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Summary. The aim of this paper is to propose a new approach for optimiz-
ing the position of fuel assemblies in a nuclear reactor core. This is a control
problem for the neutronic diffusion equation where the control acts on the
coefficients of the equation. The goal is to minimize the power peak (i.e.
the neutron flux must be as spatially uniform as possible) and maximize the
reactivity (i.e. the efficiency of the reactor measured by the inverse of the
first eigenvalue). Although this is truly a discrete optimization problem, our
strategy is to embed it in a continuous one which is solved by the homoge-
nizationmethod. Then, the homogenized continuous solution is numerically
projected on a discrete admissible distribution of assemblies.

Mathematics Subject Classification (1991):65K10; 65N99

1. Introduction

This paper is concerned with an optimal design problem in nuclear reactor
cores: the so-called optimal fuel re-loading problem. In most reactor cores,
the nuclear fuel is made of a few hundreds of so-called assemblies, period-
ically distributed in a cross-section of the core (see Fig. 1). Each assembly
is a very heterogeneous medium composed by a regular array of fuel pins
(mainly made of uranium) and control rods immersed in water. During the
fission process, the fissile isotope of uranium is consumed and other prod-
ucts appear. This so-called depletion process progressively decreases the
efficiency of the nuclear fuel. Therefore, it must be changed periodically by
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fresh one (such a period, also called a cycle, is about a few months). How-
ever, the fuel depletion is not spatially uniform in the core. This has two
consequences: first, only part of the old assemblies (typically one fourth)
are removed at the end of each cycle, second, it is not desirable to put the new
assemblies exactly at the location of the removed ones. In order to maintain
the maximal performance of the reactor, it is rather preferable to optimize
the position of each type of assemblies. In other words, the fuel re-loading
process not only consists in replacing the used assemblies by fresh ones
but also in a rearrangement of all the assemblies in the core to make the
most efficient use of the nuclear fuel. As such, it is a discrete optimization
problem, but the large number of assembliesmake it highly non-trivial since
the computation of all possible combinations to find the best one is out of
reach. For more details on this problem, we refer e.g. to [6,9,12].

In order to give a precise mathematical statement of this optimization
problem, we now describe the state equation that models the fission process
in the nuclear reactor and allows to quantify the efficiency of the assem-
blies distribution. The power distribution in a nuclear reactor core is usually
obtained by solving an eigenvalue problem for a diffusion equation. For
simplicity, in this paper we content ourselves with the one energy group
diffusion equation (multiple energy groups diffusion will be considered in
a next paper [2]). In a steady-state regime, this problem gives the balance
between neutrons produced by fission and neutrons absorbed or diffused by
the medium. Denoting byΩ the radial section of the core (Ω ⊂ R

2 is a
bounded open set), our state equation is{−div (D(x)∇u(x)) + Σ(x)u(x) = λσ(x)u(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1)

where the unknowns are the neutronic fluxu (i.e. the density of neutrons)
and the eigenvalueλ = 1/keff (keff is the criticality parameter which gives
the ratio between produced and consumed neutrons). More precisely,λ is
the first eigenvalue andu the first eigenvector of (1), which is the only one
to have a physical meaning since it is positive. The diffusion coefficient
D(x), the absorption cross sectionΣ(x), and the fission cross sectionσ(x),
are positive data determined by the type of assemblies. The eigenvalueλ
measures the criticity of the reactor in a quasistatic limit. Ifλ = 1, the reactor
is said to be critical and can safely be operated: a perfect balance between
production and removal of neutrons is obtained. Ifλ > 1, toomany neutrons
are diffused or absorbed in the core compared to their production by fission :
thenuclear chain reactiondies out, and the reactor, being sub-critical, cannot
operate. Ifλ < 1, too many neutrons are created by fission, and the reactor,
being super-critical, can nevertheless be operated by introducing absorbing
media in the core (with control rods, or diluted in thewater). Remark that (1)
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gives only the spatial distribution of the neutron flux (which in turn yields
the power distribution) but not its intensity since an eigenvector is defined
up to a multiplicative constant.

We can now describe the objective function of the fuel re-loading op-
timization problem. As already said, a reactor can produce energy if its
criticality eigenvalueλ is equal to or smaller than 1. However, as time goes
by, the fuel depletion has a tendency to increase this eigenvalue. Therefore,
at the beginning of a cycle it is highly desirable to have the smallest possible
value ofλ (or criticality reserve), ensuring that the reactor will be working
for the longest possible time. Minimizing the eigenvalueλ may cause un-
usual oscillations in the profile of the first eigenvectoru (the neutron flux),
and produce a highly non-uniform power distribution in the core (which is
proportional toσu). For efficiency and safety reasons, it is rather an undesir-
able feature. Indeed, at peakpoints of thepower distribution, the surrounding
flow of water could be unable to cool down the fuel pins, yielding a strong
increase of the temperature that may eventually cause damage in the as-
sembly. A major issue for safety is thus to have the most uniform power
distribution in the core. This can be enforced by minimizing the maximal
value ofσu (the so-called peak power point). Such a criterion is non differ-
entiable, and we approximate it by minimizing instead theLr(Ω) norm of
σu with 1 < r < +∞. Sinceu is defined up to a multiplicative constant,
we take care of normalizing thisLr(Ω) norm by theL1(Ω) norm. Finally,
introducing a positive Lagrange multiplier� ≥ 0, our objective function is

min

{
�λ +

(M(|σu|r))1/r

M(σu)

}
,(2)

whereM denotes the average operator inΩ

M(f) =
1

|Ω|
∫

Ω
f(x)dx.(3)

For simplicity, we outrageously simplified the constraints and requirements
used in practice for fuel re-loading optimization. In particular, we optimize
the assemblies distribution just for one cycle, regardless of whatmay happen
afterwards, andwedonot take intoaccount the cost of permutingassemblies.
We also do not try to minimize the production of undesirable isotopes or
species in thefissionprocess.Formore informationson theactual constraints
and objectives, we refer e.g. to [12].

To finish the mathematical statement of our optimization problem, it
remains to define a space of admissible configurationsUad of assemblies
in the core. Then, the minimization of the objective function (2) take place
on this spaceUad. Assuming that at each cycle, one out ofI assemblies
is removed, there areI type of assemblies in the core, having different
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Fig. 1. Adiscrete configuration of two types of assemblies in a 900MwPWRnuclear reactor
core (having 157 assemblies)

physical characteristics(D,Σ, σ) due to their different past time in the
core (their so-called burnup). Typical values ofI that we shall deal with
in this paper areI = 2 or 4 (the caseI = 2 is much simpler but not
realistic, whileI = 4 is typical and not much easier than anyI ≥ 3). For
simplicity, we assume that all assemblies of the same type are identical,
and that the coefficients(D,Σ, σ) are constant inside one assembly (i.e.
it is homogeneous). Of course, the proportions of each type of assemblies
are given. We make no special assumptions on the ordering of the physical
properties of the assemblies, although physically speaking the freshest fuel
produce the smallest criticity eigenvalueλ. Finally, since all assemblies have
the same size, the coreΩ contains a finite number of them (see Fig. 1). Thus,
Uad is a finite set of all possible permutations of these assemblies.

