz@xy, x ... xxy-
k=1

By the Lax-Milgram Theorem, there exists a unique solution (u, uy, ..., u,) of (2.9)
in V. Thus the entire sequences u, and Vu, converge to their limits. Finally, an easy
calculation shows that the variational formulation (2.9) is equivalent to the system
of equations (2.6), which hence concludes the proof. [

Proof of Corollary 2.12. Let (ey, e,,. .-, ey) be a basis of R". From the (n + 1)-scale
homogenised system (2.6), one can isolate an equation in ¥, for the unknown function
U

—div, A (qu+ 5 Vykuk> =0 in ¥,
k=1

u, is Y,-periodic with respect to y,.

Thus, u, can be computed in terms of the other unknowns (u, uy, ..., t,_):
N ou "2l du;
(3 Vs o5 55 Mk = (%Yl —+ X =), 2.10
(%, y1 Vn) j;l wi(X, ¥y ¥ )(3/‘6,- j§1 6yﬁ) ( )

where each function w;€ L*[Q x Y; x ... x Y,_;; Hi(Y,)/R] is the solution of the
cell problem in ¥,

—div, A(e;+V, w;)=0 1Y,
{ y, Alei +Vy, ) 1<i<N.

Vur—w;  Y,-periodic

Replacing u, by its expression (2.10) in the homogenised system (2.6) and averaging
on Y, we obtain a similar system with one scale less:

—div, | ile(V’M+ZV’1¢) 0,
< [ J A¥ (V u+ Z v, u)dykﬂ .dy, 1]=0,1§k§n—2,
Yk+1

i
—d1vx[.[ j A,Tl(Vu+ZVu)dxdyl...dy,, 1:|=_,1“,
Y, Ypoa i
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where the matrix A¥_, = A¥ |(x, ¥1,..., V,—1) 18 defined by

A¥_je;= J Ale; +V, w;) dy,.
Y,

n

It is a standard matter in homogenisation theory to check that this definition of
A¥_ | coincides with that given in (2.8) and that A ;| is coercive and bounded.
Furthermore, by (2.8) A} , has the same properties of measurability as 4 on
Qx Y, x...xY,_,. Thus, we can iterate the previous process of eliminating and
averaging the smallest scale. By induction on the number of different scales, we
conclude the proof of Corollary 2.12.  []

Proof of Theorem 2.14. Let us first remark that the regularity assumption on
(g, ...,u,)1s required in order to use

n
> [Vl
k=1
as a test function in the (n + 1)-scale convergence definition. Such smoothness can

be casily obtained if the coefficient matrix A is itself smooth in all variables

'(}'1; R 'tyn)'
Let us define r, € H(Q) by

r(x)=u,(x) —u(x) — z": Eplly (x, {, s sy i).
k-1 & Ex

We already know that r, converges strongly to 0 in L*(Q). It remains to prove the
same for its gradient. To do this, we study the limit of

f [Al.Vr,-Vr,dx= j [A],Vu, Vu, dx
Q Q
+ J‘ [4]. (Vu(x)-i— i [Vykuk]a) . (Vu(x)+ Z": [Vykukja) dx
Q k=1 k=1
— J [4],Vu,- (Vu(x)+ i [Vykuk]ﬂ) dx
o k=1

_ j (41, (Vu(x)+ 5 [V,,,(uk]a)-\7':,¢n dx + o(1),
Q k=1

where o(1) is a term which goes to zero as ¢ docs. By using cquation (2.3), the first
term of the right-hand side of the previous equality is precisely

J‘ fu, dx.

Under the smoothness assumption on (uy, ..., u,), we can pass to the (n+ 1)-scale
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limit in the last two terms, yielding

j [A].Vr,-Vr,dx— J Judx
Q Q

- J j j A(Vu+ Y Vykuk)-(Vu+ )3 Vykuk)dxdyl...dy,,.
0 Jr, ¥ k=1 k=1

The right-hand side in the previous convergence is exactly zero by using the homog-
enised equation (2.6). By the coerciveness assumption (2.1), one has

o||Vr,

Fo = J [4],Vr,- Vi, dx
Q
Thus, Vr, converges strongly to zero in [*(Q)". O

Homogenisation with an infinite number of scales

This subsection is devoted to the homogenisation of a second-order elliptic equation
where the coefficient matrix has an infinite number of periodic arguments. If the
matrix is not symmetric, this can be regarded as a convection—diffusion equation for
a passive scalar which is convected by a fixed velocity ficld oscillating on an infinite
number of scales. In some sense, it is a very crude (because of the assumptions of
periodicity and separation of scales) model of turbulent convection.

This problem has already been addressed by Bensoussan and Lions in some
unpublished notes [6]. We revisit their model as an illustration of our multiscale
convergence method. The main point here is that we do not attack directly the
infinitely many scales problem, but rather we truncate the number of scales, homog-
enise, and then pass to the limit as this number goes to infinity. In order to build a
coefficient matrix with an infinite number of arguments, we use a limiting procedure

as in [6].

Let Y=[0, 1]" be a unit cube of R¥. Let «, f be two positive constants such that
0<aZp. Let A"(x, yq,...,¥,) be a sequence of non-necessarily symmetric matrices
having an increasing number of arguments. We assume that they are continuous
and Y-periodic in all the variables (y,...,y,). Furthermore, for all
(%, ¥15- .-, ¥) €Q x Y" we have

x|EF S A", yis. 5 Ya)E ES BIEP YEERY (2.11)
We also assume that this sequence converges to a limit matrix A(x, y,,...) in the

following sense:

* 1
VxeQ, Y(mho1€ Y™, FA(X, y;,...)such that sup |A4;— A=
1<i,j<N n
(2.12)

An example of such a matrix 4 is given by

+ oo
Ax, yy,.. )= 3, 0"B"(X, y1s- s Vahs
n=1

where B” is a sequence of matrices which satisfy (2.11) and 0 €]0, 1[.
Let (& )21 be a sequence of scales depending on a single parameter & which go
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to zero as ¢ does, and assumed to be separated, i.c.

Em2t —0 vk 1 (2.13)

e—0 &

By the above process, we can define an oscillating matrix [4], with an infinite
number of arguments

[A](x) = A (x: N ) (2.14)

1

For a given source term fe [*Q), we study the homogenisation of the following
equation in a bounded domain :
{—div [A],Vu,=f inQ,

2.15
u, =0 on dQ). 2:12)

For any value of £>0, there exists a unique solution u,e H)(Q) of (2.15).
Furthermore, by virtue of (2.11) and (2.12), the matrix [A4], is uniformly coercive
and bounded. Thus, the sequence of solutions u, satisfies the a priori estimate

Il tte [l ryeny = (2.16)

where the constant ¢ does not depend on ¢ Up to a subsequence, u, converges to
some limit u weakly in H(Q). To describe the homogenised equation satisfied by u,
we introduce the truncated problem

{div [A",Vu'=f inQ,

(2.17)
ur=0 on dQ.

The unique solution u} of (2.17) satisfies the same a priori estimate (2.16). Since the
matrix [4"], oscillates with a finite number n of scales, we can apply the results of
the previous subsection (Theorem 2.11 and Corollary 2.12):

ProposiTiON 2.15. For fixed n = 1, the entire sequence ) converges, as & goes to zero,
to a limit u, which is the unique solution of the truncated homogenised problem:

{—div A¥Vu,=f inQ,

(2.18)
u,=0 on 0Q,

where the matrix A¥ is computed by the iterated homogenisation procedure
)

A2=Au(x! qu— . '!yn)s

MmN

Al = ANx, Vis. .., Vu1) homogenised matrix of A> (x, P sos Vimis

)
)i

X z
Af= A¥(x, yi. ..., Vu_y) homogenised matrix of A% ! (x, Viseo o y,,_;c,;),

Ay = Aj(x). (2.19)

~
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The main result of this section is the following theorem:

THEOREM 2.16. The sequence of truncated homogenised matrices AF converges uni-
formly in x to a limit A*(x), and more precisely there exists a constant ¢ such that

sup| 45— (43| S = for ISLj<N. (220
Q

This matrix A* is the homogenised matrix of problem (2.15) since the entire sequence
of solutions u, converges weakly in H3(Q) to the unique solution u of the homogenised
equation

{—div A*Vu=f inQ, (2.21)

u=~0 on ¢8.

