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Summary. The aim of this paper is to propose a new approach for optimiz-
ing the position of fuel assemblies in a nuclear reactor core. This is a control
problem for the neutronic diffusion equation where the control acts on the
coefficients of the equation. The goal is to minimize the power peak (i.e.
the neutron flux must be as spatially uniform as possible) and maximize the
reactivity (i.e. the efficiency of the reactor measured by the inverse of the
first eigenvalue). Although this is truly a discrete optimization problem, our
strategy is to embed it in a continuous one which is solved by the homoge-
nization method. Then, the homogenized continuous solution is numerically
projected on a discrete admissible distribution of assemblies.

Mathematics Subject Classification (19965K10; 65N99

1. Introduction

This paper is concerned with an optimal design problem in nuclear reactor
cores: the so-called optimal fuel re-loading problem. In most reactor cores,
the nuclear fuel is made of a few hundreds of so-called assemblies, period-
ically distributed in a cross-section of the core (see Fig. 1). Each assembly
is a very heterogeneous medium composed by a regular array of fuel pins
(mainly made of uranium) and control rods immersed in water. During the
fission process, the fissile isotope of uranium is consumed and other prod-
ucts appear. This so-called depletion process progressively decreases the
efficiency of the nuclear fuel. Therefore, it must be changed periodically by
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fresh one (such a period, also called a cycle, is about a few months). How-
ever, the fuel depletion is not spatially uniform in the core. This has two
consequences: first, only part of the old assemblies (typically one fourth)
are removed at the end of each cycle, second, itis not desirable to put the new
assemblies exactly at the location of the removed ones. In order to maintain
the maximal performance of the reactor, it is rather preferable to optimize
the position of each type of assemblies. In other words, the fuel re-loading
process not only consists in replacing the used assemblies by fresh ones
but also in a rearrangement of all the assemblies in the core to make the
most efficient use of the nuclear fuel. As such, it is a discrete optimization
problem, but the large number of assemblies make it highly non-trivial since
the computation of all possible combinations to find the best one is out of
reach. For more details on this problem, we refer e.g. to [6,9,12].

In order to give a precise mathematical statement of this optimization
problem, we now describe the state equation that models the fission process
in the nuclear reactor and allows to quantify the efficiency of the assem-
blies distribution. The power distribution in a nuclear reactor core is usually
obtained by solving an eigenvalue problem for a diffusion equation. For
simplicity, in this paper we content ourselves with the one energy group
diffusion equation (multiple energy groups diffusion will be considered in
a next paper [2]). In a steady-state regime, this problem gives the balance
between neutrons produced by fission and neutrons absorbed or diffused by
the medium. Denoting by? the radial section of the corg(C R? is a
bounded open set), our state equation is

—div (D(x)Vu(z)) + X(x)u(z) = Ao (z)u(z), z € 12,
(1) {u(:z) — 0, € 09,

where the unknowns are the neutronic fiuxXi.e. the density of neutrons)
andthe eigenvaluk = 1/k. s (k. is the criticality parameter which gives

the ratio between produced and consumed neutrons). More precidsly,

the first eigenvalue andthe first eigenvector of (1), which is the only one

to have a physical meaning since it is positive. The diffusion coefficient
D(z), the absorption cross sectidi{z), and the fission cross sectiofiz),

are positive data determined by the type of assemblies. The eigenvalue
measures the criticity of the reactor in a quasistatic limi.# 1, the reactor

is said to be critical and can safely be operated: a perfect balance between
production and removal of neutrons is obtained. i# 1, too many neutrons

are diffused or absorbed in the core compared to their production by fission :
the nuclear chainreaction dies out, and the reactor, being sub-critical, can not
operate. If\ < 1, too many neutrons are created by fission, and the reactor,
being super-critical, can nevertheless be operated by introducing absorbing
media in the core (with control rods, or diluted in the water). Remark that (1)
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gives only the spatial distribution of the neutron flux (which in turn yields
the power distribution) but not its intensity since an eigenvector is defined
up to a multiplicative constant.

We can now describe the objective function of the fuel re-loading op-
timization problem. As already said, a reactor can produce energy if its
criticality eigenvalue\ is equal to or smaller than 1. However, as time goes
by, the fuel depletion has a tendency to increase this eigenvalue. Therefore,
at the beginning of a cycle it is highly desirable to have the smallest possible
value of X (or criticality reserve), ensuring that the reactor will be working
for the longest possible time. Minimizing the eigenvalueay cause un-
usual oscillations in the profile of the first eigenveciqithe neutron flux),
and produce a highly non-uniform power distribution in the core (which is
proportional taru). For efficiency and safety reasons, itis rather an undesir-
able feature. Indeed, at peak points of the power distribution, the surrounding
flow of water could be unable to cool down the fuel pins, yielding a strong
increase of the temperature that may eventually cause damage in the as-
sembly. A major issue for safety is thus to have the most uniform power
distribution in the core. This can be enforced by minimizing the maximal
value ofou (the so-called peak power point). Such a criterion is non differ-
entiable, and we approximate it by minimizing instead £iéf2) norm of
ou With 1 < r < 4o00. Sinceu is defined up to a multiplicative constant,
we take care of normalizing thi&" (£2) norm by theL!(£2) norm. Finally,
introducing a positive Lagrange multipliér> 0, our objective function is

. (M(|oul")""
(2) mm{f)\—l—/\/l(au)},

whereM denotes the average operatorin

For simplicity, we outrageously simplified the constraints and requirements
used in practice for fuel re-loading optimization. In particular, we optimize
the assemblies distribution just for one cycle, regardless of what may happen
afterwards, and we do not take into account the cost of permuting assemblies.
We also do not try to minimize the production of undesirable isotopes or
speciesinthe fission process. For more informations on the actual constraints
and objectives, we refer e.g. to [12].