Since the space of admissible configurationsUad has a finite number of
elements, the minimization of the objective function (2) is a combinatorial
optimization problem. There are many numerical methods proposed in the
literature for solving it, based on linear programming, simulated anneal-
ing, neural networks or genetic algorithms [8,11,16,19,14,15]. However,
the huge number of possible permutations, the non-convexity of the objec-
tive function make it a very hard problem to solve. We propose yet another
approach in two steps. First, we transform this discrete problem in a contin-
uous one by removing any size and shape constraints on the assemblies (see
Fig. 2). In other words, we keep the prescribed amount of fuel (or material)
in each of theirI types, but it can now be placed in the core as freely as
we want, and its repartition does not necessarily follow an assembly pat-
tern. This idea of generalizing the fuel re-loading optimization problem as
a continuous one is not new (see e.g. [6]). It has the advantage of being
more tractable from a numerical standpoint. In a second step, we project a
continuous optimal configuration onto the discrete spaceUad, in the hope



A new approach for the optimal distributionof assemblies in a nuclear reactor 5

Fig. 2. A continuous configuration of two types of assemblies in a 900 Mw PWR nuclear
reactor core

that it will lead to a nearly optimal admissible configuration of assemblies.
Transforming an admissible configuration into a continuous one is obtained
through a numerical method of penalization. This second step is therefore
purely based on numerical heuristics and has no firm theoretical ground.
On the contrary, we perform a detailed mathematical analysis of the first
step. It turns out that the continuous optimization problem is ill-posed in the
sense that it does not admit a solution in the space of all possible continu-
ous distributions of theI materials. The reason for this is that minimizing
sequences of almost optimal configurations have a tendency to exhibit very
fine mixture of theI components. On a macroscopic scale these mixtures
are composite materials having effective properties different from that of its
phase constituents. Their effective or averaged cross sections and diffusion
tensors are found by using the homogenization theory. Tomake this problem
well-posed, one must enlarge the space of admissible designs by allowing
for composite materials obtained by mixing microscopically theI different
fuels. We then obtain the existence of a composite optimal configuration, as
well as very efficient numerical algorithm for computing them.

This approach is called the homogenization method for optimal design.
It has been successfully implemented in structural optimization (see e.g.
[1,3,4]). Our work must be seen as a generalization of this method to the
fuel re-loading optimization problem. In structural design the homogeniza-
tion method is regarded as a method for topology optimization, which is
not incompatible, but rather complementary, with other classical methods.
Likewise in the present setting, our approach should be taken as a topology
optimizer, i.e., whatever the starting configuration, it is able to find a quasi-
optimal distribution of assemblies, possibly very remote from the starting
one. The homogenization method is not a concurrent of other methods, but
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rather a pre-processor, since its final output could still be refined by these
methods.

Finally, we conclude this introduction by a brief description of the con-
tent of this paper. Although our goal is to address the case ofI > 2 types of
assemblies, for simplicity our exposition starts with the easier caseI = 2.
In Sect. 2, a mathematical setting is introduced for the original continuous
problem. Section 3 is devoted to its relaxation, and Sect. 4 deals with op-
timality conditions. Eventually Sect. 5 generalizes the previous results for
more than two type of assemblies. Numerical results are presented in Sect. 6.

2. Setting of the problem

We first recall that the state equation of our optimization problem is the
spectral equation for the one energy group diffusion model. Denoting byΩ
a bounded open set inR2, it reads{−div (D(x)∇u(x)) + Σ(x)u(x) = λσ(x)u(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(4)

where(λ, u) is the first eigenvalue and eigenvector. The coefficients in (4)
are assumed to be measurable and bounded (but not necessarily smooth),
i.e.D,Σ, σ ∈ L∞(Ω). Furthermore, we assume that, almost everywhere in
Ω, they satisfy

Σ(x) ≥ 0, σ(x) ≥ σ0 > 0, D(x) ≥ d0 > 0.

Under these assumptions, it is well known that (4) admits a unique solution
in the sense given by the following result (see e.g. [20]).

Theorem 2.1 There exists a countable infinite number of eigenvalues for
(4), that we label by increasing order as(λi)i≥1, and corresponding eigen-
vectors(ui)i≥1 ∈ H1

0 (Ω). Furthermore, the first eigenvalueλ1 (i.e. the
smallest one) is positive and simple, and its eigenvector is the only one that
can be chosen to be positive inΩ.

Remark 2.2The only solution of (4) which has a physical meaning is the
first eigenvalue and eigenvector(λ1, u1) sinceu1 is the only eigenvector to
be positive (a necessary feature for a density function). From now on, we
drop the subscript 1, and denote by(λ, u) = (λ1, u1) the solution of (4). Of
course,u is unique only up to a multiplicative constant.

In this section we assume that there are only two types of assemblies,
characterized by constant positive coefficients(dj , Σj , σj) with j = 1, 2,
given in prescribed proportionsγj ≥ 0 with γ1 + γ2 = |Ω|. We consider
only the continuous optimization problem (as defined in the introduction),
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i.e. we do not require that each type of materialj = 1, 2 fit into assemblies,
but it may rather fill the domainΩ in any possible shape. In other words,
denoting byΩj the part ofΩ occupied by materialj, there is no restrictions
on (Ω1, Ω2) except the obvious ones

Ω1 ∩ Ω2 = 0, Ω1 ∪ Ω2 = Ω, |Ωj | = γj , j = 1, 2.(5)

Introducing the characteristic functions(χ1, χ2) of these subsets(Ω1, Ω2)
(i.e.χj(x) = 1 if x ∈ Ωj andχj(x) = 0 if x∈\ Ωj), the coefficients of (4)
are given by 


D(x) = d1χ1(x) + d2χ2(x),
Σ(x) = Σ1χ1(x) + Σ2χ2(x),
σ(x) = σ1χ1(x) + σ2χ2(x).

(6)

Sinceχ1 + χ2 = 1, a single characteristic functionχ1 = χ defines com-
pletely the distribution of the two fuel types. Therefore, the space of admis-
sible configurations can now be defined in a very simple way by

Uad =
{
χ ∈ L∞(Ω; {0, 1}) such that

∫
Ω
χ(x)dx = γ1

}
.(7)

Our fuel re-load optimization problem is to find a minimizer of

min
χ∈Uad

J(χ) =

(
�λ +

(M(|σu|r))1/r

M(σu)

)
,(8)

where(λ, u) is the solution of (4),M is the average operator inΩ defined
by (3),1 < r < +∞, and the coefficients of (4) are given by (6).

