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Optimization of nuclear fuel reloading by the homogenization
method

G. Allaire and C. Castro

Abstract In this paper we apply the homogenization
method to the optimization of the position of fuel assem-
blies in a nuclear reactor core. For this type of problem
the state equation is a system of diffusion equations for
the neutron flux. Homogenization theory allows us to re-
lax a truly discrete optimization problem into a continu-
ous and well-posed optimization problem. The latter one
is solved by using classical methods of optimal control.
A discrete admissible distribution of assemblies is recov-
ered by a numerical penalization technique. The main
advantage of homogenization is that the resulting reload-
ing pattern is guaranteed to be near optimal whatever the
initial guess.

Key words homogenization, optimal design, nuclear
fuel reloading

1
Introduction

This paper is devoted to the application of the homog-
enization method (see e.g. Allaire 2001; Bendsøe 1995;
Cherkaev 2000; Murat and Tartar 1985) to a classical
optimization problem in nuclear reactor engineering: the
so-called optimal fuel reloading problem. We briefly de-
scribe this problem and its physical context (the inter-
ested reader can consult e.g. Ho and Rohach 1982; Levine
1986). In most nuclear reactor cores, the nuclear fuel
is made of a few hundreds of so-called assemblies, peri-
odically distributed in a plane cross-section of the core
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dad Politécnica deMadrid, 28040 Madrid, Spain
e-mail: ccastro@dumbo.caminos.upm.es

(typically 157 in a 900MW Pressurized Water Reac-
tor, see the left part of Fig. 1). All assemblies have the
same squared cross-section but possibly different phys-
ical properties. Each assembly is itself a heterogeneous
medium (made by a regular array of uranium fuel pins
and control rods immersed in water), but for the sake
of simplicity it is modelled as an equivalent homoge-
neous medium (this is common practice for this type
of problem). During the fission process, the fissile iso-
tope of uranium is consumed. This effect, called deple-
tion, progressively decreases the efficiency of the nuclear
fuel. Therefore, old assemblies must be changed period-
ically by new ones (the period, also called a cycle, is
about a few months). The difficulty is that the fuel deple-
tion is not spatially uniform in the core. Therefore, only
part of the old assemblies (typically one fourth) are re-
moved at the end of each cycle. Furthermore, it is not
a good policy to put the new assemblies exactly at the
location of the removed ones. It is better, for efficiency
reasons, to optimize the position of each type of assem-
blies. In other words, the fuel re-loading process is not
only the replacement of used assemblies by fresh ones
but is also a rearrangement of all the assemblies in the
core in order to maintain the maximal performance of
the reactor. As such, it is a discrete optimization problem
which is very difficult for at least three reasons. First, the
large number of assemblies yields a huge number of pos-
sible combinations. Second, each performance evaluation
of an assembly distribution involves the numerical solu-

Fig. 1 A discrete (left) and a continuous (right) configura-
tion of two types of assemblies in a 900 MW PWR nuclear
reactor core (having 157 assemblies)



12

tion of a diffusion problem for the neutron flux by using
finite elements. Third, this problem lacks any convexity
properties.

There are many numerical methods proposed in the
literature for solving this discrete optimization prob-
lem. Most of them are based on linear programming,
simulated annealing, neural networks or genetic algo-
rithms (Ho and Rohach 1982; Kropaczek and Turinsky
1991; Lysenko et al. 1999a,b; Maldonado and Turinsky
1995; Parks 1996). However, the huge number of pos-
sible permutations, the nonconvexity of the objective
function make it a very hard problem to solve and no
existing method is fully satisfying. In a previous paper
(Allaire and Castro 2001) the authors proposed to ap-
ply the homogenization method to this problem. The
homogenizationmethod has been very successful in struc-
tural optimization (see e.g. Allaire 2001; Bendsøe 1995;
Cherkaev 2000; Rozvany et al. 1995) and we hope to
demonstrate that it can also be very efficient for the
fuel re-loading optimization problem. In structural de-
sign the homogenization method is regarded as a method
for topology optimization, which is not incompatible,
but rather complementary, with other classical methods.
Likewise in the present setting, our approach should be
taken as a topology optimizer, i.e. whatever the start-
ing configuration, it is able to find a quasi-optimal dis-
tribution of assemblies, possibly very remote from the
starting one. The homogenization method is not a con-
current of other methods, but rather a pre-processor,
since its final output could still be refined by these
methods.