To finish the mathematical statement of our optimization problem, it
remains to define a space of admissible configuratigpsof assemblies
in the core. Then, the minimization of the objective function (2) take place
on this spacé{,;. Assuming that at each cycle, one out/ofssemblies
is removed, there aré type of assemblies in the core, having different
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Fig. 1. Adiscrete configuration of two types of assemblies in a 900 Mw PWR nuclear reactor
core (having 157 assemblies)

physical characteristiceD, X', o) due to their different past time in the
core (their so-called burnup). Typical valueslothat we shall deal with

in this paper ard = 2 or 4 (the casel = 2 is much simpler but not
realistic, whilel = 4 is typical and not much easier than ahy> 3). For
simplicity, we assume that all assemblies of the same type are identical,
and that the coefficientsD, >, o) are constant inside one assembly (i.e.

it is homogeneous). Of course, the proportions of each type of assemblies
are given. We make no special assumptions on the ordering of the physical
properties of the assemblies, although physically speaking the freshest fuel
produce the smallest criticity eigenvalig-inally, since all assemblies have

the same size, the cofecontains a finite number of them (see Fig. 1). Thus,
U,q s afinite set of all possible permutations of these assembilies.

Since the space of admissible configuratitf)g has a finite number of
elements, the minimization of the objective function (2) is a combinatorial
optimization problem. There are many numerical methods proposed in the
literature for solving it, based on linear programming, simulated anneal-
ing, neural networks or genetic algorithms [8,11,16,19,14,15]. However,
the huge number of possible permutations, the non-convexity of the objec-
tive function make it a very hard problem to solve. We propose yet another
approach in two steps. First, we transform this discrete problem in a contin-
uous one by removing any size and shape constraints on the assemblies (see
Fig. 2). In other words, we keep the prescribed amount of fuel (or material)
in each of theirl types, but it can now be placed in the core as freely as
we want, and its repartition does not necessarily follow an assembly pat-
tern. This idea of generalizing the fuel re-loading optimization problem as
a continuous one is not new (see e.g. [6]). It has the advantage of being
more tractable from a numerical standpoint. In a second step, we project a
continuous optimal configuration onto the discrete sg@dge in the hope
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Fig. 2. A continuous configuration of two types of assemblies in a 900 Mw PWR nuclear
reactor core

that it will lead to a nearly optimal admissible configuration of assemblies.
Transforming an admissible configuration into a continuous one is obtained
through a numerical method of penalization. This second step is therefore
purely based on numerical heuristics and has no firm theoretical ground.
On the contrary, we perform a detailed mathematical analysis of the first
step. It turns out that the continuous optimization problem is ill-posed in the
sense that it does not admit a solution in the space of all possible continu-
ous distributions of thé materials. The reason for this is that minimizing
sequences of almost optimal configurations have a tendency to exhibit very
fine mixture of thel components. On a macroscopic scale these mixtures
are composite materials having effective properties different from that of its
phase constituents. Their effective or averaged cross sections and diffusion
tensors are found by using the homogenization theory. To make this problem
well-posed, one must enlarge the space of admissible designs by allowing
for composite materials obtained by mixing microscopically tu#fferent
fuels. We then obtain the existence of a composite optimal configuration, as
well as very efficient numerical algorithm for computing them.

This approach is called the homogenization method for optimal design.
It has been successfully implemented in structural optimization (see e.g.
[1,3,4]). Our work must be seen as a generalization of this method to the
fuel re-loading optimization problem. In structural design the homogeniza-
tion method is regarded as a method for topology optimization, which is
not incompatible, but rather complementary, with other classical methods.
Likewise in the present setting, our approach should be taken as a topology
optimizer, i.e., whatever the starting configuration, it is able to find a quasi-
optimal distribution of assemblies, possibly very remote from the starting
one. The homogenization method is not a concurrent of other methods, but
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rather a pre-processor, since its final output could still be refined by these
methods.

Finally, we conclude this introduction by a brief description of the con-
tent of this paper. Although our goal is to address the cage-oP types of
assemblies, for simplicity our exposition starts with the easier £ase2.

In Sect. 2, a mathematical setting is introduced for the original continuous
problem. Section 3 is devoted to its relaxation, and Sect. 4 deals with op-
timality conditions. Eventually Sect. 5 generalizes the previous results for
more than two type of assemblies. Numerical results are presented in Sect. 6.

2. Setting of the problem

We first recall that the state equation of our optimization problem is the
spectral equation for the one energy group diffusion model. Denoting by
a bounded open set R?, it reads

—div (D(x)Vu(z)) + X(x)u(z) = Ao(z)u(x), z € 12,
() {u(x) =0, x € 012,

where(\, u) is the first eigenvalue and eigenvector. The coefficients in (4)
are assumed to be measurable and bounded (but not necessarily smooth),
i.e.D, X o € L>(2). Furthermore, we assume that, almost everywhere in
(2, they satisfy

Y(x) >0, o(x) > 09 >0, D(x)>dy>0.

Under these assumptions, it is well known that (4) admits a unique solution
in the sense given by the following result (see e.g. [20]).

Theorem 2.1 There exists a countable infinite number of eigenvalues for
(4), that we label by increasing order &%;);>1, and corresponding eigen-
vectors(u;)i>1 € HE(£2). Furthermore, the first eigenvalug (i.e. the
smallest one) is positive and simple, and its eigenvector is the only one that
can be chosen to be positivefh

Remark 2.2The only solution of (4) which has a physical meaning is the
first eigenvalue and eigenvectoY;, u;) sinceu; is the only eigenvector to

be positive (a necessary feature for a density function). From now on, we
drop the subscript 1, and denote(@y v) = (A1, u;) the solution of (4). Of
courseu is unique only up to a multiplicative constant.

In this section we assume that there are only two types of assemblies,
characterized by constant positive coefficiefits >7,07) with j = 1,2,
given in prescribed proportiong > 0 with v; + 72 = |£2|. We consider
only the continuous optimization problem (as defined in the introduction),
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i.e. we do not require that each type of matejiat 1, 2 fitinto assemblies,
but it may rather fill the domaiti? in any possible shape. In other words,
denoting byf2; the part off2 occupied by material, there is no restrictions
on ({21, £22) except the obvious ones

(5) Q1N =0, U =12, ’Qj’:’yj,j:LQ.