ReMark 2.17. For a finite number of scales, the iterated homogenised homogenis-
ation procedure (2.19) can be understood in the following way: first homogenise the
smallest scale (or the fastest variables), then iterate. However, for an infinite number
of scales, there is no smallest scale, and one needs to introduce some kind of limiting
procedure as we did in (2.12) and (2.20). Other choices of approximation for functions
with an infinite number of arguments are possible, but we favour that presented here
because of its simplicity.

Proof of Theorem 2.16. A well-known result of Boccardo and Murat [10] states
that, if M and M$ are two matrices which satisfy

AEPSMEE-ESBIEP VEeRY withO<a B, i=1,2

and which converges in the sense of homogenisation (H or G-convergence, see
[22, 26, 27]) to two limits MT and M%, we have the following inequality:

2
[ MT — M% | o0 = ? 32107 | M — M5 || -
£

Applying this result to [A7], and [4?],, we obtain

BF/1 1
| A — AF Iz = P I_J + g ,
which proves that (4}),=; is a Cauchy sequence in L*(Q). Thus, there exists a limit
A* which satisfies (2.20). We remark in passing that this result could have been
obtained directly by inspecting the explicit formula for the homogenised matrix
A%,

It remains to prove that the sequence u, of solutions of (2.15) converges to the
unique solution u of (2.21). Remark first that, since the sequence of truncated
homogenised matrices A} converges strongly in L*(Q) to the limit 4*, the corre-
sponding solutions u, converge strongly in H(Q) to the solution u of (2.21). More
precisely, we have

e

4y — |l gy = = (2.22)
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Let us estimate the difference (u} — u,):

al| V(u; —u,) 720 = J. (A1 V(@ —u,) - V(ug —u,) dx
o
= j [A"],Vul - V(uy — u,) dx
Q
— j [A],Vu, - V(u —u,) dx
o

+ j [A— A",V V(" —u,) dx. (2.23)
Q

The two first terms on the right-hand side of (2.23) cancel out since they are both
equal to [, f(uf —u,)dx. In view of the a priori estimate satisfied by u; and (2.20),
the last term of (2.23) is bounded by

o~

=~V — u) 2@

=

f [A—A"],Vul - V(u! —u,)dx
o

where the constant ¢ does not depend on n or & Thus, (2.23) yields

oy

|04 — v || ey = = (2.24)

=

Finally, from (2.22), (2.24) and Proposition 2.15, we deduce that the sequence u,
converges weakly in H(Q) to the limit u, solution of the homogenisation problem
(2.21). U

3. Proof of Theorem 2.6

Proof of Theorem 2.6 for well-separated scales

This section provides a simple proof of Theorem 2.6 when an additional assumption
is made on the n scales of oscillations. The general case, which is the focus of the
next section, will be easier to understand after the following case of so-called well-
separated scales.

DerFmiITION 3.1. The scales &, . . ., ¢, arc said to be well-separated if and only if there
exists a non-negative integer m such that

1 o m
lim(g"'-l) =0 Vi<k<n—1.

evoo B\ &g

An example of well-separated scales is given by ¢, = &¢™, where 0 <oy < ... <o,. An
example of scales which are separated in the sense of Assumption 2.1, but are not
well-separated is given by &, =¢ and ¢, =¢|Ing| L.

The following proof of Theorem 2.6 is based on H ™ '-estimates for oscillating
functions with n scales of oscillations which generalise the following classical result:
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PROPOSITION 3.2. For any continuous function ¢(x, y) defined on Q x Y, Y-periodic and
such that

v[ o(x,y)dy=0 for any xeQ,
Y

one has the following estimate

1
i (x, E) is bounded in H™1(Q).
& n

We generalise the result of Proposition 3.2 to the case of n well-separated scales.

TuroreM 3.3. For any ke{l,...,n}, let E, be the set of smooth functions
@(x, V1, - - . » ) with compact support in Q, periodic in (yy, ..., y) and of mean value
zero with respect to the last variable y,, i.e.

E,= {@E@[g; Cy(Y; x ... x Y,)] such that j

Yy

(pdyk=0}. (3.1)

Assume that the scales ¢, ..., ¢, are well separated (Definition 3.1). Then, for any
Sfunction ¢ of E,,

1
—[¢], is bounded in H™*(Q).
Ex

COROLLARY 3.4. Let e @[Q;Cy (Y, x ... x Y,)] be a function such that for
ke{l,...,n}, one has

j j pdy,...dy,=0 (3.2)
Yy Y,

Assume that the scales &, . . ., &, are well separated (Definition 3.1); then
1
N [¢], is bounded in H ().
“k

REMARK 3.5. The assumption on the scales being well-separated is absolutely essen-
tial in Theorem 3.3. A counter-example is given in [12]. However, the key for the
generalisation of the next section is that Theorem 3.3 holds true for a dense subset
of E, without any further assumption on the separated scales.

The convergences of Theorem 3.3 and Corollary 3.4 are stated in H™'(Q) but,
since test functions ¢ have compact support in €, it holds also in the dual of H'(Q).

Proof of Corollary 3.4. Any function ¢ satisfying (3.2) can be written as a sum of
functions ¢; € E;:

‘?’(X,Jha---ayn): Z ggj(x’yl"“’yj)’
ji=k
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where the functions ¢; are defined by the inductive formulae

=0 — f wdyn’
Y.

gaj=‘[ J‘ (odyjﬂ...dy,,—j f edy;...dy, k=j=n—1.
Yiwi Y, ¥ Y,

Since each function ¢; belongs to the space E; defined by (3.1), Theorem 2.3 implies
that

1
e [p;]. is bounded in H™'(Q)
Cj

and hence

1 noel : g e
- [pl.= ) - = [p;]. is bounded in H™4Q). O
k

j=k b &

The proof of Theorem 3.3 requires the following lemma:

LemMA 3.6. For any ke {l,...,n} and any function p € E,, there exists a vector-
Sfunction W € (E)Y such that
div, ¥ =g¢.
Furthermore, one can choose ¥ in such a way that the application S defined by:
Ei—(Ex )N,
g Sp="1¥,

is linear and continuous with respect to the uniform continuity norm on
AxY,x...xY

lell = sup [@(x, y1s-. ., )l
x€E0
y;i€¥;
i.e. there exists a constant ¢ > 0 such that
[Sell sclell.

Proof. Let ¢ be a function of E,. Since ¢ has zero mean value with respect to the
variable y,, there exists a unique function % of the problem

Ayh=¢ inY,
Lo and h dy, = 0.
Ve h  Y-periodic Yu
The operator S is then defined by
Sp =V, h.

By standard regularity results, one checks easily that Sg belongs to (E,)" and that
S is continuous on E; with respect to the uniform continuity norm. [

Proof of Theorem 3.3. The proof is based on an iterative process which has already
been used in [12, 13] for two scales. Let ¢ be a function of E,. Since the average of
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@ with respect to the variable y, is zero, by virtue of Lemma 3.6, there exists Sg in
(Ex)" such that div, Sp = ¢. Then, by taking the divergence of [S¢],, one obtains

1 . P> 1
o [q)]e =div [Sw:lz - (_v}‘) 5 [:T.;w]a: (33)
& &x—1/ &
where T, is the linear operator defined by
; -
T,p =g, div, Sp+ ¥, S—dlvyj Se. (3.4)
i=1 =j

It is not difficult to check that, since the average of Sp with respect to the variable
v, 18 zero, so is the average T,¢. Thus, T,p belongs to the set E,.

Now, remark that in equality (3.3) (1/g,)[T,¢], is a function of the same type as
(1/g.)[@],, but its coefficient (g,/e,_) goes to zero, while the function div [S¢], is
bounded in H Y(Q). Thus, we can apply (3.3) to T,¢ instead of ¢, and reiterating
this process m times, we obtain

1 m=1 & \P .. g \"1
a[(ﬂlﬁ Y (—1)"( ) div [S(T)?e], + (—1)" (;kl) oy (T)"p].. (3.5)

=0 &k -1

since the coefficients (¢, _;/¢;) are bounded in the definition (3.4) of T;, the function
(7;)Fe 1s obviously bounded independently of ¢ in L*(Q), for any integer p.
If m has been chosen such that the scales ¢, and ¢, _, are separated for this value,

ie.
1 e\
lim—( i ) =,
e—=0 & \ & —1

then the right-hand side of (3.5) is bounded in H (), which gives the desired
result. (O

Before proving Theorem 2.6, we need a last lemma concerning divergence-free
functions of several variables and their orthogonal.