The main difference to our previous work (Allaire and
Castro 2001) is that here we treat the true physical prob-
lem which is a system of two coupled diffusion equa-
tions (the so-called multi-group neutron diffusion) while
(Allaire and Castro 2001) considered the simplified model
of one-group neutron diffusion which is a single equa-
tion of diffusion. In the present case the mathematical,
as well as numerical, difficulties are much more severe.
This difference is somehow similar to that between con-
ductivity and elasticity problems in structural optimiza-
tion. In truth, we do not have a fully explicit relaxation
of the two-group diffusion system, and we content our-
selves with a partial relaxation. On the contrary the one-
group diffusion equation is completely understood, and
we refer to Allaire and Castro (2001) for all mathemat-
ical details. In order to simplify the exposition we shall
not dwell too much onmathematical technicalities and fo-
cus rather on the physical and numerical aspects of the
problem.

Finally, we conclude this introduction by a brief de-
scription of the content of this paper. In Sect. 2, we
describe the original discrete optimization problem. Sec-
tion 3 is devoted to its relaxation which is done in two
steps. First, the discrete variables are extended into con-
tinuous ones by transforming the original problem into
a shape optimization problem (i.e. assemblies can have
any shape and size). Second, this continuous shape opti-

mization problem is homogenized by introducing compos-
ite designs which are fine mixtures of the original phases.
Section 4 is concerned with optimality conditions. Nu-
merical results are finally presented in Sect. 5.

2
Description of the problem

In order to give a precise mathematical statement of the
optimization problem we are interested in, we first de-
scribe the state equation that models the fission process
in a nuclear reactor and allows to quantify the efficiency
of the assemblies distribution. The power distribution in
a nuclear reactor core is usually obtained by solving the
so-called criticality eigenvalue problem for a diffusion sys-
tem of two equations (corresponding to two energy groups
of neutrons). Considering more groups, or equivalently
a system with more equations, does not increase the diffi-
culty (while a single equation is much simpler, see Allaire
and Castro 2001). In a steady-state regime, the criticality
problem gives the balance between neutrons produced by
fission and neutrons absorbed or diffused by the medium.
Denoting by Ω the radial section of the core (Ω ⊂ R2 is
a bounded domain in the plane with boundary ∂Ω), the
state equation is

− div (D1∇u1)+Σ1u1 = λ (σ1u1+σ2u2) in Ω ,

− div (D2∇u2)+Σ2u2 = σru1 in Ω ,

u1 = u2 = 0 on ∂Ω .

(1)

Here λ is the first eigenvalue and (u1, u2) the first eigen-
vector of this system of two coupled equations. The first
component u1 denotes the flux of fast neutrons (with
highest kinetic energy), while u2 is the flux of slow (or
thermal) neutrons (with lowest kinetic energy). Apart
from the classical diffusion terms with coefficientsD1 and
D2, the terms Σ1u1 and Σ2u2 model absorption, σru1 is
a collision term (fast neutrons loose kinetic energy during
inelastic collisions), and σ1u1+σ2u2 is the fission (or pro-
duction) term (fast neutrons are produced when neutrons
hit fissile isotopes). The eigenvalue λ in (1) is therefore in-
terpreted as a balance coefficient between dissipation on
the left-hand side and production on the right-hand side
(for more details, see e.g. Planchard 1995).

More precisely, the eigenvalue λ measures the criti-
cality of the reactor in a quasistatic limit. If λ = 1, the
reactor is said to be critical and can safely be operated:
a perfect balance between production and removal of neu-
trons takes place. If λ > 1, too many neutrons are dif-
fused or absorbed in the core compared to their produc-
tion by fission: the nuclear chain reaction dies out, and
the reactor, being subcritical, cannot operate. If λ < 1,
too many neutrons are created by fission, and the re-
actor, being supercritical, can nevertheless be operated
by introducing the control rods (absorbing media) in the
core.
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Since different types of nuclear fuel are present in the
reactor, the coefficients Dα, Σα, σα, σr (α = 1, 2) in (1)
are merely bounded and piecewise smooth (but discontin-
uous) functions. We assume that they satisfy for x ∈Ω

Σα(x), σ2(x), σr(x)≥ 0 ,

σ1(x)≥ σ0 > 0 , Dα(x)≥ d0 > 0 , α= 1, 2 . (2)

Note that (1) is not a self-adjoint system, so the existence
of eigenvalues and eigenfunctions is not guaranteed. How-
ever, since the coupling of the two equations in (1) is made
by zero-order terms only, it satisfies a maximum princi-
ple and a Krein–Rutman theorem, i.e. there exists at least
one eigenvalue (the smallest one) with a positive eigen-
function. This is a classical result that we recall now (see
e.g. Habetler and Martino 1961; Planchard 1995).