Introducing the characteristic functio(ig;, x2) of these subsetg?, (2,)
(ile.xj(x) = 1if x € £2; andy;(x) = 0 if z& £2;), the coefficients of (4)
are given by

D(z) = d*x1(z) + d®*xa(z),
(6) X(x) = Xy (x) + %o (),

o(x) = olxi(x) + o?xa(x).
Sincey; + x2 = 1, a single characteristic functiop, = x defines com-
pletely the distribution of the two fuel types. Therefore, the space of admis-
sible configurations can now be defined in a very simple way by

@) Upa = {x € L°°($2;{0,1}) such that/Q x(x)dx = '71} .

Our fuel re-load optimization problem is to find a minimizer of

r /7’
(8) min J(x) = (5)\ + WW) ,

XEUqa M(ou)

where(\, u) is the solution of (4) M is the average operator i2 defined
by (3),1 < r < 400, and the coefficients of (4) are given by (6).

To solve this optimization problem we can try the direct method of the
calculus of variations. It amounts to proceed in the following order

1. We prove that minimizing sequences are relatively compact for a suitable
topology.

2. We prove alower semicontinuous result for the objective function, which
yields that it attains its minimum.

3. We differentiate the cost function to obtain optimality conditions.

As remarked by [18], two main problems arise when we try to carry
out this process for (8). First, the ddt, is not closed in the topologies
for which minimizing sequences are compact. This means that, in general,
minimizing sequences can converge to limits outside ftdm, i.e. they
are not characteristic functions. In this case there is no minimizer of (8) in
U,q (explicit counter-examples may be found in [17]). Second, we can not
differentiate the cost function (8) because thé&gis not stable by standard
variations, i.e. a convex combination of two characteristic functions is never
a characteristic function.
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To overcome these two obstacles, one can use the so-called relaxation
procedure (see e.g. [5,7]). It amounts to extend the original space of admis-
sible solutions into a space of generalized, or relaxed, admissible solutions,
denoted by/{*,, as well as the objective functiohthat becomes a relaxed
objective functionJ*. This extension is built to guarantee the existence of
an optimal relaxed solution, but it should not be too "large” in order to keep
track of the behavior of minimizing sequences for the original problem. In
other words, relaxing a problem does not change its physical significance.
More precisely, a relaxed formulation must satisfy the following conditions

1. U,q C U}, and the relaxed cost function coincides with the original one
overid,q,

2. there exists at least one minimizer of the relaxed problem, and the min-
imal values of the original and relaxed objective functions are equal,

3. any minimizer of the relaxed problem is attained by a minimizing se-
qguence of the original problem,

4. any minimizing sequence of the original problem converges to a mini-
mizer of the relaxed problem.

In the next section we introduce such a relaxation for our problem using
homogenization.

3. The relaxed problem

In this section we introduce a relaxed problem associated to (8). We follow
the homogenization method introduced in [18].

The set of characteristic functions is bounded.ii((2) and therefore
relatively compact for the weak * convergence. Thus, from any sequence
(xn)n>1 IN Uyq, We can extract a subsequence, still dengggdsuch that
it converges weakly * in.>°({2) to a limit §(x). Since the convergence is
weak and not strond), is usually not anymore a characteristic function but
a density, i.ef(x) may take its values in the full range, 1]. Defining the
corresponding coefficients

Dn(x) = xn(2)d" + (1 = xn(@))d?,

() = xn (@) 21 + (1 = xn(@)) 22,

on(T) = Xn<$)01 + (1 - Xn(x))027
the state equation is rewritten

) —div (D, Vuy,) + Xpun, = Apopuy, in£2,

Uy =0, onaf?,
where(\,,, u,,) are the first eigenvalue and normalized eigenvector. In order
to pass to the limit in (9), we use the theorykfconvergence (also called
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G-convergence, see e.g. [10,18]), which states that, up to a subsequence,
the limit of (9) is the following homogenized problem

{ —div (D*Vu(z)) + Xu(z) = A\ou(x), z € £,
u(z) =0, x € 012,

where (A, u) are the first eigenvalue and normalized eigenvector, and the
homogenized coefficients are defined by

S(x)=0x) 2+ (1 —0(2)2?% F(x) =0(x)o' + (1 —0(x))o?,
and D* is the H-limit (i.e. the limit in the sense of homogenization) of

the sequenc®,, = x,d' + (1 — x,)d%. This H-convergence has to be
understood in the following sense

(10)

lim A, = ),
n—oo
(11) w, — win Hy(2) weakly.

It turns out that, although the homogenized cross secib@sare uniquely
defined by the limit density, the homogenized diffusion coefficiebt* is
not explicitly characterized bg. Indeed, depending on the geometry of the
mixture represented by the sequerge D* may be any symmetric positive
definite matrix in a sey. This set of all possible homogenized diffusion
tensors associated to the dengithas been characterized in [13,18]. We
assume, with no loss of generality, titat: d' < d2. At any pointz € 2,
D*(x) is any symmetric matrix with eigenvaluég, (), u2(z)) satisfying
(see Fig. 3)

1 N 1 < 1 n 1
pp—db g —db T oy —db oy —dY

1 n 1 < 1 + 1
P P —py T Ry A2

where pf and i, are the arithmetic and harmonic means of the phase
diffusion coefficients

(12)

(13)

py = 0d' + (1 —0)d?,

1
14 ) = .
(14) Ho = 9/at + (1—0)/d2
One can easily check that (12) implies thgt < p; < MJ fori=1,2.
Since the homogenized state equation (10) depends on two design pa-
rameters, namel§yandD*, the set of generalized admissible configurations
U, must be the set of such couples, namely

ad = {(G,D*) € L>*(f2) suchthab < <1,D" € Ge,/ 0= ’Yl}»
n
(15)
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My