LemMa 3.7. Let H be the space of ‘generalised’ divergence-free functions in
LI L3(Y, x ... x Y,)V] defined by

H= {(DEL?[Q; Ly(Y; x ... x T)V]; div, ®=0

andj J divkaJ:OVlgkgn—l}. (3.6)
Yk#l Yn

The subspace H has the following properties:
(i) 2[ CP (Y, x ... x Y,)]"nH is dense into H.
(ii) The orthogonal of H is
H' = {Z V, 4% Y1y, i) With g e P [Qx ¥y x ... X Yo y; H#(Yk)]}.
k=1
(3.7)
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RemARk 3.8. The divergence-free conditions in definition (3.6) of H have to be
understood in the sense of distributions in RY, or equivalently, ® € H if and only if

j f OV, pdxdy,...dy,=0 foranype Hy(Y) and 1=k=n-L
Yy Y,

(3.8)
Proof of Lemma 3.7. Tt is easy to check that regularisation by convolution with a
smooth function which is Y,-periodic in y, for each k € {1,. .., n}, preserves condition

(3.8) and thus the ‘generalised’ divergence-free condition. Then, by another regularis-
ation by convolution with respect to variable x (which obviously preserves the
divergence-free condition), we obtain the density result (i).

To check property (ii), we remark that H = N}, Hy, where

Hk={<I)EL2[Q;L$(Y1x...><Y,,)N];J j divykil)dyHl...dy,,:O}.
Yt Y
(3.9)

By a well-known result of De Rahm (see [ 28] for an elementary proof or use Fourier
analysis to re-derive it in our context), the orthogonal Hj is simply defined by:

Hi = {V,,q(x, y1,-- -, ) With g€ P[Q x ¥; x ... x Yy H(K)}.

Then, the final result (3.7) can be written H* = X}_, Hi". From definitions (3.6) and
(3.9), it remains to prove that

n L n
(m Hk) 3 HE
k=1 k=1

By a classical argument, this is equivalent to checking that the subspace X, H is
closed, since each subspace H, is closed. Let us indeed show that

Y H=I¥Qx Y, x...x YV

k=1

Let Oe (A x ¥, x...x Y,

cpzf qady,,+(«1>—j (I)dy,,),
¥, Y,

n

~. one has

where the first term on the right-hand side belongs to H, (because it does not depend
on y,) and the second term to H, ;. Thus, H,+ H, ;= ZQx Y, x ... x Y)Y which
concludes the proof. [

Proof of Theorem 2.6. Since the function u, is bounded in H Y(Q), by application of
Theorem 2.4, there exist two limits ug(x, ¥y, ...,y € A x ¥y x ... x Y,) and
EolX, Vise.or V) €ELHQ x ¥y x ... x Y,)¥, such that, up to a subsequence,

(n+ 1)-scale
Uy— Uy,

(n+1)-scale

Vu,——~ &,

Let us prove in a first step that u, does not depend on the variables yy,. ... y,.
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First step. Let @ e D[Q; CF(Y; x ... x Y,)]". By integration by parts, one has

&, J Vu,-[@], dx = —z¢, J u[div, @], dx
Q

Q

nl(-

) .[ u,[div, @7, dx— f u,[div, @], dx.
Q

k=1

Then passing to the (n + 1)-scale limit in the previous equality yields

‘[ J‘ f up div, ®dxdy;...dy,=0.
Yy

Thus, u, does not depend on y,. Now, we choose a test function ® which does not
depend on y, too. Repeating the same argument, we obtain that u, does not depend
on y,_,. By induction, we deduce that u, depends only on x.

Second step. Let us characterise &y(x, vy, ..., ¥,) the (n+ 1)-scale limit of Vu,. Let
D e Z[Q; CP(Y; ... x Y,)]" be a smooth function satisfying the ‘generalised’ diver-
gence-free condition (3.6). By integration by parts, one has

n—1 ]
J Vu [P], dx = — J‘ u[div, @], dx — ) = j u [div, @], dx, (3.10)
Q Q Q

k=1

since div, ® = 0. The function div,, ® satisfies the assumptions of Corollary 3.4, ie.

.[ j div, ®dyx,q...dy,=0,
e Y,

thus

Er+1

is bounded in the dual of HY(Q). Since

. fptt | S
lim =0, . [div, @],
*k

=0 &

converges strongly to zero in the dual of HY(Q) for 1£k=<n—1. By using the
previous strong convergence and by passing to the (n + 1)-scale limit in (3.10), one
obtains

JJA j éo'Qdy,...dyn=—fJ .[ ug div, ® dx dy, ... dy,,
o Jy, Yn o Jy, Y,

which implies that u, e H'(Q). Another integration by parts on the right-hand side
with respect to x yields

.[f j (Eo—Vug) - ®dy,...dy,=0
o Jy, Y,

for any @ e 2[Q; CF(Y; % ... x Y,)]VnH.
By the density result (i) of Lemma 3.6, this is true for any ® € I, thus &, — Vu, € H*.
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In view of the definition (3.7) of H*, this proves that

(n+1)-scale
Vu, §o= Vuo(x) + Z 0, Wiy v Vi
with (X, y1, .-, ) e P[Ax Y x ... x K -pH#(Yk)]N for1sk=n
To conclude the proof of Theorem 2.6, it remains to check that any (n + 1)-scale
limit (u, uy,...,u,) is attained. For smooth periodic functions (u, ..., u,), this is

obvious by simply taking
- X X
ue(x)=u(x)+ Z Ep Uy (xs_s' ":)-
k=1 &y "

Since smooth functions are dense in I*[Q x ¥; x ... x Y,_; H{(Y,)]", a standard
diagonalisation argument shows that the same is true for any (n + 1)-scale limit (see
[2, Lemma 1.3] for details in the two-scale case). [

Proof of Theorem 2.7. Let &, be a bounded sequence in I*(Q)" such that

divé,=0 inQ
and
(n+ 1)-scale
éc—ﬁ fo(xv Yir---s yn)

Multiplying the divergence-free equation by & [¢],, where ¢(x, yy, - . ., y,) is a smooth
periodic function with compact support in Q, yields

lim | &, -V(e[e]l,)dx= j JA J &V pdy,...dy,=0.
=0 Ja o Jr, ¥,

Since the choice of ¢ is arbitrary, another integration by parts gives
f .[ div,, o dygsr..-dy,=0 forany lsksn—1.
Yier 1 Yn

Similarly, by taking a test function ¢(x), we get

J J div, &y dy, ... dy,=0.
% Y,

To complete the proof of Theorem 2.7, it remains to prove that any function
Eye [P[Q; LE(Y, x ... x Y,)]" satisfying the ‘generalised’ divergence-free condition is
attained as an (n + 1)-scale limit of a divergence-free sequence. Let us assume for a
moment that &, is a smooth function. Obviously, the sequence defined by

£,(x) = [&1u(¥) = & (x, = ,f)
& &,

(n + 1)-scale converges to &,. However, £, is not divergence-free in Q.

To remedy this inconvenience, we recall that L*(Q)" is the direct sum of diver-
gence-free functions and gradients of Hy(€) functions. Thus, there exists a unique
decomposition

ée =V, + vp,,
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where v, is a divergence-free, bounded sequence in L*(Q)", and p, is bounded in

HL(Q). The sequence v, (n + 1)-scale converges to a limit v, which obviously satisfies
the ‘generalised’” divergence-free condition. By virtue of Theorem 2.6, the sequence
Vp, (n+ 1)-scale converges to a ‘generalised’ gradient limit which is precisely ortho-
gonal to all ‘generalised’ divergence-free fields. Thus, we conclude that v, is equal to
&, which is therefore attained by the divergence-free sequence v,. In the case where
&, is not a smooth function, a standard diagonalisation argument achieves the proof
(see [2, Lemma 1.13] for details in the two-scale case). [

Proof of Theorem 2.6 in the general case

The aim of this subsection is to generalise the results of the first subsection in the
case where the scales are simply separated (Assumption 2.1) and not necessarily well
separated (Definition 3.1). The key ingredient for the proof of Theorem 2.6 in the
case of well-separated scales is the H ~!-estimate of oscillating sequences provided
by Theorem 3.3. As already seen in Remark 3.5, such an estimate does not hold true
in general for simply separated scales. However, the following result extends
Theorem 3.3 for a strictly smaller class of test functions.