To solve this optimization problem we can try the direct method of the
calculus of variations. It amounts to proceed in the following order

1. Weprove thatminimizing sequences are relatively compact for a suitable
topology.

2. Weprove a lower semicontinuous result for the objective function, which
yields that it attains its minimum.

3. We differentiate the cost function to obtain optimality conditions.

As remarked by [18], two main problems arise when we try to carry
out this process for (8). First, the setUad is not closed in the topologies
for which minimizing sequences are compact. This means that, in general,
minimizing sequences can converge to limits outside fromUad, i.e. they
are not characteristic functions. In this case there is no minimizer of (8) in
Uad (explicit counter-examples may be found in [17]). Second, we can not
differentiate the cost function (8) because the setUad is not stable by standard
variations, i.e. a convex combination of two characteristic functions is never
a characteristic function.
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To overcome these two obstacles, one can use the so-called relaxation
procedure (see e.g. [5,7]). It amounts to extend the original space of admis-
sible solutions into a space of generalized, or relaxed, admissible solutions,
denoted byU∗

ad, as well as the objective functionJ that becomes a relaxed
objective functionJ∗. This extension is built to guarantee the existence of
an optimal relaxed solution, but it should not be too ”large” in order to keep
track of the behavior of minimizing sequences for the original problem. In
other words, relaxing a problem does not change its physical significance.
More precisely, a relaxed formulation must satisfy the following conditions

1. Uad ⊂ U∗
ad and the relaxed cost function coincides with the original one

overUad,
2. there exists at least one minimizer of the relaxed problem, and the min-

imal values of the original and relaxed objective functions are equal,
3. any minimizer of the relaxed problem is attained by a minimizing se-

quence of the original problem,
4. any minimizing sequence of the original problem converges to a mini-

mizer of the relaxed problem.

In the next section we introduce such a relaxation for our problem using
homogenization.

3. The relaxed problem

In this section we introduce a relaxed problem associated to (8). We follow
the homogenization method introduced in [18].

The set of characteristic functions is bounded inL∞(Ω) and therefore
relatively compact for the weak * convergence. Thus, from any sequence
(χn)n≥1 in Uad, we can extract a subsequence, still denotedχn, such that
it converges weakly * inL∞(Ω) to a limit θ(x). Since the convergence is
weak and not strong,θ is usually not anymore a characteristic function but
a density, i.e.θ(x) may take its values in the full range[0, 1]. Defining the
corresponding coefficients

Dn(x) = χn(x)d1 + (1 − χn(x))d2,

Σn(x) = χn(x)Σ1 + (1 − χn(x))Σ2,

σn(x) = χn(x)σ1 + (1 − χn(x))σ2,

the state equation is rewritten{− div (Dn∇un) + Σnun = λnσnun, in Ω,
un = 0, on∂Ω,

(9)

where(λn, un) are the first eigenvalue and normalized eigenvector. In order
to pass to the limit in (9), we use the theory ofH-convergence (also called
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G-convergence, see e.g. [10,18]), which states that, up to a subsequence,
the limit of (9) is the following homogenized problem{− div (D∗∇u(x)) + Σu(x) = λσu(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(10)

where(λ, u) are the first eigenvalue and normalized eigenvector, and the
homogenized coefficients are defined by

Σ(x) = θ(x)Σ1 + (1 − θ(x))Σ2, σ(x) = θ(x)σ1 + (1 − θ(x))σ2,

andD∗ is theH-limit (i.e. the limit in the sense of homogenization) of
the sequenceDn = χnd

1 + (1 − χn)d2. ThisH-convergence has to be
understood in the following sense

lim
n→∞λn = λ,

un ⇀ u in H1
0 (Ω) weakly.(11)

It turns out that, although the homogenized cross sectionsΣ, σ are uniquely
defined by the limit densityθ, the homogenized diffusion coefficientD∗ is
not explicitly characterized byθ. Indeed, depending on the geometry of the
mixture represented by the sequenceχn,D∗ may be any symmetric positive
definite matrix in a setGθ. This set of all possible homogenized diffusion
tensors associated to the densityθ has been characterized in [13,18]. We
assume, with no loss of generality, that0 < d1 ≤ d2. At any pointx ∈ Ω,
D∗(x) is any symmetric matrix with eigenvalues(µ1(x), µ2(x)) satisfying
(see Fig. 3)

1
µ1 − d1 +

1
µ2 − d1 ≤ 1

µ−
θ − d1

+
1

µ+
θ − d1

,(12)

1
d2 − µ1

+
1

d2 − µ2
≤ 1

d2 − µ−
θ

+
1

d2 − µ+
θ

.(13)

whereµ+
θ and µ−

θ are the arithmetic and harmonic means of the phase
diffusion coefficients

µ+
θ = θd1 + (1 − θ)d2,

µ−
θ =

1
θ/d1 + (1 − θ)/d2 .(14)

One can easily check that (12) implies thatµ−
θ ≤ µi ≤ µ+

θ for i = 1, 2.
Since the homogenized state equation (10) depends on two design pa-

rameters, namelyθ andD∗, the set of generalized admissible configurations
U∗

ad must be the set of such couples, namely

U∗
ad =

{
(θ,D∗) ∈ L∞(Ω) such that0 ≤ θ ≤ 1, D∗ ∈ Gθ,

∫
Ω
θ = γ1

}
,

(15)
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Fig. 3. SetGθ of all homogenized diffusion tensors

where the constraints on(θ,D∗) are pointwise inΩ. Remark that we have
Uad ⊂ U∗

ad if weassociate to eachcharacteristic functionχ ∈ Uad adiffusion
tensorD = d1χ + d2(1 − χ). By Rellich theorem, the sequenceun, which
converges weakly tou inH1

0 (Ω), converges strongly tou in Lr(Ω) for any
1 ≤ r < +∞ in two space dimensions (and for any1 ≤ r < 6 in three
dimensions). Sinceχn converges weakly * toθ in L∞(Ω), we deduce that
(σn)r convergesweakly * toθ(σ1)r +(1−θ)(σ2)r inL∞(Ω), and therefore

lim
n→∞

∫
Ω
σn(x)un(x)dx =

∫
Ω
σ(x)u(x)dx,

while

lim
n→∞

∫
Ω

|σ(x)un(x)|r dx =
∫

Ω
|s(x)u(x)|r dx,

with s being usually different fromσ

s(x) =
(
θ(x)(σ1)r + (1 − θ(x))(σ2)r

)1/r
.

Thus, combined with (11) we obtain

lim
n→∞J(χn) = J∗(θ,D∗),

andJ∗ is a relaxed objective function defined by

J∗(θ,D∗) =

(
�λ +

(M(|su|r))1/r

M(σu)

)
,(16)

where(λ, u) is the first eigenvalue and eigenvector of (10) (remark that
Theorem2.1 also applies to (10)).Our relaxedproblem is finally tominimize
J∗ overU∗

ad, i.e.
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min
(θ,D∗)∈U∗

ad

J∗(θ,D∗).(17)

We can now state the main result of relaxation.

Theorem 3.1 Assume that1 ≤ r < +∞ in two space dimensions, and
1 < r < 6 in three dimensions. The relaxation of the original optimization
problem (8) is (16) in the sense that

1. there exists at least one minimizer inU∗
ad of J

∗,
2. anyminimizer(θ,D∗) of the relaxed problem is attained by aminimizing

sequenceχn of the original problem in the sense that{
χn ⇀ θ weakly * inL∞(Ω),
Dn = χnd

1 + (1 − χn)d2 H-converges toD∗,

and
inf

χ∈Uad

J(χ) = min
(θ,D∗)∈U∗

ad

J∗(θ,D∗),

3. any minimizing sequenceχn of the original problem converges to a
minimizer(θ,D∗) of the relaxed problem.