Fig. 3. SetGy of all homogenized diffusion tensors

where the constraints qid, D*) are pointwise in2. Remark that we have
U.q C U], ifwe associate to each characteristic functioa U, a diffusion
tensorD = d'x + d*(1 — x). By Rellich theorem, the sequeneg, which
converges weakly ta in HZ (£2), converges strongly tein L"(§2) for any
1 < r < 400 in two space dimensions (and for ahy< r < 6 in three
dimensions). Sincg,, converges weakly * t@ in L>°({2), we deduce that
(0,)" converges weakly *t6(o1 )"+ (1—0)(0?)" in L>(§2), and therefore

lim Jn(x)un(a:)dx:/U(x)u(x)d:c,

while

n—oo

lim / lo(z)un (z)|" doe = / |s(z)u(z)|" dx,
with s being usuall;flzdifferent frona !

s(@) = (0(x)(")" + (1 - 0(2))(0?)")"".
Thus, combined with (11) we obtain
lim J(xn) = J7(6, D),

andJ* is a relaxed objective function defined by

(16) J*(0,D%) = (5)\ + W) ,

where (A, u) is the first eigenvalue and eigenvector of (10) (remark that
Theorem 2.1 also applies to (10)). Our relaxed problemiis finally to minimize
J* overld;,, i.e.
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17 in  J*(0, D).
(17) (6759)12% (6, D7)

We can now state the main result of relaxation.

Theorem 3.1 Assume thal < r < +oo in two space dimensions, and
1 < r < 6 in three dimensions. The relaxation of the original optimization
problem (8) is (16) in the sense that

1. there exists at least one minimizeif), of J*,
2. any minimizefd, D*) of the relaxed problem is attained by a minimizing
sequence,, of the original problem in the sense that

Xn — 0 weakly *inL>®(£2),
Dy, = xnd* + (1 — xy,)d* H-converges td*,

and
inf J(x) = i J*(6,D"),
BT = o B, TP
3. any minimizing sequenceg, of the original problem converges to a
minimizer(0, D*) of the relaxed problem.

Proof. This proof is an adaptation of that in [18]. It is a simple consequence
of the convergence result (11). Indeedyjf is a minimizing sequence for

J, (11) implies thaty,, converges td)., and J(x,) converges, up to a
subsequence, t6* (0, D7) which is therefore equal tmin, gy, J ().
Since any#, D*) is attained by a sequengg (not necessarily minimizing),

we deduce thatf., D) is a minimizer ofJ*. This finishes the proof of
Theorem 3.1.

4. Optimality conditions

One advantage of the relaxed formulation is that it allows to derive optimality
conditions that are of both theoretical and numerical interest. The results of
this section are a variation of those in [18]. The relaxed cost functiois

defined by

*(g (M(|sul"))""
18 J*(6,D*) = () :
(18) (6, D7) * M (Tu)

with M(f) = |2|7! [,, f(z)dz. By theorem 2.1 the first eigenvalueand
the first normalized eigenvectarare simple : therefore, they arét@aux-
differentiable, as well ag*, with respect td#, D*) in the admissible set

= {(Q,D*) € L*°(f2) suchthat <6 <1, /

0 =, D*EGQ}.
9]
(19)
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If (60,6D*) is an admissible increment id’,, the derivative of/* is

(M(|su|") "

- §J* = U6\ + M) M ((su)" ! (s6u + uds))
O M)
(M(zu)) ’

wherers™1ds = ((o!)"—(02)")80, 67 = (o' —0?)d6, s\ isthe increment
inthe firsteigenvalue, and: is the incrementin the first eigenvector solution
of (10). To computé A, we first remark that multiplying equation (10) by a
test functionv € H}($2) yields

B fQ (D*Vu - Vv +fuv) dzx

21 A
(1) [ Tuvdz

Thus, differentiating (21) gives after some easy algebra

[0 0D*Vu - Vudz + [, |ul*6Xdx [ lul*é5dx
Jo Tlul?dx JoTlul?dz

On the other hand, differentiating (10) shows thais the unique solution
in H}(£2) of

—div (D*V(0u)) + Zdu — A\odu = div (§D*Vu) — Xu
(23)

(22) oA =

+(AoT +To\)u  in (2,
du=0 onofl.

Remark that the right hand side of (23) is orthogonal to the first eigenvector
u which implies that it admits a solution, unique up to the addition of a
multiple of u.

As usual, to eliminatéw an adjoint stateg is introduced. It is defined as
the unique solution i (£2) of

—div (D*Vq) + Xq — Xoq
_ M(sul )T -t (M(suT )Y 5
(24) = Meow ] MEa)? T2 N

g=0 onoaf.

Remark that the right hand side of (24) is orthogonal: tahich implies
that it admits a solution, unique up to a multiplewaf Then, multiplying
equation (24) by« and equation (23) by leads to

MU D D8 L ity - DL L[ g,
M(ou) IQI/Q dud (M(ou))? Q/Q oud

(25) = —/ 0D*Vu - Vqdr — / (5f — Ao — 65)\) uqdzx.
Q Q
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Thus

(M(Jsul" )" 1
M@u) 192 Jo

6J*(0,D*) = L5\ + u"s" " sdx
(M(Jsul" )" 1
(M(eu)? 2] /o

udodx

—/ 0D*Vu - Vqdx — / (62 — XoT — T6\) ugdz.
2 9]

Introducing a combination functiome H{ (£2) defined by

L+ fgﬁuqd:c

26 e e T
(26) b [ Tlul?da

—q,
the derivative of/* becomes

0J*(8,D%) = / 0D*Vu - Vpdx +/ (63 — \oo) upda
0 Q

(M(Jsul") " 1
M@u) 2] Jo

(27) + u"s" " Losdx

_M(su DL
(M(zu))? !9!/9 o

whereéz = (0! — 02)60, 65 = (X1 — £2)66, andrs"16s = ((o!)" —
()")66.

Lemma 4.1 A necessary condition fq, D*) to be a minimizer of/* in
Uy, is
(28) dJ*(6,D*) >0

for any admissible incremeiéd, 6 D*).