THEOREM 3.9. Let F, be the set of smooth functions @(x, yy,...,y,) with compact
support in Q, periodic in (yy,...,y:), of mean value zero with respect to the last
variable y,, and satisfying a growth condition with respect to the variables

(Bigoes s Wi Jo BiC.
dy, =0,
Fo=\pe2[Q CP (Y, x ... x Y)]; Lkga Ve ,
36>0,YpeN*| V| + V'V, p| <67
(3.11)

where VP denotes all the derivatives until the pth order with respect to the variables
(Vis-+v»s Vi1). and ||| is the uniform continuity norm, i.e.:

lell = sup |@(x, yi,--., ¥i)l-
xeQ

y;€Y;

Assume that the scales ¢4, . . ., &, are simply separated (Assumption 2.1). Then, for any
Sfunction ¢ of F,

1 ) -

. [¢]. is bounded in H™(Q).

k

COROLLARY 3.10. Let p € Z[Q; CF (Y, x ... x Y,)] be a function such that, for a given
index ke {l,...,n},

j f ody,...dy,=0 and 36>0, VpeN*|VPp| + |VPV,.p| <7,
Yy Y,

where V? denotes all the derivatives until the pth order with respect to the variables
(V1> Vas- -5 Vu1). Assume that the scales &, ...,¢, are separated (Assumption 2.1);
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then
1 . :
= [p]. is bounded in H™ ().
"

Proof. The proof of Corollary 3.10 is a simple adaptation of that of Corollary 3.4,
so we omit it. [

The class of functions which satisfy the growth condition introduced in
Theorem 3.9 and Corollary 2.10 is far from being empty. Indeed, all functions which
are partial sums of Fourier series with respect to the variables (yy, V2, ..., V,) satisfy
such a growth condition. Furthermore, they form a dense subset of the space H
defined by (3.6), as stated in the next lemma.

Lemma 3.11. Let us again consider the space H of ‘generalised’ divergence-free func-
tions, defined in Lemma 3.7. Let K be the subspace of H composed of smooth functions
O(x, y1,-..,¥,) satisfying a growth condition with respect to the wvariables
(yl’ Yasoons yn—i)? Le.

K={®eD[QCP(Y,x...x Y,]"AH; 36>0,Vpe N*|V?D| + | V?V,® | < 57},
(3.12)

where VP denotes all the derivatives until the pth order with respect to variables
(V1> V2s -+ +» Vu_1)- Then, K is dense into H.

Proof. By Lemma 3.7, the space @[Q; CP(Y; x ... x Y,)]¥nH is dense into the
space H. Furthermore, the subspace of #[€; C°(Y; x ... x Y,) IV~ H composed of
partial sums of Fourier’s series with respect to the variables (y,, ¥, ..., y,), is dense
into Z[Q; CP(Y; % ... x Y,)]VnH, since the convolution by the Dirichlet’s kernel
preserves the ‘generalised” divergence-free condition. Finally, it is easy to see that the
partial sums of Fourier’s series with respect to the variables (yy, y,,...,Y,) and
which belong to Z[Q; CF(Y; x ... x Y,)]Yn H, satisfy the growth condition (3.13),
which concludes the proof. [J

Proof of Theorem 2.6. If we assume for a moment that Theorem 3.9 holds true, the
proof of Theorem 2.6 in the general case of separated scales is simply a repetition
of that in the case of well-separated scales (see the first subsection). The only change
is that the test functions are chosen in the space K defined above in Lemma 3.11.
Since K is dense in H, this does not change the conclusion of Theorem 2.6. []

Finally, it remains to prove Theorem 3.9. We are going to adapt the ideas of
Theorem 3.3 for the special test functions satisfying the growth condition (3.11). We
begin with a lemma which generalises Lemma 3.6 to the present setting.

Limma 3.12. Letke {1,...,n}. Let S be the linear application from E, to (E,)¥ defined
in Lemma 3.6, and such that, for any ¢ € E;, one has

div,, Sp =¢.
Then, for any value of (ay, ..., ax_,) in [0, 17¢ %, a linear operator T from F, into F,
(see (3.11)) is defined by

k-1
Tp= 3 a; div,, Sg, (3.13)
j=1
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which satisfies the growth condition

| T?p|| < c?| VP and | div,(ST?)| <" | V'Vepll VopeF, VpeN,
(3.14)

where VP denotes all the derivatives until the pth order with respect to variables
(V1> ¥as--+sVi_1), and the norm ||| and the constant c (independent of the values
Qy,...,0,_,) are the same as that of Lemma 3.6.

Proof. Let p € F, and W = Sp € (E,)". The proof is divided into five steps.

First step. Let 8° be a partial derivative of pth order with respect to the variables
(¥1> Y2s+++» Yi—1), and @, be a partial derivative of first order with respect to the
variable x. Let us prove that

P08 =8§0dP, 0,08 =808, OxoT=Tod,. (3.15)
From the definition of operator § in the proof of Lemma 3.6, one has
¥ =Sp =V, h where A, h=¢, then 0¥ =V, (¢"h) where A, (07h) = 7.

Thus 87(Sp) = S(8”p), which proves the first commutation in (3.15). The proofs of
the other ones are similar.

Second step. Let us prove that
[Tell <clVel. (3.16)
The following upper bound holds:

k—1

| Te| < Z a;||div, ‘¥| where ¥ =S¢

since 0=a;=1

Z Il div,, ||_
i= Jj=

dp
Oyﬂ

=c¢||Ve| by virtue of Lemma 3.6,

J

k—
=
J’lll

<% %e|;

which concludes the second step.

from (3.15)

J'l

Third step. Let us prove that
IVP(Tp)| =c|V" ol VpeN. (3.17)

Let @7 be a partial derivative of pth order with respect to the variables
(s Vs o3 Vel

Ex1
(Tp)= ), a;div, (0*¥) where ¥ =S¢
j=1
k-1
= ), a;div, S(0%p)=T(0%¢) from (3.15).

ji=1
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From the previous equality and (3.16), one deduces
12°(Tp) | < c || V(ePp)|.
By adding the previous equalities for all the partial derivatives 8%, one thus obtains
(3.17), where the constant ¢ is precisely the same as that in (3.16).
Fourth step. Let us prove by induction that
I TPl =c?([VPp|| VpeN. (3.18)
Estimate (3.18) is true for p equal to 1 owing to (3.16). Assume that it is true for
p — 1; then:
1T = T? " {(Tp) | < c*~1|| V2" (Tp)|| < || VPp|| by virtue of (3.17).
Thus estimate (3.18) is also true for p.
Fifth step. Let us prove that
Idiv, (ST?p)|| < c?**|VPV,0| VYpeN. (3.19)
One has
. N
Idiv. (ST?0)[| < X

i i=1

N
18:(ST?p)|| = . [ST?(d,,9)| from (3.15)

1 i=

N

Zc ) | T?@,,p)| by the properties of S

i=1

N

=™ Y IVP@,,9)|  from (3.18)

i=1
=" VPV, 0.

This proves (3.19) which, combined with (3.18), is nothing but (3.14). Finally, as a
direct consequence of (3.15), the function Ty satisfies the growth condition (3.11)
which proves that T maps F, into F,. O

Proof of Theorem 3.9. Let ¢ be a function of F, defined by (3.11). By definition,
there exists d > 0 such that

VP [ + IV*V.pll 267 VpeN* (3.20)

Let ¢ be the constant in Lemma 3.6 and 3.12. For sufficiently small ¢, from Assumption
2.1, we deduce

Bk — 1
%lg) vigjgk—1 and o5 =r <<, (3.21)
& €1 2
By taking the divergence of [S¢],, one has
1 . . & 1
— [pl; = div [S¢], — [div, Sp]. — (| — | — [T.¢l.. (3.22)

where T; is the linear operator defined by

k'—lg _
Tp=Y —’; - div,, Sp.
j J

j=1
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In passing, we emphasise the differences between the above definition of T; and (3.4),
which was introduced in the first subsection for well-separated scales. Here, the
operator T, does not include any term of the type div, S¢, because we do not control
any growth condition on iterated derivatives with respect to the variable x. Then,
as in the proof of Theorem 3.3, iterating (3.22) m times yields

1
g—k[#?]s Z (—=1)? ( ) (div [S(T,)%¢], — [div, (S(T;)"9)].)
o (Y Ly 323
+(=1) (g) 51([( el (3.23)