Theorem 1. There exists a solution of (1) such that the
eigenvalue λ is real, positive, and is the smallest eigen-
value in modulus. Furthermore this eigenvalue is simple
and the associated eigenfunction (u1, u2) can be chosen
non-negative, i.e. u1, u2 ≥ 0 in Ω, and this is the only
eigenfunction which does not change sign.

Remark 1. The only solutions of (1) which have a physi-
cal meaning are those for which the eigenfunction (u1, u2)
are positive (a necessary feature to be the density func-
tions of neutrons). From now on, we denote by (λ;u1, u2)
the only solution of (1) with this property (which is called
the first eigencouple). Of course, (u1, u2) is unique only
up to a multiplicative constant. Thus, (1) gives only the
spatial distribution of the neutron flux but not its inten-
sity since the solution is defined up to a multiplicative
constant.

In a second step we describe the objective function of
the fuel reloading optimization problem. The power dis-
tribution is defined as the energy released by fission in
the nuclear core: it is therefore proportional to σ1u1+
σ2u2. For safety reasons, the power distribution should
be as uniform as possible. Indeed, at peak points of the
power distribution, the surrounding flow of water could
be unable to cool down the fuel pins, yielding a strong
increase of the temperature that may eventually cause
damage in the assembly. A major issue for safety is thus
to have the most uniform power distribution in the core.
This can be achieved by minimizing the Lr(Ω) norm of
σ1u1+σ2u2 with 1 < r < +∞ (the largest r, the clos-
est it is to the maximal value). Since (u1, u2) is defined
up to a multiplicative constant, we normalize this Lr(Ω)
norm by dividing it by the L1(Ω) norm. On the other
hand, a reactor can produce energy if its criticality eigen-
value λ is equal to or smaller than 1. However, as time
goes by, the fuel depletion has a tendency to increase this
eigenvalue. Therefore, at the beginning of a cycle it is
highly desirable to have the smallest possible value of λ
(or criticality reserve), ensuring that the reactor will be
working for the longest possible time. In general these
two objectives are contradictory. Therefore, introducing

two positive Lagrange multipliers �1, �2 ≥ 0, our objective
function is

min


�1λ+ �2

(
M(|σ1u1+σ2u2|r)

)1/r
M(σ1u1+σ2u2)


 , (3)

whereM denotes the average operator in Ω

M(f) =
1

vol(Ω)

∫
Ω

f(x) dx . (4)

In practice, there are other constraints and requirements
for fuel reloading optimization that we neglect in order to
simplify the exposition. In particular, we optimize the as-
semblies distribution just for one cycle, regardless of what
may happen afterwards, and we do not take into account
the possibility of rotating the assemblies. We also do not
try to minimize the production of undesirable isotopes or
species in the fission process. For more information on the
actual constraints and objectives, we refer e.g. to Levine
(1986).

To finish the mathematical statement of our optimiza-
tion problem, the third step is to define a space of admissi-
ble configurations Uad of assemblies in the core. Then, the
minimization of the objective function (3) takes place in
this space Uad. We assume that there are a number I of
different types of assemblies (called phases or components
in the sequel) characterized by positive constant coef-
ficients (Diα, Σ

i
α, σ

i
α, σ

i
r) with α = 1, 2 and i = 1, 2, . . . I,

given in prescribed proportions γi ≥ 0 with

I∑
i=1

γi = vol(Ω) . (5)

A typical value of I that we use in this paper is I = 4 (the
case I = 2 is much simpler but not realistic, while I = 4 is
generic and not much easier than any I ≥ 3). The reason
for taking I = 4 is that only one quarter of the assemblies
are removed at the end of each cycle. Therefore, there
are basically 4 types of assemblies with different ages (or
so-called burn up histories). Each of them has thus dif-
ferent coefficients. We make no special assumptions on
the ordering of the physical properties of the assemblies,
although physically speaking the freshest fuel produce
the smallest criticality eigenvalue λ. Finally, since all as-
semblies have the same size, the core Ω contains a finite
number of them (see the left part of Fig. 1). Thus, Uad is
the finite (but very large) set of all possible permutations
of these assemblies.