Accordingto the structure &f’ ;, the minimization process can be carried
out in two steps: firstly inD* and secondly i. In other words,

(29) min  J*(#,D*) = min min J*(0, D").
(0,D%)eur, 0<0<1 D*€Gy

Minimizing firstin D*, i.e. takingdéd = 0 in Lemma 4.1 yields
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Proposition 4.2 Whendf = 0, the optimality conditions becomes
(30) 3J*(0,D*) = / dD*Vu - Vpdx > 0.
Q

It implies that, outside the set wheff@u||Vp| = 0, an optimal diffusion
tensorD* satisfies

@y [ PTVe= 2l )V — 504 — )V
D*Vp = _%(N;— — Mg ) fgﬁl\ Vu+ 3 (Me + 1y )Vp.
Besides, defining an angleby Vu - Vp = |Vu||Vp| cos ¢, we obtain

(32) D*Vu-Vp = |Vu||Vp| [u; cos? g — Hy +sin? g )

Remark 4.3As a byproduct of Proposition 4.2, it turns out that, at the points
whereVu # 0 andVp # 0, an optimal diffusion tensab* can always be
found in the class of so-called simple laminates or layered materials (see the
proof below). A careful investigation of the remaining poif¥a:||Vp| = 0
shows that, everywhere, an optimat can be found in the class of layered
materials (this remarks is due to [18,21]). A layered material is obtained by
stacking slices of the two components 1 and 2 and computing its effective
or homogenized properties (see Fig. 4). It turns out that there is an explicit
formula for its homogenized tensér* which depends on the volume frac-
tion # of phase 1 and on the unit directienwhich is normal to the slices or
layers. In 2-D, in the basi&, e*) it reads

i.e. the diffusionis the harmonic average in the normal direction of the layers
while it is the arithmetic average in the direction parallel to the layers.

Taking into account the optimal diffusion tendot furnished by Propo-
sition 4.2, we know vary the volume fractiérto obtain

Proposition 4.4 Defining a functiorQ(z) by

+[(Z' =2 = A" — )] up

&9 L MUsu) I [0 = (0]
M(cu) | £2]

- M(lsul )V (0! = o)
(M) 12
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L
e

He
Fig. 4. A two-phase layered material

there exists a constaidt, such that a minimizeft, D*) for J* satisfies

{ O(x) =0if Q(z) < Cy,
(35) 0< 0(x) < 1if Q(z) = Co,

O(x) =1if Q(z) > Cy,

and reciprocally
(36) Q(z) =Chif 0 < b(z) < 1,
1.

{ Q(x) < Cyif(x) =0
Qz) > Coif O(x) =

Proof of Proposition 4.2Taking 56 = 0 implies thatdg = §X = ds = 0,
which in turn yields (30). It also implies that the variati®P* stays inside
the set7y. It turns out that7y is a convex set of symmetric matrices since it
is defined as a convex set of eigenvalues (see [18]). Therétbrecan be
parallel to any straight line iy passing througtD*. In other words, for
anyC* € Gy, we can choose

0D* =C* — D*.
Thus, (30) implies

(37) / C*(xz)Vu - Vpdx > / D*(z)Vu - Vpdz, VC* € Gjy.
2 2

Equation (37) implies that the optim@*(x) is at each point: € 2 a
minimizer of C* (x)Vu(z) - Vp(x) over all matrices"™ (x) € Gy(y). This
minimization problem has been solved in [18]Mf. or Vp is equal to O,
any matrix is a minimizer. IV # 0 andVp # 0, then, upon defining two
unit vectorse = Vu/|Vu| ande’ = Vp/|Vp|, any minimizerD* satisfies

1 1

(38) D*e =3 (pg + 1g )e = 5 (g = ptg )’
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and

L1 1 B
(39) De = 5(#3 + g )€’ = 5(#; = g )e-

Furthermore, a minimizer is necessarily a so-called rank-one laminate in
the direction of(e + ¢) if e + ¢’ # 0, or in a direction orthogonal te if
e + ¢ = 0. This leads to the desired result.

Proof of Proposition 4.4\e now take an optimdD* defined by Proposition
4.2. This implies that D* is a function ofé6. In particular, we have

d
(40) 0D*Vu-Vp = |Vu||Vp| [ COSQ§ — %s n? % 50,

wherey is defined by (32). Introducing the functigp(z), we obtain
§J*(0,D*) /Q )66(z)dz > 0,

which, upon taking into account the volume constrgigtd6(z)dx = 0,
yields the desired result (the constarif is the corresponding Lagrange
multiplier).

Remark 4.5The above optimality conditions are at the root of a numerical
algorithm which is described in Sect. 6.

5. Generalization to more types of assemblies

In this section, we keep the same model of one energy group diffusion
equation (4) and of objective function (8), but we change the definition
of admissible configuratiord,, by allowing for more than two types of
assemblies. Let denotes the number of different types of assemblies. Each
typei, with 1 < ¢ < I, is characterized by a diffusion coefficiedit and
cross sections’, X, and occupies a given volumegin the domainf2 with

I
=1

We denote byy;(x) the characteristic function of that part 6f occupied
by assembly. Clearly, it satisfies

I
(41) ;xi(w) =1, xi(z)x;(x) =0if i+ ], /sz-(w)dx - ;.
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The coefficients of (4) are now given by

D(x) = ¥; d'xil),
(42) (@) = Yi Sixile),

o(z) = Yi_y o'xi(x).

The space of admissible configurations is therefore defined as
(43) Upd = {(Xz‘)lgisj S LOO(Q; {0, 1}) satisfying (41) .

As in the case of two type of assemblies, the minimization of (8) is not
well-posed inl4,q, i.e. there exist no minimizers. As before we introduce

a relaxation of this problem by considering generalized designs in a space
uz,.