To estimate the norm of (3.23) in H™}(Q), we remark that, since Q is bounded, for
any smooth vector-function W(x, yy, . .., ¥) periodic in (yy, ..., yi), one has

1D Jell2 + Ndiv [¥ Tl a2y = CEQ) P, (3.24)

where C(Q) is a constant which only depends on Q and |-|| the usual norm in
L®(@Q x Y, x ... x Y,). Thus, by integrating by parts the terms div [S(T;)"¢],, we
deduce from (3.23) that

1 1 m
— Il a0 < C@ [— (i) 1Tl
k &k

Ep-1
% Z (k 1) (IS(T)%e |l + Il div, [S(T;)” ?’]li)}

combined with (3.14), it yields

1 1/ g \"
— gy Z2CQ) | —(— ) "|V™
0Ll S ()Lk(6 ) e[Vl

k—1

m—1 & P
+ 3 (m—) cf’“(|vw1|+||wvx¢||)].
p=0 \&k—1

By using (3.20) and (3.21), we finally obtain

1 1 m—1
E_k [ [el:la-10 = CE) [8_1; "+ cllell+ 1 Vee )+ C(?'s)pj|

p=1

e 325
l—r}' (325)

&

1
=CQ) [;{ ro" +clllel + [Viel) +

For fixed ¢, we let m go to infinity in (3.25). Since r, <3, this proves that

1
— I [pJe -1
&

is bounded in H~Y(Q) independently of ¢, which concludes the proof. [J
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Finally, we remark that letting ¢ go to 0 implies that r, goes to zero too, which
yields the following estimate:

|
im = el = cCQ(lel + Vsl
£=0 &

where ¢ is the constant defined in Lemma 3.6 and 3.12, and C() the constant
defined in (3.24).

4. Multiscale convergence for perforated domains

This section is devoted to the generalisation of the results of Sections 2 and 3 to the
case of periodically perforated domains. Our main result is a homogenisation theorem
for the Neumann problem in a multiscale, periodically perforated domain. This result
is obtained by application of the multiscale method, and we emphasise that no
extension operators are required and that there is no restrictive geometrical assump-
tion on the perforations. Homogenisation of the Neumann problem in simply period-
ically perforated domains has many applications and has been widely studied (see
[1-3,157, and the references therein). We believe the present paper is the first to
address the Neumann problem in domains perforated on multiple scales, although
we know of some published work for the Dirichlet problem in perforated domains
with double periodicity (see [19]), and the ongoing work of Mekkaoui and Picard.

Main results

We keep the notation of the previous sections and we add the following: for each
scale ke {1,...,n}, the unit cell Y is divided in a material part Y} and a hole T;:
Y¥ is an open subset of Y, and T, = Y\ Y. We denote by x,(y,) the Y-periodic
characteristic function of the material part Y#, extended by Y,-periodicity to RY. We
denote by Ey(YF¥) the open set obtained by periodic repetition of Y}, ie.

EY¥) = {yeRY% n(y) =1}
Throughout this section, we assume that the material parts are connected:

AsSUMPTION 4.1. E4(YF¥) is a connected open set of RY, with a Lipschitz boundary,
for all ke {1,...,n}. (The holes E4(T;) can be either connected or not.)

As usual, we denote by H}(Y#) the set of functions ¢(y,) in Hi,.[E4(Y#¥)] which
are Y,-periodic. Then, we denote by Z4(Y¥) the set of periodic smooth functions
o(y;) in CF (), such that, extended by Y;-periodicity to RY, their support is contained
in E4(Y¥) (in other words, these functions have compact support in the image of
Y in the torus). We are now in a position to define our multiscale perforated domain.

DerFINITION 4.2. Let Q be a bounded set of RY, with a Lipschitz boundary. From the
fixed domain Q, we define a multiscale perforated domain Q, by

k=1
In other words, we have
Q, = {xeQ[xl.(x)=1},
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where y(y;,...,»,) 1s the multiscale characteristic function

H X (Vie)-
k=1
In this perforated domain Q,, we consider the following Neumann problem

—Au,+u,=f inQ,

) 4.1)
o on 89, (

which has a unique solution in HY(,), for a given source term fe I[*(Q). From
equation (4.1), we easily obtain an a priori estimate
I, llme, S ¢, (4.2)

2) T

where the constant ¢ does not depend on & The homogenisation problem for (4.1)
is to investigate in which sense the sequence u, converges to a limit u, and what is
the homogenised cquation satisfied by u.

REMARK 4.3. The Neumann problem (4.1) has many variants. For example, we could
have replaced, with no further difficulties, the Laplacian by an oscillating second-
order elliptic operator as in Section 2. It is also possible to replace the single
Neumann condition on 4€),, by a Dirichlet condition on ¢Qn9dQ, and a Neumann
onc on dQ,\0Q (see [3] for details in the two-scale case). For simplicity, we focus
on the simple problem (4.1), which contains a zero-order term, in order to easily
derive the a priori estimate (4.2).

A classical difficulty with homogenisation in perforated domains is that the
sequence of solutions u, is not bounded in a fixed Sobolev space independent of e.
Consequently, we cannot extract a converging subsequence for some usual weak
topology. One way to circumvent this problem is to define a bounded extension
operator from H'(Q,) into H'(Q) (see [1,15]). Another approach is given by the
multiscale convergence method, which allows us to extract converging subsequences
(in the sense of (n + 1)-scale convergence) from the a priori estimate (4.2) in H'(Q,),
without using any cxtension techniques (apart from the trivial extension by zero in
the holes Q\Q,).

The main result of this section is the following theorem:

THEOREM 4.4. Assume that the scales ¢y, . . ., ¢, are well separated (see Definition 3.1).
Denote by * the extension by zero in the holes Q\Q,. The sequences ii, and Vu, (n + 1)-
scale converge, respectively, to

n
X(ylu SR yn)u(x) and to X(yl’ 3 M yn) I:Vu(x) 2 Z Vykuk(x’ yls ey J)k)}
k=1
where (u, uy, ..., u,) is the unique solution in

V*=H'Q) x [] IA[Q x Y x ... x Y& ;; HY(YZ)/R] (4.3)
k=1
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of the n+ 1)-scale homogenised system

—d1v (Vu )+ Y V,u )— in Y*,
j

1

(Vu ) v=0 on 0T,

fdivhU '[ (Vu(x)+ 5 Vyjuj) dyk+1...dy,,:| —0 inY}
9 Y rx i=1

1fkEn—1,

|:'[ j (Vu(x)+ i Vyjuj) dyy 44 ...dy,,:| -v=0 ondT,
) £ s i=1

[J . J I:—divx (Vu(x) + i V),J_uj) + u(x)f(x)] dy,...dy,=0 inQ.
~ Yf Y: J=1

(4.4)

Denoting by 8, the material volume fraction at the kth scale (ie. 6, =|Y}|), we can
eliminate the microscopic variables to get the usual homogenised equation.

COROLLARY 4.5. The (n+ 1)-scale limit u(x) of the sequence u, is also the unique
solution in HY(Q) of the homogenised problem

{—div (A*Vu)+0u=0f inQ,
(A*Vu)'n=0 on 09,

where 0 = IT}_, 0, is the overall volume fraction of material, and A* is the homogenised
matrix defined by the inductive formulae

A¥ =1d,
AF = periodic homogenisation of A,y inY¥, 1=k=n-—1, (4.6)

(4.5)

A* = periodic homogenisation of A in Y¥.

In other words, we have, for any & € RY,

Al = Af(E+ yk,lwz+l)dyk+-1:

Yy
with w§ ., the unique solution in Hy(Y},,)/R of
{ dlvy,,+1 [Af .+ ykﬂwk+1)] =0 in Y,
[Ak+1(g+vyk+1wh+l)] v=0 on 0T, 4.