3
Relaxation of the problem

As is well-known, integer programming problems are dif-
ficult to solve, and a common procedure is to replace
integer variables by real ones. This is also our strategy
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but we add a new ingredient, namely homogenization. In
order to solve the discrete optimization problem (3), we
propose to relax it, i.e. to generalize it by transforming
it into a continuous problem. This relaxation process is
performed in two steps: first, we transform this discrete
problem in a continuous one by allowing for any size and
shape of assemblies, second, we introduce homogenized
designs that are a mixture of the different assembly types
in varying proportions.

The first step amounts to change the discrete variables
into continuous ones by removing any size and shape con-
straints on the assemblies which are no longer squares (see
the right part of Fig. 1). In other words, we keep the pre-
scribed amount of fuel types (or phases), but it can now
be placed in the core as freely as we want, and its repar-
tition does not necessarily follow an assembly pattern.
This idea of passing from discrete unknowns to contin-
uous ones is not new, and it has the advantage of being
more tractable from a numerical standpoint. In this con-
tinuous optimization problem, the unknowns are now the
subdomains Ωi of Ω occupied by material i which satisfy
the obvious constraints

Ωi∩Ωj = 0 , when i �= j , ∪Ii=1Ωi =Ω ,

vol(Ωi) = γi , i= 1, . . . , I . (6)

However, the shape of Ωi is totally free.
Introducing the characteristic functions (χi)i=1...I of

these subsets (Ωi)i=1...I , defined by χi(x) = 1 if x ∈ Ωi
and χi(x) = 0 if x 
Ωi, the coefficients of (1) are given by


Dα(x) =
I∑
i=1

diαχi(x) , α= 1, 2 ,

Σα(x) =
I∑
i=1

Σiαχi(x) , α= 1, 2 ,

σα(x) =
I∑
i=1

σiαχi(x) , α= 1, 2, r .

(7)

The space of admissible continuous configurations is thus
defined by

Ucad =
{
χ= (χi)1≤i≤I ∈ L∞(Ω; {0, 1})I such that




χiχj = 0 , i �= j ,

I∑
i=1

χi = 1 ,

∫
Ω

χi = γi




. (8)

Here L∞(Ω; {0, 1}) is the space of measurable functions
taking only the values 0 or 1. The fuel reloading optimiza-
tion problem is reduced to find the minimizer of

min
χ∈Uc

ad


J(χ) = �1λ+ �2

(
M(|σ1u1+σ2u2|r)

)1/r
M(σ1u1+σ2u2)


 (9)

where (λ;u1, u2) is the solution of (1),M is the averag-
ing operator in Ω defined by (4), 1< r < +∞, and the
coefficients of (1) are given by (7).

It turns out that the continuous optimization prob-
lem (9) is ill-posed in the sense that it does not admit
a solution in the space Ucad of all possible continuous dis-
tributions of the I materials (this is a classical difficulty
in shape optimization, see Allaire 2001). The reason is
that minimizing sequences of almost optimal configura-
tions exhibit very fine mixture of the I components. On
a macroscopic scale these mixtures are composite ma-
terials having effective properties different from that of
its phase constituents. Their effective or averaged coeffi-
cients are found by using homogenization theory.

Therefore, in a second step the continuous optimiza-
tion problem (9) is further relaxed by enlarging the space
of admissible designs, namely by allowing for composite
materials obtained by mixing microscopically the I differ-
ent fuels. This is the basis of the homogenization method.
It has the effect of making the problem well-posed, and
to yield very efficient numerical algorithm for comput-
ing optimal solutions. We now describe these composite
materials in very loose terms: everything can be rigor-
ously justified by homogenization theory and this has
been done in this context in our previous work (Allaire
and Castro 2001). These composite materials are charac-
terized by the local proportions of each phase, denoted

by θ(x) =
(
θ1(x), . . . , θI(x)

)
, and by their effective diffu-

sions
(
D∗1(x), D

∗
2(x)

)
which depend on their microscopic

geometric arrangement. Of course, the proportions sat-
isfy the volume constraints

I∑
i=1

θi(x) = 1 ,

∫
Ω

θi(x) dx= γi , 0≤ θi(x) ≤ 1 . (10)

It should be emphasized that the θi’s are usually no longer
characteristic functions, but rather densities taking their
values in the full range [0, 1]. Apart from the effective dif-
fusions, the other homogenized coefficients are defined by
simple volume averages