Proof.This proof is an adaptation of that in [18]. It is a simple consequence
of the convergence result (11). Indeed, ifχn is a minimizing sequence for
J , (11) implies thatχn converges toθ∞ and J(χn) converges, up to a
subsequence, toJ∗(θ∞, D∗∞) which is therefore equal tominχ∈Uad

J(χ).
Since any(θ,D∗) is attained by a sequenceχn (not necessarilyminimizing),
we deduce that(θ∞, D∗∞) is a minimizer ofJ∗. This finishes the proof of
Theorem 3.1.

4. Optimality conditions

Oneadvantageof the relaxed formulation is that it allows toderiveoptimality
conditions that are of both theoretical and numerical interest. The results of
this section are a variation of those in [18]. The relaxed cost functionJ∗ is
defined by

J∗(θ,D∗) = �λ +
(M(|su|r))1/r

M(σu)
.(18)

with M(f) = |Ω|−1 ∫
Ω f(x)dx. By theorem 2.1 the first eigenvalueλ and

the first normalized eigenvectoru are simple : therefore, they are Gâteaux-
differentiable, as well asJ∗, with respect to(θ,D∗) in the admissible set

U∗
ad =

{
(θ,D∗) ∈ L∞(Ω) such that0 ≤ θ ≤ 1,

∫
Ω
θ = γ1, D∗ ∈ Gθ

}
.

(19)
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If (δθ, δD∗) is an admissible increment inU∗
ad, the derivative ofJ

∗ is

δJ∗ = �δλ +
(M(|su|r))(1−r)/r

M(σu)
M (

(su)r−1 (sδu + uδs)
)

−(M(|su|r))1/r

(M(σu))2
M (σδu + uδσ) ,

(20)

wherersr−1δs = ((σ1)r−(σ2)r)δθ, δσ = (σ1−σ2)δθ, δλ is the increment
in the first eigenvalue, andδu is the increment in the first eigenvector solution
of (10). To computeδλ, we first remark that multiplying equation (10) by a
test functionv ∈ H1

0 (Ω) yields

λ =

∫
Ω

(
D∗∇u · ∇v + Σuv

)
dx∫

Ω σuvdx
.(21)

Thus, differentiating (21) gives after some easy algebra

δλ =

∫
Ω δD∗∇u · ∇udx +

∫
Ω |u|2δΣdx∫

Ω σ|u|2dx − λ

∫
Ω |u|2δσdx∫
Ω σ|u|2dx .(22)

On the other hand, differentiating (10) shows thatδu is the unique solution
in H1

0 (Ω) of


−div (D∗∇(δu)) + Σδu − λσδu = div (δD∗∇u) − δΣu
+(λδσ + σδλ)u in Ω,

δu = 0 on∂Ω.
(23)

Remark that the right hand side of (23) is orthogonal to the first eigenvector
u which implies that it admits a solution, unique up to the addition of a
multiple ofu.

As usual, to eliminateδu an adjoint stateq is introduced. It is defined as
the unique solution inH1

0 (Ω) of


−div (D∗∇q) + Σq − λσq

= (M(|su|r))(1−r)/r

M(σu)
srur−1

|Ω| − (M(|su|r))1/r

(M(σu))2
σ

|Ω| in Ω,

q = 0 on∂Ω.

(24)

Remark that the right hand side of (24) is orthogonal tou which implies
that it admits a solution, unique up to a multiple ofu. Then, multiplying
equation (24) byδu and equation (23) byq leads to

(M(|su|r))(1−r)/r

M(σu)
1

|Ω|
∫

Ω
srur−1δudx − (M(|su|r))1/r

(M(σu))2
1

|Ω|
∫

Ω
σδudx

= −
∫

Ω
δD∗∇u · ∇qdx −

∫
Ω

(
δΣ − λδσ − σδλ

)
uqdx.(25)
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Thus

δJ∗(θ,D∗) = �δλ +
(M(|su|r))(1−r)/r

M(σu)
1

|Ω|
∫

Ω
ursr−1δsdx

−(M(|su|r))1/r

(M(σu))2
1

|Ω|
∫

Ω
uδσdx

−
∫

Ω
δD∗∇u · ∇qdx −

∫
Ω

(
δΣ − λδσ − σδλ

)
uqdx.

Introducing a combination functionp ∈ H1
0 (Ω) defined by

p =
� +

∫
Ω σuqdx∫

Ω σ|u|2dx u − q,(26)

the derivative ofJ∗ becomes

δJ∗(θ,D∗) =
∫

Ω
δD∗∇u · ∇pdx +

∫
Ω

(
δΣ − λδσ

)
updx

+
(M(|su|r))(1−r)/r

M(σu)
1

|Ω|
∫

Ω
ursr−1δsdx

−(M(|su|r))1/r

(M(σu))2
1

|Ω|
∫

Ω
uδσdx,

(27)

whereδσ = (σ1 − σ2)δθ, δΣ = (Σ1 − Σ2)δθ, andrsr−1δs = ((σ1)r −
(σ2)r)δθ.

Lemma 4.1 A necessary condition for(θ,D∗) to be a minimizer ofJ∗ in
U∗

ad is

δJ∗(θ,D∗) ≥ 0(28)

for any admissible increment(δθ, δD∗).

According to thestructureofU∗
ad, theminimizationprocesscanbecarried

out in two steps: firstly inD∗ and secondly inθ. In other words,

min
(θ,D∗)∈U∗

ad

J∗(θ,D∗) = min
0≤θ≤1

min
D∗∈Gθ

J∗(θ,D∗).(29)

Minimizing first inD∗, i.e. takingδθ = 0 in Lemma 4.1 yields
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Proposition 4.2 Whenδθ = 0, the optimality conditions becomes

δJ∗(θ,D∗) =
∫

Ω
δD∗∇u · ∇pdx ≥ 0.(30)

It implies that, outside the set where|∇u||∇p| = 0, an optimal diffusion
tensorD∗ satisfies{

D∗∇u = 1
2(µ+

θ + µ−
θ )∇u − 1

2(µ+
θ − µ−

θ ) |∇u|
|∇p|∇p,

D∗∇p = −1
2(µ+

θ − µ−
θ ) |∇p|

|∇u|∇u + 1
2(µ+

θ + µ−
θ )∇p.

(31)

Besides, defining an angleϕ by∇u · ∇p = |∇u||∇p| cosϕ, we obtain

D∗∇u · ∇p = |∇u||∇p|
[
µ−

θ cos2
ϕ

2
− µ+

θ sin2 ϕ

2

]
.(32)

Remark 4.3As a byproduct of Proposition 4.2, it turns out that, at the points
where∇u /= 0 and∇p /= 0, an optimal diffusion tensorD∗ can always be
found in the class of so-called simple laminates or layeredmaterials (see the
proof below). A careful investigation of the remaining points|∇u||∇p| = 0
shows that, everywhere, an optimalD∗ can be found in the class of layered
materials (this remarks is due to [18,21]). A layered material is obtained by
stacking slices of the two components 1 and 2 and computing its effective
or homogenized properties (see Fig. 4). It turns out that there is an explicit
formula for its homogenized tensorD∗ which depends on the volume frac-
tion θ of phase 1 and on the unit directione which is normal to the slices or
layers. In 2-D, in the basis(e, e⊥) it reads

D∗ = diag
(
µ−

θ , µ+
θ

)
,(33)

i.e. the diffusion is the harmonic average in the normal direction of the layers
while it is the arithmetic average in the direction parallel to the layers.