The key ingredient for proving Theorem 4.4 and Corollary 4.5 is the following
generalisation of Theorem 2.6 about (1 + 1)-scale convergence of gradients in perfor-
ated domains:

THEOREM 4.6. Assume that the scales ey, . . . , &, are well separated (see Definition 3.1).
Then, for any sequence u, bounded in H'(Q,), namely

(78 ||Hl(sz£) L,
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where ¢ is a constant independent of &, there exists u(x)e H(Q) and n functions
w (%, Yy oo yi) in P[Qx Yy x ... x Y, y; HY(Y¥)] such that, up to a subsequence,
we have

D geale
us——S& X(yls waey yn)u(x)':
- (n +1)-scale n
Vi, A(V1s-- s V) [Vu(x)+ 2 Vo yis - W) |-
k=1

REMARK 4.7. The proof of Theorem 4.6 (see the second subsection) is not a straight-
forward generalisation of that of Theorem 2.6. Of course, if we assume the existence
of a bounded operator from H(Q,) into H'(Q) then Theorem 4.6 is a direct conse-
quence of the previous results of Sections 2 and 3. In the present situation, it seems
quite intricate to build such an extension operator. Thus, the main interest of
Theorem 4.6 is that it does not require any extension operator. Remark also that
this difficulty of working in perforated domains forces us to assume that the scales
are well separated in the sense of Definition 3.1. Our method of proof does not work
in the case of simply separated scales, because we use test functions which vanish
on the holes boundaries, and thus cannot satisfy a growth condition as (3.14).

Proof of Theorem 4.4. The proof is very similar to that of Theorem 2.11. Thanks to
the a priori estimate (4.2) on the sequence u,, we can apply Theorem 4.6. There
exists (u, uy, ..., u,) € V* (defined by (4.3)) such that, up to a subsequence,

(n+ 1)-scale
Uyy———m X(yls saiey yn)u(x)1

(n+1) 4
= -scale
Vu,

¥(Viseres Vn) |:Vu(x) + 2‘1 Vi Ui (X, Y1 e s yk)}
Let us fix a test function
(@, 01> 0a) € CP(Q) X kljl CPI CPN: % s X RY:
Multiplying equation (4.1) by
¢+ ki:l A

taking into account the Neumann boundary condition, we obtain

j Vu,: (wa 2 [Vykcﬂk]e) dx + j U dx = J fodx+o(1), (47)
Q, k=1 Q, Q,
where o(1) denotes a term which goes to zero as ¢ does. By introducing the character-
istic function ¥(y,,...,y,) and the extension * by zero in the holes Q\Q,, we can
replace Q, by Q in the integrals of (4.7):

I Vua'(Vx€ﬂ+ i [Vyk(ﬂk]a) dx + J By dx = j Lxlefp dx + o(1).
Q Q Q

k=1
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Then, passing to the (r + 1)-scale limit yields

f J j (qu+ X Vykuk)- (V,ga-i— Y Vykqak) dx dy, . ..dy,
Q Jr¥ Y k=1 k=1
+jf J u@dxdyl...dy"=Jj J fodxdy,...dy,.
Q Jy Y* Q Jrf Yy

By density, this equality holds true for any test function (¢, ¢4,...,¢,) in V* This
is nothing but a variational formulation for (4.4) which, therefore, has a unique
solution. Thus, the entire sequence u, converges to its solution. [

The proof of Corollary 4.5 is an easy exercise which can safely be left to the reader
(see Corollary 2.12 if necessary).

Proof of Theorem 4.6
This subsection is devoted to the proof of Theorem 4.6 concerning the (n + 1)-scale
convergence of gradients in perforated domains. The proof is similar in many respects
to that of Theorem 2.6. However, since it is based on successive integrations by
parts, a new difficulty arises here which is connected to the boundary terms produced
by these integrations by parts. To get rid of them, we shall use test functions which
vanish, as all their derivatives, near the holes boundaries.

To begin with, we introduce some notation which makes life casier when stating
our results.

DEFINITION 4.8. A sequence @, of L(€,) is said to be bounded in H; ' if and only if
there exists a positive constant ¢ independent of ¢ such that

f p.udx
QE

In some sense, Definition 4.8 means that the sequence ¢, is uniformly bounded in
the dual space of H'(Q,).

We are now in a position to state two results on oscillating functions which are
crucial for the proof of Theorem 4.6 (they are similar to Theorem 3.3 and
Corollary 3.4).

<clullgyq, for any ue HY(Q,).

TuEOREM 4.9. Let D* be the set of smooth functions @(X, Yy, ...,¥,), periodic in

(V15 - - - s Va), with compact support in  and compact support in the image of Y§ in the
torus with respect to the variable y,, for all ke {1,...,n}, ie.
D¥ =G Dy(YT x ... x Y}l (4.8)

Foranyke {1,...,n}, let E¥ be the subset of D* composed of functions ¢(x, yy ..., ¥u)
with mean value zero with respect to the variable y,, i.e.

Ef = {qo € D* such rhatj pdy, = 0} . (4.9)

Yi

Assume that the scales &, . ... &, are well separated (Definition 3.1). Then, for any
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function ¢ in E¥,
1
~[¢]. is bounded in H, '
£

(see Definition 4.8).

COROLLARY 4.10. Let g€ D[Q Zy(YF x ... x Y¥)] be a function such that, for
ke{l,...,n}, one has

J J pdyy...dy,=0. (4.10)
v i

n

Assume that the scales ¢, . . ., &, are well separated; then
1 . ) 5
— [@], is bounded in H_ *.
&

REMARK 4.11. We emphasise the difference between the set Ejf defined above by
(4.9) and the previous set E; defined by (3.1): the elements of Ef depend on all
variables (y,, ..., y,) and not only on (yy, ..., y;) because they must vanish on the
holes boundaries at all scales.

Proof of Corollary 4.10. Fix k € {1, ..., n}. Since the material parts Y} are nonempty,
there exist (n — k + 1) functions (0, . . ., 0,) such that

;€ Zy(Y¥) and J 0;dy;=1 forjefk,...,n}.
Ty
Then any function ¢ satisfying (4.10) can be written as a sum of functions ¢;:

W(x7y11"'7yn)= Z wj(xa J’1, s.e syn)s

i=k
where the functions ¢; are defined by the inductive formulae

(
¢n=¢9nj @ dy,,
Y,

n

J%“'(Ujal---gn)j

Y

J edy;y-.-dy,
Y,

—(0;...0,) j pdy;...dy, kZj=<n-—1
\ Y; Y,

Each function ¢; belongs to the space E¥ defined by (4.9) and Theorem 4.9 implies
that

1
. [¢;]1. is bounded in H .
i

Hence,

1 nog ]
—[el.= Y 2 =[p,], is bounded in H; ' []
“k

i=k bk &
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As for Theorem 3.3, the key ingredient for proving Theorem 4.9 is the existence
of “special” solutions of the divergence equation:

div, ¥=¢ inQx [] Y¥. (4.11)
k=1

More precisely, given a smooth right-hand side @, having mean-value zero on Y},
we seek a smooth solution W, whose average is also zero on Y}, and such that it
vanishes on the holes boundaries at all scales. The following lemma provides such
an existence result in the class Ef defined by (4.9). Its proof relies on an explicit
integral representation of solutions of (4.11) (due to Bogowski [11]) and is a little
tedious and technical (see the third subsection).

Lemma 4.12. For any ke {l,...,n} and any function ¢ € EF, there exists a vector
function ¥ e (Ef)" such that

div, ¥ =¢.
Furthermore, one can choose ¥ in such a way that the application S* defined by
Ef - (EF),
p—>S*p =",
is continuous with respect to the uniform continuity norm on Q x Y¥ x ... x Y¥,

Proof of Theorem 4.9. The proof proceeds by induction on k.

First step: k=n. Let p € E¥ (defined by (3.9)). Let T¥ be the application from E¥
into E¥ defined by

* ; * "5t *
T¥p=¢,_,div, S*p+ F—dlvyJ_S .
=1 &

As in Theorem 3.3, by successive computations of the divergence of S*(T*)?p, we
obtain an equation similar to equation (3.5):

1 med & 7 ., & \" 1 m
—[pl.= ), (ul)"( ) div [S*(TH) ).+ (—1)" (—) —UT¥)"p]..
En p=0 En % En 1 8r!
(4.12)
However, from definition (4.9) of E¥* and Definition 4.2 of Q,, one has
SX(T¥)Ppe(EX)Y and thus [S*(T})"], € Z(Q,).
We can now multiply equation (4.12) by any test function in H(Q,) and integrate
by parts with no contribution from the holes boundaries. Then, as in the proof of
Theorem 3.3, it yields that each term div [S*(T¥)"¢],, and thus
1
= [#]. is bounded in H !

in the sense of Definition 4.8.
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Second step: k <n. Assume that the result holds for all je{k+1,...,n}. Let
@ € E¥. From definition (4.11) of S*¢, one has

1 ' k=11 A
—[¢). =div [S*¢],— ) —[div, S*¢l.— Y - [div, S*¢]..
&k =18 j=k+1&j
The function div,, S*¢ belongs to Ef for any je {l,. —1} and to E¥ for any
jelk+1,. n} Then from the induction aesumpnon the previous equahty can
be written
R IR
& VAR ey & (01 £
where the function
p1=
j=1

belongs to EF and is bounded with respect to the uniform continuity norm, and the
function

LA
{=div [S*¢],— Y - [div, S*¢], is bounded in H, "
j=k+1&j

Reiterating m times yields

- [fP]s ( . 1) R [';am]s + llls

where the function ¢f, belongs to Ef and is bounded with respect to the uniform
continuity norm, and the function V%, is bounded in H, *. This concludes the proof
since the scales are well separated. [

We need two other lemmas concerning ‘generalised’ divergence-free functions of
several variables and their orthogonal.