The relaxation is built by using the homogenization theory (see e.g. [10,
18]) which works equally well for a mixture of any numbgf compo-
nents. The same arguments Bfconvergence leads to the homogenized
state equation

—div (D*Vu(z)) + Zu(z) = \ou(x), z € £,
(44) {u(:c) =0, x € 012,

where(\, u) are the first eigenvalue and eigenvector, and the homogenized
coefficients are defined by

1
D)= 0(x)X", T(z) = 0Oi(x)o’,
i=1

where eacH; is a density function which is the weak * limit ib*° (£2; [0, 1])
of asequence of characteristic functi¢r§ ) ,>1 of the subdomain occupied
by assembly. These proportion functions satisfy

I
@) Vo=t [ Btz =i 00 <1,

The homogenized diffusion tensbr* () is the H-limit (i.e. the limit in the
sense of homogenization) of the sequefge= Zle X% d'. The relaxed
objective function is defined by

(46) JH(0,D%) = (E)\ + W) 7

where(\, u) is the solution of (44). The set of generalized admissible con-
figurations is defined by

i =A{(01,---,01,D") € L>(£2) satisfying (45) such thatD* € Gy},
(47)
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where the constrainD* € Gy holds almost everywhere if2, andGy is the

set of all possible homogenized diffusion tensors associated to the family of
proportions®) = (61, ---,0;). Our relaxed problem is therefore to minimize
J* overl;,, i.e.

(48) (0759)1224@ J*(0,D").

One can prove a relaxation result completely similar to Theorem 3.1 which
states that (48) is the true relaxation of the original optimization problem.
For the sake of brevity, we shall not dwell on this. Unfortunately, this relaxed
formulation is not very useful since we do not know an algebraic charac-
terization of the setGy whenI > 3, on the contrary of the previous case

I = 2. Nevertheless, as was first remarked by Raitum [21] (see also [22]),
we do not need the full sét, for our optimization problem. It turns out that
optimal arrangements of the components can always be found in the smaller
subset of simple laminates or layered materials (this was already the case
when! = 2, see Remark 4.3).

Let us explain this "miracle” that allows to treat the cdse 3 as the
previous onel = 2 (a similar argument has already been given in [22]).
We define a set’y of all symmetric matrices with eigenvalues bounded
between the harmonic and arithmetic means lilec Cy if and only if its
eigenvaluegy, o satisfy

(49) /'Lg_ SIU”L SM;—7 f0r2:1,2,
where
R Lo
(50) e > 7 andug =Y 6id'.
0 i=1 i=1

A well-known result of homogenization (see e.g. [10, 18]) states@hds
included inCy, i.e. any homogenized tensdr* ¢ Gy satisfiesy, Id <
D* < pf Idin the sense of quadratic forms. This inclusion is also known to
be strict, i.eGy # Cyp. We then introduce a larger set of admissible designs

U5y ={(61,--- .01, D*) € L®(12) satisfying (45)

a

(51) such thatD* € Cy}.

The set/(S, has no physical meaning: its tens@$ are usually not ho-
mogenized tensors corresponding to a fine mixture of the phase components.
It is just a mathematical artefact. Sirna¢, C U,, we have
(52) min  J*(0,D*) < min J*(0,D%).

(0,D*)eus, (0,D*)eu’,
Itturns out that/* attains its minimum also in the g€f ,. Indeed if(6,,, Dy;)
isaminimizing sequence, up to a subsequence, there exists @limiD?,)
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such that,, converges td., in L>°(2; [0, 1]) weak *, andD; H-converges
to D . Furthermore, by the propertiesdfconvergence (see (11)), we have
ngr}rlooj (0n, D) = J*(0oo, D%).

The only thing to checkis théf ., D} ) does indeed belong i ;. Another
classical result of homogenization tells us that

* * * O\ — x\—1
Doo < D+7 (Doo) ! < (D+) ?
where D* (respectively(D*)~1) is the weak * limit of D}, (respectively
(D)~ in L>®(£2). SinceD;, € Cy it satisfies
Dy < pf 1d, (D3)7' < (ng,) " 14,

where both right hand sides of the inequalities are affine functiofy, of
which implies that in the limit

D3, < g I1d, (D)7 < (up) ' 1d,

i.e. D, € Cy_ as desired. In other wordg/* attains its minimum at
(Ao, D%.) in US,. As proved in the next theorem, the optimality condi-
tions in{;,; furnish a minimizer irt{;,. Therefore, it is sufficient to find
minimizers inl{;, for obtaining a particular minimizer &} ;, which yields

a tractable relaxation for numerical computations.

Theorem 5.1 There exists at least one cougle., D) € U, such that
Dy _ is the effective tensor of a layered material, which is a minimizefrof
both inlf;, and inl{; ;.

Remark 5.2A layered material is obtained by stacking slices of fromm-
ponents. Its effective or homogenized properfig'scan be computed ex-

plicitly in terms of the proportion8 = (64, - - -, ;) and the unit directiom
which is normal to the slices or layers. In 2-D, in the bdsis") it reads
(53) D* = diag(ug 1y ) »

wherep, andy; are defined by (50).

Proof of Theorem 5.1t is completely similar to that of Proposition 4.2. The
key point is that the minimizer of (37) are the samé&ipor in Cy. As before,
the derivative of/* is given by (27) with the only difference that we now
havesg = 37| 0%60;, 6% = S5, X%66;, andrs” 165 = S1_ (07)"6;.
Let (0, D*) be an optimal family of proportions and diffusion tenso#fy,.
Let us denote by: the state, solution of (44), and hythe adjoint state,
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solution of (26). Sinc&’y is a convex set, arguing as in Proposition 4.2, the
optimal tensotD* satisfies, outside the set wheRéu||Vp| = 0,