Taking into account the optimal diffusion tensorD∗ furnished by Propo-
sition 4.2, we know vary the volume fractionθ to obtain

Proposition 4.4 Defining a functionQ(x) by

Q(x) = |∇u||∇p|
[
dµ−

θ

dθ
cos2

ϕ

2
− dµ+

θ

dθ
sin2 ϕ

2

]

+
[
(Σ1 − Σ2) − λ(σ1 − σ2)

]
up

+
(M(|su|r))(1−r)/r

M(σu)

[
(σ1)r − (σ2)r

]
ur

r|Ω|

−(M(|su|r))1/r

(M(σu))2
(σ1 − σ2)u

|Ω| ,

(34)
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−

e

e

µθ
+

µθ

Fig. 4. A two-phase layered material

there exists a constantC0 such that a minimizer(θ,D∗) for J∗ satisfies


θ(x) = 0 if Q(x) < C0,
0 ≤ θ(x) ≤ 1 if Q(x) = C0,
θ(x) = 1 if Q(x) > C0,

(35)

and reciprocally 


Q(x) ≤ C0 if θ(x) = 0,
Q(x) = C0 if 0 < θ(x) < 1,
Q(x) ≥ C0 if θ(x) = 1.

(36)

Proof of Proposition 4.2.Takingδθ = 0 implies thatδσ = δΣ = δs = 0,
which in turn yields (30). It also implies that the variationδD∗ stays inside
the setGθ. It turns out thatGθ is a convex set of symmetric matrices since it
is defined as a convex set of eigenvalues (see [18]). Therefore,δD∗ can be
parallel to any straight line inGθ passing throughD∗. In other words, for
anyC∗ ∈ Gθ, we can choose

δD∗ = C∗ − D∗.

Thus, (30) implies∫
Ω
C∗(x)∇u · ∇pdx ≥

∫
Ω
D∗(x)∇u · ∇pdx, ∀C∗ ∈ Gθ.(37)

Equation (37) implies that the optimalD∗(x) is at each pointx ∈ Ω a
minimizer ofC∗(x)∇u(x) · ∇p(x) over all matricesC∗(x) ∈ Gθ(x). This
minimization problem has been solved in [18]. If∇u or ∇p is equal to 0,
any matrix is a minimizer. If∇u /= 0 and∇p /= 0, then, upon defining two
unit vectorse = ∇u/|∇u| ande′ = ∇p/|∇p|, any minimizerD∗ satisfies

D∗e =
1
2
(µ+

θ + µ−
θ )e − 1

2
(µ+

θ − µ−
θ )e′(38)
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and

D∗e′ =
1
2
(µ+

θ + µ−
θ )e′ − 1

2
(µ+

θ − µ−
θ )e.(39)

Furthermore, a minimizer is necessarily a so-called rank-one laminate in
the direction of(e + e′) if e + e′ /= 0, or in a direction orthogonal toe if
e + e′ = 0. This leads to the desired result.

Proof of Proposition 4.4.Wenow take an optimalD∗ defined by Proposition
4.2. This implies thatδD∗ is a function ofδθ. In particular, we have

δD∗∇u · ∇p = |∇u||∇p|
[
dµ−

θ

dθ
cos2

ϕ

2
− dµ+

θ

dθ
sin2 ϕ

2

]
δθ,(40)

whereϕ is defined by (32). Introducing the functionQ(x), we obtain

δJ∗(θ,D∗) =
∫

Ω
Q(x)δθ(x)dx ≥ 0,

which, upon taking into account the volume constraint
∫
Ω δθ(x)dx = 0,

yields the desired result (the constantC0 is the corresponding Lagrange
multiplier).

Remark 4.5The above optimality conditions are at the root of a numerical
algorithm which is described in Sect. 6.

5. Generalization to more types of assemblies

In this section, we keep the same model of one energy group diffusion
equation (4) and of objective function (8), but we change the definition
of admissible configurationsUad by allowing for more than two types of
assemblies. LetI denotes the number of different types of assemblies. Each
type i, with 1 ≤ i ≤ I, is characterized by a diffusion coefficientdi and
cross sectionsσi, Σi, and occupies a given volumeγi in the domainΩ with

I∑
i=1

γi = |Ω|, γi ≥ 0.

We denote byχi(x) the characteristic function of that part ofΩ occupied
by assemblyi. Clearly, it satisfies

I∑
i=1

χi(x) = 1, χi(x)χj(x) = 0 if i /= j,

∫
Ω
χi(x)dx = γi.(41)



A new approach for the optimal distributionof assemblies in a nuclear reactor 17

The coefficients of (4) are now given by


D(x) =
∑I

i=1 d
iχi(x),

Σ(x) =
∑I

i=1 Σ
iχi(x),

σ(x) =
∑I

i=1 σ
iχi(x).

(42)

The space of admissible configurations is therefore defined as

Uad = {(χi)1≤i≤I ∈ L∞(Ω; {0, 1}) satisfying (41)} .(43)

As in the case of two type of assemblies, the minimization of (8) is not
well-posed inUad, i.e. there exist no minimizers. As before we introduce
a relaxation of this problem by considering generalized designs in a space
U∗

ad.
The relaxation is built by using the homogenization theory (see e.g. [10,

18]) which works equally well for a mixture of any numberI of compo-
nents. The same arguments ofH-convergence leads to the homogenized
state equation{− div (D∗∇u(x)) + Σu(x) = λσu(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(44)

where(λ, u) are the first eigenvalue and eigenvector, and the homogenized
coefficients are defined by

Σ(x) =
I∑

i=1

θi(x)Σi, σ(x) =
I∑

i=1

θi(x)σi,

where eachθi is a density functionwhich is theweak * limit inL∞(Ω; [0, 1])
of a sequenceof characteristic functions(χi

n)n≥1 of the subdomainoccupied
by assemblyi. These proportion functions satisfy

I∑
i=1

θi(x) = 1,
∫

Ω
θi(x)dx = γi, 0 ≤ θi(x) ≤ 1.(45)

The homogenized diffusion tensorD∗(x) is theH-limit (i.e. the limit in the
sense of homogenization) of the sequenceDn =

∑I
i=1 χ

i
nd

i. The relaxed
objective function is defined by

J∗(θ,D∗) =

(
�λ +

(M(|su|r))1/r

M(σu)

)
,(46)

where(λ, u) is the solution of (44). The set of generalized admissible con-
figurations is defined by

U∗
ad = {(θ1, · · · , θI , D

∗) ∈ L∞(Ω) satisfying (45), such thatD∗ ∈ Gθ} ,
(47)
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where the constraintD∗ ∈ Gθ holds almost everywhere inΩ, andGθ is the
set of all possible homogenized diffusion tensors associated to the family of
proportionsθ = (θ1, · · · , θI). Our relaxed problem is therefore to minimize
J∗ overU∗

ad, i.e.

min
(θ,D∗)∈U∗

ad

J∗(θ,D∗).(48)

One can prove a relaxation result completely similar to Theorem 3.1 which
states that (48) is the true relaxation of the original optimization problem.
For the sake of brevity, we shall not dwell on this. Unfortunately, this relaxed
formulation is not very useful since we do not know an algebraic charac-
terization of the setGθ whenI ≥ 3, on the contrary of the previous case
I = 2. Nevertheless, as was first remarked by Raitum [21] (see also [22]),
we do not need the full setGθ for our optimization problem. It turns out that
optimal arrangements of the components can always be found in the smaller
subset of simple laminates or layered materials (this was already the case
whenI = 2, see Remark 4.3).