Σα(x) =
I∑
i=1

θi(x)Σ
i
α , α= 1, 2 ,

σα(x) =
I∑
i=1

θi(x)σ
i
α , α= 1, 2, r . (11)

Therefore, the homogenized problem is

− div (D∗1∇u1)+Σ1u1 = λ (σ1u1+σ2u2) in Ω ,

− div (D∗2∇u2)+Σ2u2 = σru1 in Ω ,

u1 = u2 = 0 on ∂Ω ,

(12)

where (λ;u1, u2) is the first (positive) eigensolution. Note
that Theorem 1 also applies to (12) which therefore ad-
mits such a first eigensolution.
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It turns out that, although the homogenized cross-
sections Σα, σα are uniquely defined by the limit density
θ, the homogenized diffusion coefficients (D∗1, D∗2) are
not simple volume averages, explicitly characterized by
θ. Indeed, depending on the geometry of the mixture,
(D∗1 , D

∗
2) may be any symmetric positive definite matrix

in a set Gθ. This is a local constraint defined pointwise in
Ω. Unfortunately, the set Gθ of all possible homogenized
diffusion tensors associated to the density θ is not explic-
itly known (except when there are only two phases, i.e.
I = 2, see Cherkaev 2000).

Since the homogenized state system (12) depends on
the design parameters θ= (θi)1≤i≤I and (D

∗
1 ,D

∗
2), the set

of generalized admissible configuration Uhad is defined by

Uhad =
{
(θ,D∗1, D

∗
2) ∈ L∞(Ω) satisfying (10) and

(D∗1 , D
∗
2) ∈Gθ

}
. (13)

Note that we have Ucad ⊂ U
h
ad if we associate to each

characteristic function χ ∈ Ucad a diffusion tensor Dα =
I∑
i=1

diαχi.

It remains to characterize the relaxed (or homoge-
nized) objective function. As a consequence of homog-
enization theory (see Allaire 2001; Allaire and Castro
2001, for details) it is given by

J∗(θ,D∗1 , D
∗
2) = �1λ+ �2

(M(s))
1/r

M(σ1u1+σ2u2)
, (14)

where (λ;u1, u2) is the first eigensolution of the homoge-
nized problem (12), and s is defined by

s(x) =
I∑
i=1

θi(x)
∣∣σi1u1(x)+σi2u2(x)

∣∣r , (15)

which is usually different from (σ1u1+σ2u2)
r for r > 1.

The reason for this seemingly surprising term s is that for
characteristic functions (χi)1≤i≤I we have

M(|σ1u1+σ2u2|
r) =

1

vol(Ω)

∫
Ω

I∑
i=1

χi(x)
∣∣σi1u1(x)+σi2u2(x)

∣∣r ,

which averages like (15) in the homogenized limit.
The relaxed problem is finally to minimize J∗ over

Uhad, i.e.

min
(θ,D∗1 ,D

∗
2)∈U

h
ad

J∗(θ,D∗1 , D
∗
2). (16)

As in Allaire and Castro (2001) it can be rigorously justi-
fied and the following theorem holds true.

Theorem 2. Assume that 1≤ r <+∞ in two space di-
mensions. The relaxation of the continuous optimization
problem (9) is (16) in the sense that

1. there exists at least one minimizer in Uhad of J
∗,

2. any minimizer (θ,D∗1 , D
∗
2) of the relaxed problem is the

homogenized limit of a minimizing sequence of the con-
tinuous problem (9),

3. any minimizing sequence of the continuous problem (9)
converges, in the sense of homogenization, to a mini-
mizer (θ,D∗1 , D

∗
2) of the relaxed problem (16).

The main consequence of Theorem 2 is that relax-
ation does not change physically the problem but makes
it well-posed. In other words, a generalized homogenized
design is just a precise and convenient way of characteriz-
ing limits of sequences of classical designs. As we already
said, the main inconvenient with the relaxed formulation
(16) is that we lack an explicit characterization of the set
Gθ of all homogenized diffusion tensors. Nevertheless, we
can restrict ourselves to an explicit subclass of Gθ which
yields a so-called partial relaxation of the problem (see
Allaire 2001). This partial relaxation is then amenable to
numerical computations.