* — V’LL
(54) D*Vu = 5(pg + 119 )Vu— 5(11g — g )‘IVP;VP’
D*Vp = —(ug — 1y ) KA VU + 3 + 1)V,

and it is necessarily a layered material whose orientation is given in terms
of the angle betweeWwu andVp. Tartar [22] generalized the clever trick of
[21], mentioned in Remark 4.3, to the caselof> 2 phases. It enables to
prove that, even wherd/«||Vp| = 0, one can find an optimaD* which

is a layered material. This shows that at least one optimal tensan /¢,
corresponds to a layered material which implies that it belonyg f@and is
therefore optimal id/, too. Let us show that, ifY, D*) is a minimizer, then
there exists another minimizé#, D*) with the same stateand adjoint state
p such thatD* is a simple laminate. IV« = 0, we can clearly také = ¢
and replaceD* by any simple laminaté®*: it does not change although

p may change. WheWp = 0, we are going to change boftand D* while
keeping the same stateand adjoint state@ (a symmetric argument would
also work in the cas®u = 0). Indeed, by Lemma 5.3 below, there exist
families of proportiong6*);<j.<; with component®* = (6%);,<; such
thatzl 1 Hf =1, 9"? > 0, the rank of this family ig — 1, and there exist
simple IammatesD’“ € Gy satisfyingD*Vu = DFVu forall 1 < k<1
Denoting byw the measurable subset@fwhereVp = 0, we buildf in w
by partionningw in subsets.,* where it takes only the valu# (depending
on Vu and D*Vu), which minimizes the "restriction” of the cost function
to w, while satisfying the volume constraints on each phase (this is possible
since the rank of¢*); <<y is I — 1). Similarly, D* is defined as the simple
laminateD” in eachw*. We have thus obtained another minimigeérD*)
which is a simple laminate.

Lemma 5.3 Let B be a symmetric matrix, with eigenvalugs); <;<n sat-
isfyingp, < p; < . Lete ande be two vectors ilR” such tha = Be.
Then, we have

1

(55) e = 5 (g + pg)ell < 5Gug = g)lel-

N —

Furthermore, there exist families of proportions(a’“)1<k<[, depending
only one ande, with component§® = (6%),<;<; such thaty’_ 6% =1

and@f > 0, and there exist simple Iamlnatés’C € Ggr such that, for any
1<k<I,

€ = Be = D"e.
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Proof. By definition, the eigenvalues 8 — 3 (1, + 11, )1d) belong to the
interval [—3 (ug — 115 ), 5(1g — 1 )] which implies (55). For € R/, let
us introduce a functiorf(¢) defined by

1 1
f(t) = 1(#? — i )?llell* — e - 5(#? +py Jell?
——(ufe—2)- (ure—7).

An easy computation shows that, f8r = (6;x)1<i<s (corresponding to
pure phasé), f(t*) = —||e — d*e||?, while f(§) > 0 by virtue of (55).
Sincef(t) is continuous, on each segméhtt”*] there exists a poirt* such
that f(6¥) = 0, S, 0 = 1 andg* > 0. The collection(6*), << is of
rank I — 1if f(t*) < 0 and f(#) > 0 (if this is not the caseB can be
replaced by a pure phase or a simple laminate). For tiete have from

f*) =0

+ — p— —

e — e e — e

o gh = owith = L2 gnggk = et
:ugk _,ugk ,ugk _,ugk

Then, defining a rank-one laminal® < G in the directionf* if f* = 0,
or in any direction orthogonal t¢* if f* = 0, we have

DF ¥ = g, fF andDFg* = i, g".

Sincee = f* — g* ande = yu, f* — 1, g", we thus deduce thdd"e =,
as desired.

We now turn to the optimality conditions for the volume fractiond_et
us define an angle betweenvVu andVp by

(56) Vu - Vp = |Vu||Vp|cos p,

whereu, andp are solutions of (44) and (26) respectively. By taking the opti-
mal layered materiaD* furnished by Theorem 5.1, the optimal proportions
0 = (61,---,0;) satisfy the following optimality conditions

Proposition 5.4 For 1 <i < I, letQ;(z) be functions defined by

() = Opg 29 Ong . 9¢ Py
Qi(z) = —|Vul||Vp| a—eicos 5 a—eism S|t (X" = Xo') up
(M5l (@) (M(|sul7) " ot
M(ou) r|£2| (M(Tu))® 12|

_l’_
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There exist a functiofy(x) and constant§’; such that a minimizef@, D*)
for J* satisfies

and reciprocally

The proof of Proposition 5.4 is completely similar to that of Proposition 4.4.
In particular, taking the optimab* implies that

1
6 = /Q ;Qi(a:)wi(x)dx >0,

which, upon taking into account tHevolume constraintg, 66;(x)dx = 0
and the pointwise constraiﬁtjfz1 #; = 1, yields the desired result.

6. Numerical algorithms

This section is devoted to a gradient-type numerical algorithm for solving the
proposed relaxed formulation of the re-loading optimization problem (in two
space dimensions). It relies on our knowledge of the optimality conditions
and, in particular, of the optimality of simply layered microstructures. By
virtue of Remark 4.3, the optimal homogenized diffusion tenBércan

be chosen to be that of a layered material which is parametrized by two
variables : the volume fractiorts= (61, - - -, §;) and a rotation angle. We
therefore work with the following class of diffusion tensors

D*(6,a) = cosa  sina ,ugO cosa —sina
7/ —sina cosa 0 py sina cos o ’

wherey, andu;r are defined by (50). In other words, our objective function
J* is now a function of th¢/ + 1) scalar design variablésanda, subject
to the constraints

I
(57) ;ei(x)zl, 0<0i(z) <1, /Qel-(x)dx:%.
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The computation of the gradient df with respect tq, «) is very similar
to the derivation of the optimality conditions in Sect. 4. For an admissible
increment(66;, d«), we find

dJ* (0 x)60;dx,

8a

whereQ, (), being very similar ta; (), is defined by

— ~ Opg [ 8u6p 9 Oulp
Q;(x) = 20, [sm an o + cos a@y 2y

Oudp Oudp 8/1; o Oudp
9z oy oy Ox)] 90, % Yoz ox
ou 8p 4 o ou 8p
oz 6y y oz
(M(|sul)" " (o) ur

M(u) | 2]

+ cos arsin « <

9 Oudp
+ sin a—— — cos o sin «

Oy Oy

+ (X = Ao') up +
(M(|sul D" o'u

(M(au)® 12

with
Oy _ i angMe _ —()?
00; 00; di
Once we have computed the gradient we need to add a projection step in
order to satisfy the admissibility constraints (57). The gradient method is
then structured as follows.

1. Weinitialize the design parametef$ = (01, - - -, 6}) anda! (for exam-
ple, we take a constant angle and volume fractions;, which satisfy
the volume constraints).