Let us explain this ”miracle” that allows to treat the caseI ≥ 3 as the
previous oneI = 2 (a similar argument has already been given in [22]).
We define a setCθ of all symmetric matrices with eigenvalues bounded
between the harmonic and arithmetic means, i.e.M ∈ Cθ if and only if its
eigenvaluesµ1, µ2 satisfy

µ−
θ ≤ µi ≤ µ+

θ , for i = 1, 2,(49)

where
1
µ−

θ

=
I∑

i=1

θi

di
andµ+

θ =
I∑

i=1

θid
i.(50)

A well-known result of homogenization (see e.g. [10,18]) states thatGθ is
included inCθ, i.e. any homogenized tensorD∗ ∈ Gθ satisfiesµ−

θ Id ≤
D∗ ≤ µ+

θ Id in the sense of quadratic forms. This inclusion is also known to
be strict, i.e.Gθ /= Cθ. We then introduce a larger set of admissible designs

Uc
ad = {(θ1, · · · , θI , D

∗) ∈ L∞(Ω) satisfying (45),
such thatD∗ ∈ Cθ} .(51)

The setUc
ad has no physical meaning: its tensorsD∗ are usually not ho-

mogenized tensors corresponding to a finemixture of the phase components.
It is just a mathematical artefact. SinceU∗

ad ⊂ Uc
ad, we have

min
(θ,D∗)∈Uc

ad

J∗(θ,D∗) ≤ min
(θ,D∗)∈U∗

ad

J∗(θ,D∗).(52)

It turns out thatJ∗ attains itsminimumalso in the setUc
ad. Indeed if(θn, D

∗
n)

is aminimizing sequence, up to a subsequence, there exists a limit(θ∞, D∗∞)
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such thatθn converges toθ∞ inL∞(Ω; [0, 1])weak *, andD∗
n H-converges

toD∗∞. Furthermore, by the properties ofH-convergence (see (11)), wehave

lim
n→+∞J∗(θn, D

∗
n) = J∗(θ∞, D∗

∞).

Theonly thing to check is that(θ∞, D∗∞)does indeedbelong toUc
ad. Another

classical result of homogenization tells us that

D∗
∞ ≤ D∗

+, (D∗
∞)−1 ≤ (D∗

+
)−1

,

whereD∗
+ (respectively(D∗−)−1) is the weak * limit ofD∗

n (respectively
(D∗

n)−1) in L∞(Ω). SinceD∗
n ∈ Cθ it satisfies

D∗
n ≤ µ+

θn
Id, (D∗

n)−1 ≤ (µ−
θn

)−1
Id,

where both right hand sides of the inequalities are affine function ofθn,
which implies that in the limit

D∗
∞ ≤ µ+

θ∞Id, (D∗
∞)−1 ≤ (µ−

θ∞

)−1
Id,

i.e. D∗∞ ∈ Cθ∞ as desired. In other words,J∗ attains its minimum at
(θ∞, D∗∞) in Uc

ad. As proved in the next theorem, the optimality condi-
tions inUc

ad furnish a minimizer inU∗
ad. Therefore, it is sufficient to find

minimizers inUc
ad for obtaining a particular minimizer inU∗

ad, which yields
a tractable relaxation for numerical computations.

Theorem 5.1 There exists at least one couple(θ∞, D∗∞) ∈ U∗
ad, such that

D∗∞ is the effective tensor of a layered material, which is a minimizer ofJ∗
both inU∗

ad and inUc
ad.

Remark 5.2A layered material is obtained by stacking slices of theI com-
ponents. Its effective or homogenized propertiesD∗ can be computed ex-
plicitly in terms of the proportionsθ = (θ1, · · · , θI) and the unit directione
which is normal to the slices or layers. In 2-D, in the basis(e, e⊥) it reads

D∗ = diag
(
µ−

θ , µ+
θ

)
,(53)

whereµ−
θ andµ+

θ are defined by (50).

Proof of Theorem 5.1.It is completely similar to that of Proposition 4.2. The
key point is that theminimizer of (37) are the same inGθ or inCθ. As before,
the derivative ofJ∗ is given by (27) with the only difference that we now
haveδσ =

∑I
i=1 σ

iδθi, δΣ =
∑I

i=1 Σ
iδθi, andrsr−1δs =

∑I
i=1(σ

i)rδθi.
Let (θ,D∗) be an optimal family of proportions and diffusion tensor inUc

ad.
Let us denote byu the state, solution of (44), and byp the adjoint state,
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solution of (26). SinceCθ is a convex set, arguing as in Proposition 4.2, the
optimal tensorD∗ satisfies, outside the set where|∇u||∇p| = 0,

{
D∗∇u = 1

2(µ+
θ + µ−

θ )∇u − 1
2(µ+

θ − µ−
θ ) |∇u|

|∇p|∇p,

D∗∇p = −1
2(µ+

θ − µ−
θ ) |∇p|

|∇u|∇u + 1
2(µ+

θ + µ−
θ )∇p,

(54)

and it is necessarily a layered material whose orientation is given in terms
of the angle between∇u and∇p. Tartar [22] generalized the clever trick of
[21], mentioned in Remark 4.3, to the case ofI > 2 phases. It enables to
prove that, even where|∇u||∇p| = 0, one can find an optimalD∗ which
is a layered material. This shows that at least one optimal tensorD∗ in Uc

ad
corresponds to a layered material which implies that it belongs toU∗

ad and is
therefore optimal inU∗

ad too. Let us show that, if(θ,D∗) is aminimizer, then
there exists anotherminimizer(θ̃, D̃∗)with the samestateuandadjoint state
p such thatD̃∗ is a simple laminate. If∇u = 0, we can clearly takẽθ = θ
and replaceD∗ by any simple laminatẽD∗: it does not changeu although
pmay change. When∇p = 0, we are going to change bothθ andD∗ while
keeping the same stateu and adjoint statep (a symmetric argument would
also work in the case∇u = 0). Indeed, by Lemma 5.3 below, there existI
families of proportions(θk)1≤k≤I with componentsθk = (θk

i )1≤i≤I such
that

∑I
i=1 θ

k
i = 1, θk

i ≥ 0, the rank of this family isI − 1, and there exist
simple laminatesDk ∈ Gθk satisfyingD∗∇u = Dk∇u for all 1 ≤ k ≤ I.
Denoting byω the measurable subset ofΩ where∇p = 0, we buildθ̃ in ω
by partionningω in subsetsωk where it takes only the valueθk (depending
on∇u andD∗∇u), which minimizes the ”restriction” of the cost function
toω, while satisfying the volume constraints on each phase (this is possible
since the rank of(θk)1≤k≤I is I − 1). Similarly,D̃∗ is defined as the simple
laminateDk in eachωk. We have thus obtained another minimizer(θ̃, D̃∗)
which is a simple laminate.