LEMMA 4.13. For any ke {1,...,n}, let D¥ be the subset of (D*)" (defined by (4.8))
composed of functions satisfying a ‘generalised’ divergence-free condition, i.e.

D} = {® € (D*Y; div, ® =0},
D*—{(I)E(D*)N div, ®=0 and J divyth)=OVk§j§n—l}.
Y.

(4.13)

r,H

These spaces have the following properties:
(i) Any function ®(x, yy, ..., i) in D[ Dy(YT x ... x Y¥)]" can be expressed as
the average of a function in D}, i.e. there exists ®(x, yy, ..., ¥,) € DF such that

q)=v[ ...J‘ q)dyk+1...dyn.
Yn

(ii) Any function ®(x) e Z(Q) can also be expressed as the average of a function
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® in D}, and, moreover, we have

®= J e '[ Qdy,...dy, and | @20« vix . xrd) = P12,
Yl Yn

where the constant ¢ is independent of ® and .

LEmMMA 4.14. Let H* be the space of ‘generalised’ divergence-free functions in
IO Li(Y¥ x ... x Y¥)]Y defined by

div, ®=0 in Y}
D-v=0 on 0T,

j ”L[de@:O in Y}
Y1 Y,

j j O-v=0 on d1,
Yre+1 Ya

The subspace H* has the following properties:
(1) (D*)¥ A H* (see definition (4.5)) is dense into H*.
(ii) The orthogonal of H* is

(I)EH*¢{ and (4.14)

Visk=zn—1.

Eey= { 3 Vo dult, V.- 9i) with g I X Y X ... x Yi_g; H;(Y:r)m]}.
k=1
(4.15)

REMARK 4.15. As seen in Remark 2.8, the ‘generalised’ divergence-free condition
(4.14) includes a type of periodic boundary condition. Indeed, since a divergence-
free function ¥ € I3(Y#)Y has a normal trace W -v in H™Y2(3Y}), the vector field ®
in (4.14) satisfies periodicity conditions on the part of dYF which intersects the
boundary of the cube ¥,. These conditions are included in the ‘generalised’ diver-
gence-free condition if equalities in (4.14) are taken in the sense of distributions in
the set Ey(YF¥), or equivalently

J J OV, pdy...dy,=0 for any pe Hi(Y,) and 1<ks<n
it Yy

(4.16)
Then the periodicity conditions are

takes opposite values on opposite faces

= of Y, naY},
B takes opposite values on opposite faces
Yk?l-. ¥ ofﬁYkn(’)Y;‘, lgkén—l

Proof of Theorem 4.6. Since the sequence u, is bounded in H'(Q,) (see estimate (4.2)),
by application of Theorem 2.4, there exist two limits uoe [*(Q x Y; x ... x ¥,) and
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E e P[Q X Y, x ... x Y)Y, such that, up to a subsequence,

(n+ 1)-scale
f——= ¥ Vi =5 Pl

(n + 1)-scale

Vu, A(Y15 - - -5 Ya)os

where * denotes the extension by zero outside Q, and ¥(y,....,y,) the multiscale
characteristic function defined by Definition 4.2.

First step. Let us prove by induction that u, does not depend on the microscopic
variables (yy, ..., y,). Let Qe (D*)V (definition (4.8)). By integration by parts, one
has

g j Vu,[D], dx = —g, j u,[div, @], dx
Q Q

i3

n—1
- 'ijl u, [div, ®], dx— J u,[div, ], dx.
Q, Q

k=1 % A

Then, passing to the (n + 1)-scale limit in the previous equality yields

Jj J o div, ®dxdy,...dy,=0,
Q Jy§

which proves that u, does not depend on y,.
Assume that u, does not depend on the wvariables (y,.q,...,y,) for
ke{l,...,n—1}. Let ®e D{,, (definition (4.13)). By integration by parts, one has

&y .[ Vu,[D], dx= —g, J u [div, @], dx
Q, Q

£ £

k-1
— Y |y, [div, ©],dx— J u, [div, ®], dx
i=1 i Ja, ! a, ‘
— f u [div, CI)]e dx. (4.17)
R|l J

Since ®eD¥ for any je {k+ L,...,n}, div, @ satisfies assumption (4.10) in
Corollary 4.10 with j + 1. Thus,

1
— [div,, ®], is bounded in H, '
£j+1 !

in the sense of Definition 4.8. Then, the last sum of (4.17) converges to 0 and passing
to the (n+ 1)-scale limit in (4.17) yields

jf J g div, @ dxdy; ...dy, =0,
Q Yf‘ Y,’g

wherecf)=j j ®dy,.q...dy,,
Yy v
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which implies, from part (i) of Lemma 4.13, that
f J J ugdiv, ®dxdy,...dy,=0 VPeP[Q Py(YFx...x YV
Q Jr¥ Y¥
Hence function u, does not depend on variable y,, which concludes the induction

and proves that u, only depends on variable x.

Second step. Let us characterise x(yy,- .., V)& the (n+ 1)-scale limit of Vu,. Let
® e (D*)¥ ~ H* be a smooth function satisfying the ‘generalised’ divergence-free con-
dition (4.14). By integration by parts, one has

n—11
.f Vu [D], dx= — j u[div, @], dx— Y — | wu[div, @], dx since div, ®=0.
Q, 0, k=1 % Ja,
(4.18)
The function div, @ satisfies the assumption (4.7) in Corollary 3.10 with k + 1. Thus,

1
Ek+1
in the sense of Definition 4.8. Then passing to the (n + 1)-scale limit in (4.18) yields

IJ J éo-d)dxdyl...dyn——juodivx®dx
o Jry ¥ o

where ® = j J Ddy,...dy,, (4.19)
¥ bty

[div, @], is bounded in H, '

since u, only depends on x. From part (ii) of Lemma 4.13, (4.19) implies that

JI j go-qndxdyl_..dyﬁ—fuodiv,(adx
Q JY¥ Y¥ Q

VGE@(Q)N with || @ |72« Y?‘X‘..XY:‘)§C”®HL2(S!)=

which proves that u, € HY(Q).
Another integration by parts on the right-hand side of (4.19), with respect to x,
yields

J j J (¢o—Viug) @ dy,...dy,=0 for any ®e(D*)"nH*

Q Jr¥ YX

By the density result of Lemma 4.14(i), the previous equality holds for any ® e H*,
thus &, — Vu, € (H*)*. In view of definition (4.15) of (H*)*, this proves that

(n+1)-scale

¥u,

X(x= Yis--es yn) |:Vu(x) + 2 Vykuk(x: Yis-o s yk):| ]
k=1

Proof of technical lemmas

This subsection is devoted to the proofs of Lemmas 4.12, 4.13 and 4.14. We begin
with Lemma 4.12, which is concerned with the existence of ‘special’ solutions of
the equation div, W =g¢. Let us first remark that we can consider the variables
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(%, Yis+ - s Vk—1» Vit 1s - - - » Yu) as parameters. Therefore, we can simplify the notation
by dropping the index k, and Lemma 4.12 reduces to:

LemMMA 4.16. Let Y* be an open subset of the unit cube Y, which satisfies Assumption
4.1. Let E* be the set of smooth functions periodic in y with compact support in the
image of Y* in the torus and with mean value zero, ie.

pdy= 0}. (4.20)

Y

E* = {q) € Dy(Y*) such that J
Then, for any function ¢ € E*, there exists a vector-function ¥ € (E*)" such that

div ¥ =g. (4.21)

Furthermore, we can choose ¥ such that it depends continuously, with respect to the
uniform continuity norm, on @.