2. Until convergence, fat > 1 weiteratively compute the stat€” and the
adjoint statey™, solutions of (10) and (24) respectively with the previous
design paramete(®”, ™), and then update these parameters by

0 (z) =max (0, min (1,07 (z) — t,(Q; (z) — Cit () — CHH)))

whereC”Jrl are Lagrange multipliers (constant throughout the domain)
for the global volume constraints, anzg“ is the Lagrange multi-
pl|er (varying at each pointz) for the Iocal volume constraint
S 07 (2) = 1,and

oD*
n+1 n n on n n
o =« tn 0", a™)Vu" - Vp

wheret,, > 0 is a small step such that (9", a"*1) < J* (67, a™).
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Table 1. Physical constants of the 4 types of assembly

Label of assembly Diffusio® AbsorptionY Fissionoc  Proportion

1 1.340 0.0245 0.0311 40/157
2 1.356 0.0250 0.0287 40/157
3 1.375 0.0254 0.0270 40/157
4 1.390 0.0258 0.0256 37/157

The Lagrange multipliers are iteratively adjusted in a inner loop at each step
n of the above algorithm (this is the most delicate part of the algorithm,
the case of > 3 phases being much more time-consuming than just two
phases). Such a gradient method always converges to a (local) minimum,
and its speed of convergence is partly governed by the efficiency of the line
search for finding a good step. However, in practice we made no special
efforts in optimizing the choice of,. Neverthelees, to improve the speed
of the algorithm, we have replaced the gradient method for the anlgie

an application of the optimality criteria (this is a very popular principle in
structural design ; see e.g. [4]). In view of Proposition 4.2 the lamination
directiona”*! is determined by the angle betwe®h.” and Vp" rather

than by the above formula.

We test our method on a core with 157 squared assemblies (with side
length 21.5 cm) of 4 different types with properties given by Table 1 (these
data are representative of a 900 Mw pressurized water reactor). The com-
putation are performed on one fourth of the geometry using the Matlab
software. There are 3621 finite elements in the mesh and the volume
fractions are constant on each assembly. We chéesé) andr = 10 in
the objective function (other choices work as well). We first compute the
optimal solution for the relaxed formulation after 200 iterations. Figures 5
and 6 display the optimal volume fractions, and Fig. 7 the resulting power
distributionou. The convergence is smooth as shown by figure 8 and in-
dependent of the initialization (we believe we reached a global minimum).
The power peaknax(ou) is globally decreasing (there is no reconstruction
of the fine structure of the flux).

The above relaxed or homogenized optimal solution gives a lower bound
on the minimal performance of any discrete distribution of assemblies. More
than that, by penalizing the intermediate values of the volume fractions,
we can recover a quasi-optimal distribution of assemblies. We introduce a
penalized objective function, defined by

(M(|su" )" /
ben = 0 i(1—0; )
JP(0, ) = OX + Mioa) +!9! > 0i(1 - 6;) da
where(\, u) is the solution of (44). Fon = 0 we recover the relaxed ob-
jective functionJ*, while for n > 0 we force the volume fractions to take
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volume fraction of assembly 1 ‘volume fraction of assembly 2
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Fig. 5. Volume fractions of assembly 1 (left) and 2 (right)
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Fig. 6. Volume fractions of assembly 3 (left) and 4 (right)

power distribution, k effective =1.0469

Fig. 7. Power distributiorou

only the values 0 or 1. Starting from the previous relaxed optimal design,
we minimize the penalized objective function and increase progressively
the value ofn. Since by virtue of Theorem 3.1 any relaxed design is the
limit of a sequence of closer and closer classical designs, the penalization
process amounts to build such an approximating sequence for which the
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convergence of the objective function convergence of the power peak

Fig. 8. Convergence history: objective function (left) and power peak (right)
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Fig. 10. Distributions of assembly 3 (left) and 4 (right)

objective function should not change too much. This procedure is now well-
established in structural optimization (see [1,4]). Here, we run 50 iterations
with » = 1 and 20 more wity = 2. Of course, the results are very sensitive
to the choice ofy which should not be too large. Figures 9 and 10 display the
discrete distribution of assemblies, and Fig. 11 the resulting power distribu-
tion cu. Remark that the obtained pattern is not symmetric with respect to
the first diagonal. It may indicate that an even better design could be found
if we do not enforce the core symmetry by fourth.
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power distribution, k effective =1.0505
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Fig. 11. Power distribution after penalization

Table 2. Comparison between the homogenized and penalized designs

Objective function  Power peak

Homogenized design 1.180 1.387
Penalized design 1.249 1.551

In Table 2 we compare the values of the objective function for the relaxed
optimal design and for the penalized one (the penalization t&fth — J*
is almost zero at the end of the penalization process).

In our opinion the interest of the homogenization method is twofold.
First, the homogenized optimal design gives an absolute lower bound to
any proposed discrete distribution of assemblies. Therefore, it is a good
element of comparison with any other optimization method. Second, the
homogenization algorithm is insensitive to the initial guess and the resulting
penalized discrete distribution of assemblies is free of any implicit or explicit
constraint on its pattern (in structural optimization this is called topology
optimization, see e.g. [1, 3,4]). We do not view this method as an alternative
to other optimization algorithms but rather as a pre-processing step. Indeed,
it gives rise to new patterns that may be different from initial guesses or
intuitions, butthat can be improved by local optimization using more realistic
constraints or objective function.

7. Conclusion and perspectives

This paper describes a new approach for optimizing the fuel assemblies po-
sitions in a nuclear reactor core. This approach is based on the homogeniza-
tion method which has already been successfully implemented for structural

optimization. The work reported here is still in progress. Basically we are
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working in two directions. First, we generalize the present work to the more
realistic model of two-groups diffusion (this is a system of two coupled dif-
fusion equations). The principle of this generalization is the same but many
new mathematical difficulties arise. In particular, we shall introduce a par-
tial relaxation instead of the true relaxed formulation which is unfortunately
untractable. Second, we have to take into account more realistic constraints
in the optimization process and do more numerical comparisons with other
approaches in the literature. This will be reported in a next paper [2].
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