Lemma 5.3 LetB be a symmetric matrix, with eigenvalues(µi)1≤i≤N sat-
isfyingµ−

θ ≤ µi ≤ µ+
θ . Lete ande be two vectors inR

N such thate = Be.
Then, we have

‖e − 1
2
(µ+

θ + µ−
θ )e‖ ≤ 1

2
(µ+

θ − µ−
θ )‖e‖.(55)

Furthermore, there existI families of proportions(θk)1≤k≤I , depending
only one ande, with componentsθk = (θk

i )1≤i≤I such that
∑I

i=1 θ
k
i = 1

andθk
i ≥ 0, and there exist simple laminatesDk ∈ Gθk such that, for any

1 ≤ k ≤ I,

e = Be = Dke.
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Proof.By definition, the eigenvalues of(B − 1
2(µ+

θ +µ−
θ )Id) belong to the

interval [−1
2(µ+

θ − µ−
θ ), 1

2(µ+
θ − µ−

θ )] which implies (55). Fort ∈ R
I , let

us introduce a functionf(t) defined by

f(t) =
1
4
(µ+

t − µ−
t )2‖e‖2 − ‖e − 1

2
(µ+

t + µ−
t )e‖2

= − (µ+
t e − e

) · (µ−
t e − e

)
.

An easy computation shows that, fortk = (δik)1≤i≤I (corresponding to
pure phasek), f(tk) = −‖e − dke‖2, while f(θ) ≥ 0 by virtue of (55).
Sincef(t) is continuous, on each segment[θ, tk] there exists a pointθk such
thatf(θk) = 0,

∑I
i=1 θ

k
i = 1 andθk

i ≥ 0. The collection(θk)1≤k≤I is of
rank I − 1 if f(tk) < 0 andf(θ) > 0 (if this is not the case,B can be
replaced by a pure phase or a simple laminate). For suchθk we have from
f(θk) = 0

fk · gk = 0 with fk =
µ+

θke − e

µ+
θk − µ−

θk

andgk =
µ−

θke − e

µ+
θk − µ−

θk

.

Then, defining a rank-one laminateDk ∈ Gθk in the directionfk if fk /= 0,
or in any direction orthogonal togk if fk = 0, we have

Dkfk = µ−
θkf

k andDkgk = µ+
θkg

k.

Sincee = fk − gk ande = µ−
θkf

k − µ+
θkg

k, we thus deduce thatDke = e,
as desired.

We now turn to the optimality conditions for the volume fractionsθi. Let
us define an angleϕ between∇u and∇p by

∇u · ∇p = |∇u||∇p| cosϕ,(56)

whereu andp are solutions of (44) and (26) respectively. By taking the opti-
mal layered materialD∗ furnished by Theorem 5.1, the optimal proportions
θ = (θ1, · · · , θI) satisfy the following optimality conditions

Proposition 5.4 For 1 ≤ i ≤ I, letQi(x) be functions defined by

Qi(x) = −|∇u||∇p|
[
∂µ−

θ

∂θi
cos2

ϕ

2
− ∂µ+

θ

∂θi
sin2 ϕ

2

]
+
(
Σi − λσi

)
up

+
(M(|su|r))(1−r)/r

M(σu)
(σi)rur

r|Ω| − (M(|su|r))1/r

(M(σu))2
σiu

|Ω| .
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There exist a functionC0(x) and constantsCi such that aminimizer(θ,D∗)
for J∗ satisfies


θi(x) = 0 if Qi(x) − C0(x) < Ci,
0 ≤ θi(x) ≤ 1 if Qi(x) − C0(x) = Ci,
θi(x) = 1 if Qi(x) − C0(x) > Ci,

and reciprocally


Qi(x) − C0(x) ≤ Ci if θi(x) = 0,
Qi(x) − C0(x) = Ci if 0 < θi(x) < 1,
Qi(x) − C0(x) ≥ Ci if θi(x) = 1.

The proof of Proposition 5.4 is completely similar to that of Proposition 4.4.
In particular, taking the optimalD∗ implies that

δJ∗ =
∫

Ω

I∑
i=1

Qi(x)δθi(x)dx ≥ 0,

which, upon taking into account theI volume constraints
∫
Ω δθi(x)dx = 0

and the pointwise constraint
∑I

i=1 θi = 1, yields the desired result.

6. Numerical algorithms

This section is devoted toagradient-typenumerical algorithm for solving the
proposed relaxed formulationof the re-loadingoptimizationproblem (in two
space dimensions). It relies on our knowledge of the optimality conditions
and, in particular, of the optimality of simply layered microstructures. By
virtue of Remark 4.3, the optimal homogenized diffusion tensorD∗ can
be chosen to be that of a layered material which is parametrized by two
variables : the volume fractionsθ = (θ1, · · · , θI) and a rotation angleα. We
therefore work with the following class of diffusion tensors

D∗(θ, α) =
(

cosα sinα
− sinα cosα

)(
µ+

θ 0
0 µ−

θ

)(
cosα − sinα
sinα cosα

)
,

whereµ−
θ andµ+

θ are defined by (50). In other words, our objective function
J∗ is now a function of the(I + 1) scalar design variablesθ andα, subject
to the constraints

I∑
i=1

θi(x) = 1 , 0 ≤ θi(x) ≤ 1 ,

∫
Ω
θi(x)dx = γi .(57)
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The computation of the gradient ofJ∗ with respect to(θ, α) is very similar
to the derivation of the optimality conditions in Sect. 4. For an admissible
increment(δθi, δα), we find

δJ∗(θ, α) =
∫

Ω

∂D∗

∂α
∇u · ∇p δαdx +

I∑
i=1

∫
Ω
Qi(x)δθidx,

whereQi(x), being very similar toQi(x), is defined by

Qi(x) =
∂µ−

θ

∂θi

[
sin2 α

∂u

∂x

∂p

∂x
+ cos2 α

∂u

∂y

∂p

∂y

+ cosα sinα

(
∂u

∂x

∂p

∂y
+

∂u

∂y

∂p

∂x

)]
+

∂µ+
θ

∂θi

[
cos2 α

∂u

∂x

∂p

∂x

+ sin2 α
∂u

∂y

∂p

∂y
− cosα sinα

(
∂u

∂x

∂p

∂y
+

∂u

∂y

∂p

∂x

)]

+
(
Σi − λσi

)
up +

(M(|su|r))(1−r)/r

M(σu)
(σi)rur

r|Ω|
−(M(|su|r))1/r

(M(σu))2
σiu

|Ω| ,

with
∂µ+

θ

∂θi
= di , and

∂µ−
θ

∂θi
=

−(µ−
θ )2

di
.

Once we have computed the gradient we need to add a projection step in
order to satisfy the admissibility constraints (57). The gradient method is
then structured as follows.