The key ingredient of the proof of Lemma 4.16 is based on an integral represen-
tation, due to Bogowskii [11] (see also [4] for an equivalent result without integral
representation), of smooth solutions of the equation divv=g in a bounded star-
shaped domain w:

PROPOSITION 4.17 (see [117). Let o be a bounded domain of R" which is star-shaped
with respect to the origin and let K be a ball contained in w and centred at the origin.
Let ge @(w) such that | g(x)dx=0. Then, for any function q€ Z(K) such that
[ ¢ a(x) dx =1, the function v defined by

v(x) = '[ g(x—y) [ '[ g(y + tx—yp¥ 1 dt] dy (4.22)

belongs to %(w)" and satisfies the equation divv =g.

To apply Proposition 4.17 in the proof of Lemma 4.16, we shall divide Y* in a
union of star-shaped domains and ¢ in a corresponding sum of compactly supported
functions with zero average. To this end, we also require the two following results:

LeMMA 4.18. Let Y* be an open subset of the unit cube Y, which satisfies Assumption
4.1. Then, there exists a matrix-function W(y) such that

We Dy(Y*)V, J W) dy=1d and div(WE)=0 YEeRY. (423)
Y*

Proof. Denoting by (e;); <<y the canonical basis of R¥, we consider the following
Stokes problem in the periodic unit cell:

—Aw;+V,p;=¢; in Y*¥,
div, w; =0 in Y*,
w; =0 on T,
Y= pi(y), wily) Y-periodic,

which has a unique solution w; in H}(Y*)". A well-known result in periodic homo-
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genisation tells us that the matrix A defined by

Ae;= f wi(y) dy
Y*

is symmetric and positive definite since Ey(Y*) is connected (if not, w; could be zero).
If the solution w; were smooth and compactly supported away from the hole T, we
could simply define the matrix-function

W(nAe;=w;i(y) for LZi=<N.

However, this is not the case, and we need to use a density argument to approximate
the solutions (w;); <;<y by divergence-free smooth functions with compact support.
Then it is not difficult to construct the required matrix W(y). We leave the details
to the reader. [

LemMa 4.19. Let (wy, . . ., w,) be p-connected domains of the unit torus such that their
union o is connected and let (ay, . .., a,) be p reals such that their sum is zero. Then,
there exist p functions (ty, ..., T,) such that

P
Y 1,=0 with t,€ Dy(w,) and J‘ dx=a, forany 1 Zk=p. (424)
k=1

/3
Furthermore, we can choose each function t, such that it depends continuously, with
respect to the uniform continuity norm, on (a,, ..., a,).

Proof. We proceed by induction on p. The result is obviously true for p=1, and
assuming it holds for the value p — 1, we check it for p. Since w is connected, it is
easily seen that there must exist p — 1 connected domains, for example (&4, ..., @, 1)
such that their union ' is also connected (it is enough to consider the longest
sequence of k < p— 1 domains such that their union is connected). With no loss of
generality, we can assume that o, ;nw,# J.

From the induction assumption, there exist p — 1 functions (g, ..., 1,—4) such that

J dx=a, f1=Zk<p-—2,
o and 7.2 () forall lZk=p—1,
J ndx=a,_y+a, fk=p—1,

and since w, ;Nw, # &, there exists t' € Zy(w, Nw,) such that

J v dx=a,.
I‘IJP

Then, the functions (zy, ..., 7,) defined by
T =T fl1=k=p-—-2,
w=1—1 fk=p—1,
T =1 if k=p,

satisfy conditions (4.24) and it is clear that they depend linearly and continuously
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(with respect to the uniform continuity norm) on vector (dy, . . ., a ), which concludes
the proof. L[|

We are now in a position to prove Lemma 4.16.

Proof of Lemma 4.16. Since the image of Y* in the unit torus is connected and has
Lipschitz boundary, there exists a collection of star-shaped subdomains (o, . .., ®,)
in the unit torus (see for example [9]) such that

P
Y*= | ) o
k=1
Then, for any ¢ € ,4(Y*) (which by definition is compactly supported away from
the hole T), there exists a partition of the unity (0,, ..., 8,) such that

r
Ope 24(Y*), 0o, € Zslw,) and ) 0,=1in the support of ¢.
k=1

Next, we define a collection of reals (¢, ..., a,) such that

ak = J‘ ng dy

Clearly, we have

P
Y a=0 ifand only if[
k=1

Y

ody=0.

In this case, by application of Lemma 4.19, there exists a collection of functions

(t1. ..., 1,) satisfying (4.24). Thus, the functions (¢, . .., ¢,) defined by
o=0ho—1

satisfy

P
Y ov=0, o€ Dylw,) and j p,dy=0 forany 1=k=p.
wp

k=1

To each function ¢,, we now apply Proposition 4.17 and, summing up the results,
we obtain the existence of a function ® € Z,(Y*)" such that

div®=¢ in Y* (4.25)

However, @ is not necessarily of average zero in Y*. We can remedy this incon-
venience thanks to Lemma 4.18. Indeed, the function ¥ defined by

e

satisfies the same equation (4.25) and has mean-value zero by virtue of (4.23). Finally,
remarking that all the intermediate functions depend continuously on g, so does ¥,
which concludes the proof of Lemma 4.16. [

We now give the proof of Lemma 4.13 concerning the attainability of any smooth
functions as average of ‘generalised’ divergence-free functions in D*.

Proof of Lemma 4.13. (i) Let ®(x, y1,..., y) € D[ Du(Y¥ x ... x Y§)]¥. For any
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jefl,...,n}, let W(y;) be the matrix-valued function defined by (4.23) with Y=
Y;. Then, the function defined by

(D(x, Vise - :yn): I/Vrr(yn) % win pVIH l(yk-f-l)(i)(xa Viseens yk)

satisfies the first property.
(ii) The function defined by

(D(x, Vioors yn) = I/Vn(yn) wile I/Vl(yi)&)(x)
satisfies the second property. [J

We finish this subsection with the proof of Lemma 4.14 on the space H* of
‘generalised” divergence-free functions.

Proof of Lemma 4.14. (i) Let ®eH* and, for any kef{l,...,n}, let
Dp(x, ¥1s. s V) ELAQ x Y¥ x ... x Y¥)¥ a family of functions defined by the fol-
lowing induction:
d, =0,
(4.26)
o, = Odxdy,...dy,=0 for1Z<k=Zn—1.
Y Yy

Then, by a classical argument each of these functions can be approached by a smooth
divergence-free sequence, i.e. for any ke {1,..., n}, there exists a sequence {®]};.,
which satisfies

Ol e D[Q; Dy(YE x ... x YEIV,

div, ®=0 and Lim |®)— D¢l2xysx.. xy=0. (4.27)
a-+0

For any je{l,...,n}, let W(y;) be the matrix-valued function defined by (4.23)
with Y=Y, and let ®’(x, y;, ..., y,) be the function defined by

n—1
(IJ5=(1)5+ E (W.---Wm)(‘bi— '[ (I)€+1)'
k=1 Y
It is clear that ®° € (D*)". Furthermore, (4.26) and (4.27) imply that
lim | ®° — @ | 2axyrx.. xyry=0.
lim [ l2@xyex ... x¥%)

An easy computation shows that

div),k(J J (Dadykﬂ...dy,,)=0.
Yy Yy

Thus, ®°e(D*)"nH* is an  approximation of ®eH* in
LP[Q; LE(Y¥ x ... x Y})]" which concludes the proof of part (i).
(i) Remark that

where H} is the subset of L*[Q; Ly(Y¥ x ... x Y})]" composed of functions @ such
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that
div, ®=0 in Y7, .
" ifk=n, or
Q-y=0 on 0T,

f J div, ®=0 in Y},
Y1 Y,

j J D-v=0 on i1,
Y1 Y,

Since the boundary of each E,(Y¥) is Lipschitz (Assumption 4.1), the orthogonal of
Hi is

(HEY = {V,,q(%, yro- %) with qe P[Qx ¥x ... x Yi 3 HyY#).
As in the proof of Lemma 3.7, it is thus enough to prove that

Y H
k=1

is closed to obtain the desired result (4.15). Let ® € I2(Q x Y¥ x ... x Y¥)"; one can
write, owing to (4.23),

f1<k<n—1

(I):I/Vn(yn)J' (I)dyn+((pm(yn)J‘ (I)dyn)EH:“l“II,T#l
% Y*

Y -

Hence,
H¥+HY ,=I2QxY¥x...x Y=Y H} isclosed,
k=1

which ends the proof of part (ii). [
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