1. Weinitialize the design parametersθ1 = (θ1
1, · · · , θ1

I ) andα
1 (for exam-

ple, we take a constant angleα1 and volume fractionsθ1
i , which satisfy

the volume constraints).
2. Until convergence, forn ≥ 1weiteratively compute the stateun and the

adjoint stateqn, solutions of (10) and (24) respectively with the previous
design parameters(θn, αn), and then update these parameters by

θn+1
i (x)=max

(
0,min

(
1, θn

i (x) − tn(Qn
i (x) − Cn+1

0 (x) − Cn+1
i )

))
whereCn+1

i are Lagrange multipliers (constant throughout the domain)
for the global volume constraints, andCn+1

0 (x) is the Lagrange multi-
plier (varying at each pointx) for the local volume constraint∑I

i=1 θ
n+1
i (x) = 1, and

αn+1 = αn − tn
∂D∗

∂α
(θn, αn)∇un · ∇pn

wheretn > 0 is a small step such thatJ∗(θn+1, αn+1) < J∗(θn, αn).



24 G. Allaire, C. Castro

Table 1. Physical constants of the 4 types of assembly

Label of assembly DiffusionD AbsorptionΣ Fissionσ Proportion

1 1.340 0.0245 0.0311 40/157
2 1.356 0.0250 0.0287 40/157
3 1.375 0.0254 0.0270 40/157
4 1.390 0.0258 0.0256 37/157

The Lagrangemultipliers are iteratively adjusted in a inner loop at each step
n of the above algorithm (this is the most delicate part of the algorithm,
the case ofI ≥ 3 phases being much more time-consuming than just two
phases). Such a gradient method always converges to a (local) minimum,
and its speed of convergence is partly governed by the efficiency of the line
search for finding a good steptn. However, in practice we made no special
efforts in optimizing the choice oftn. Neverthelees, to improve the speed
of the algorithm, we have replaced the gradient method for the angleα by
an application of the optimality criteria (this is a very popular principle in
structural design ; see e.g. [4]). In view of Proposition 4.2 the lamination
directionαn+1 is determined by the angle between∇un and∇pn rather
than by the above formula.

We test our method on a core with 157 squared assemblies (with side
length 21.5 cm) of 4 different types with properties given by Table 1 (these
data are representative of a 900 Mw pressurized water reactor). The com-
putation are performed on one fourth of the geometry using the Matlab
software. There are 362P1 finite elements in the mesh and the volume
fractions are constant on each assembly. We choose� = 0 andr = 10 in
the objective function (other choices work as well). We first compute the
optimal solution for the relaxed formulation after 200 iterations. Figures 5
and 6 display the optimal volume fractions, and Fig. 7 the resulting power
distributionσu. The convergence is smooth as shown by figure 8 and in-
dependent of the initialization (we believe we reached a global minimum).
The power peakmax(σu) is globally decreasing (there is no reconstruction
of the fine structure of the flux).

The above relaxed or homogenized optimal solution gives a lower bound
on theminimal performance of any discrete distribution of assemblies.More
than that, by penalizing the intermediate values of the volume fractions,
we can recover a quasi-optimal distribution of assemblies. We introduce a
penalized objective function, defined by

Jpen(θ, α) = �λ +
(M(|su|r))1/r

M(σu)
+

η

|Ω|
∫

Ω

I∑
i=1

θi(1 − θi) dx ,

where(λ, u) is the solution of (44). Forη = 0 we recover the relaxed ob-
jective functionJ∗, while for η > 0 we force the volume fractions to take
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Fig. 5. Volume fractions of assembly 1 (left) and 2 (right)
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Fig. 6. Volume fractions of assembly 3 (left) and 4 (right)
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Fig. 7. Power distributionσu

only the values 0 or 1. Starting from the previous relaxed optimal design,
we minimize the penalized objective function and increase progressively
the value ofη. Since by virtue of Theorem 3.1 any relaxed design is the
limit of a sequence of closer and closer classical designs, the penalization
process amounts to build such an approximating sequence for which the
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Fig. 8. Convergence history: objective function (left) and power peak (right)
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Fig. 9. Distributions of assembly 1 (left) and 2 (right)
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Fig. 10. Distributions of assembly 3 (left) and 4 (right)

objective function should not change toomuch. This procedure is nowwell-
established in structural optimization (see [1,4]). Here, we run 50 iterations
with η = 1 and 20more withη = 2. Of course, the results are very sensitive
to the choice ofη which should not be too large. Figures 9 and 10 display the
discrete distribution of assemblies, and Fig. 11 the resulting power distribu-
tion σu. Remark that the obtained pattern is not symmetric with respect to
the first diagonal. It may indicate that an even better design could be found
if we do not enforce the core symmetry by fourth.
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Fig. 11. Power distribution after penalization

Table 2. Comparison between the homogenized and penalized designs

Objective function Power peak

Homogenized design 1.180 1.387
Penalized design 1.249 1.551

In Table 2we compare the values of the objective function for the relaxed
optimal design and for the penalized one (the penalization termJpen − J∗
is almost zero at the end of the penalization process).

In our opinion the interest of the homogenization method is twofold.
First, the homogenized optimal design gives an absolute lower bound to
any proposed discrete distribution of assemblies. Therefore, it is a good
element of comparison with any other optimization method. Second, the
homogenization algorithm is insensitive to the initial guess and the resulting
penalizeddiscrete distribution of assemblies is free of any implicit or explicit
constraint on its pattern (in structural optimization this is called topology
optimization, see e.g. [1,3,4]). We do not view this method as an alternative
to other optimization algorithms but rather as a pre-processing step. Indeed,
it gives rise to new patterns that may be different from initial guesses or
intuitions, but that canbe improvedby local optimizationusingmore realistic
constraints or objective function.

7. Conclusion and perspectives

This paper describes a new approach for optimizing the fuel assemblies po-
sitions in a nuclear reactor core. This approach is based on the homogeniza-
tionmethodwhich has already been successfully implemented for structural
optimization. The work reported here is still in progress. Basically we are
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working in two directions. First, we generalize the present work to the more
realistic model of two-groups diffusion (this is a system of two coupled dif-
fusion equations). The principle of this generalization is the same but many
new mathematical difficulties arise. In particular, we shall introduce a par-
tial relaxation instead of the true relaxed formulation which is unfortunately
untractable. Second, we have to take into account more realistic constraints
in the optimization process and do more numerical comparisons with other
approaches in the literature. This will be reported in a next paper [2].

References

1. Allaire G., Bonnetier E., Francfort G., Jouve F.: Shape optimization by the homoge-
nization method. Numerische Mathematik76, 27–68 (1997)

2. Allaire G., Castro C. (in preparation)
3. Allaire G., Kohn R.V.: Optimal design for minimum weight and compliance in plane

stress using extremal microstructures. Eur. J. Mech. A/Solids12(6), 839–878 (1993)
4. Bendsoe M.: Methods for optimization of structural topology, shape and material.

Berlin Heidelberg New York: Springer 1995
5. Dacorogna B.: Weak continuity and weak lower semicontinuity of nonlinear function-

als. Lecture Notes in Math. 922, Berlin Heidelberg New York: Springer 1982
6. Dumas M.: Optimisation du repositionnement des assemblages combustibles d’un
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