We choose to work with the class of simple laminated
composite materials which is a (very small) subset of Gθ.
A simple laminate is obtained by averaging a layeredmix-
ture of the I phases where all slices are orthogonal to
a single lamination direction parameterized by an angle γ.
In this case, the homogenized diffusion tensorsD∗1 andD∗2
are fully explicit

D∗α =

(
cos γ sinγ

− sinγ cos γ

)(
µ+α 0

0 µ−α

)(
cos γ − sinγ

sinγ cos γ

)
,

α= 1, 2 , (17)

where γ ∈ [0, π) is the angle of lamination and µ+α , µ
−
α

(α = 1, 2) are the arithmetic and harmonic averages re-
spectively, i.e.

µ+α =
I∑
i=1

θid
i
α ,

1

µ−α
=

I∑
i=1

θi

diα
, α= 1, 2 . (18)

Note that µ+α and µ−α are uniquely defined by the density
function θ and therefore the set of homogenized tensors
obtained by simple lamination can be characterized by
two parameters: the lamination angle γ and the density
θ = (θ1, . . . , θI). In the sequel we restrict ourselves to this
simpler case and we replace the set of all generalized ad-
missible configurations Uhad by

U lad =
{
(θ, γ) ∈ L∞(Ω) satisfying (10) and γ ∈ [0, π)

}
,

(19)

with (D∗1, D
∗
2) given by (17). From now on, the objec-

tive function J∗(θ,D∗1 , D
∗
2) is equivalently denoted by

J∗(θ, γ).
Finally, the relaxed minimization problem (13) is sim-

plified and becomes

inf
(θ,γ)∈U l

ad

{
J∗(θ, γ) = �1λ+ �2

(M(s))
1/r

M(σ1u1+σ2u2)

}
. (20)
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The new formulation (20) is fully explicit, but the price to
pay is that it may have no minimizer. A possible heuris-
tic justification of working with (20) instead of (13) is
twofold. First, it is perfectly legitimate in the one-group
diffusion model as proved by Allaire and Castro (2001).
Second, it gives very good numerical results in the sense
that taking higher order laminates does not improve the
results or the convergence.

Remark 2. As is usual in the homogenization method,
working with a relaxed formulation yields homogenized
optimal designs, i.e. a distribution of phases with inter-
mediate densities and not only pure phases. Therefore, for
practical applications it must be coupled with a penal-
ization procedure which project an homogenized design
onto a classical one. This process is guaranteed to work
because of Theorem 2 which states that any optimal com-
posite design is attained as the limit of a sequence of
classical designs. This penalization step is purely based
on numerical heuristics but it is by now a classical matter
although not quite well understood (see e.g. Allaire 2001;
Bendsøe 1995).

4
Optimality conditions

One advantage of the relaxed formulation is that it al-
lows us to compute a gradient quite easily. This will be at
the root of the numerical algorithm proposed in this pa-
per. This section is therefore devoted to the computation
of the gradient of J∗ which, as usual, will be expressed
in terms of an adjoint problem. Recall that the relaxed
cost functional J∗ is defined by (20). If (δθ, δγ) is an ad-
missible increment in U lad, the directional derivative of J

∗

is

δJ∗ = �1δλ+ �2
M(δs) (M(s))

1/r−1

rM(σ1u1+σ2u2)
−

�2
(M(s))

1/r

(M(σ1u1+σ2u2))
2M ((σ1δu1 +

u1δσ1+σ2δu2+u2δσ2)) , (21)

where

δs= r

I∑
i=1

(σi1u1+σi2u2)
r−1(σi1δu1+σi2δu2)θi+

I∑
i=1

(σi1u1+σi2u2)
rδθi. (22)

Here δλ is the increment in the first eigenvalue and (δu1,
δu2) is the increment in the first eigenvector. Recall that,
since the first eigenvalue of (12) is simple, it is differ-
entiable with respect to the design parameters, as well
as the first eigenfunction. In order to obtain an explicit
expression of δJ∗, let us calculate the corresponding in-

crements. Differentiating (12), we obtain that (δu1, δu2)
is a solution of the system




−div(D∗1∇δu1)+Σ1δu1−λ(σ1δu1+σ2δu2) = f1

in Ω ,

−div(D∗2∇δu2)+Σ2δu2−σrδu1 = f2

in Ω ,

δu1 = δu2 = 0

on ∂Ω ,

(23)

where

f1 = div(δD∗1∇u1)− δΣ1u1+ δλ(σ1u1+σ2u2)+

λ(δσ1u1+ δσ2u2) ,

f2 = div(δD∗2∇u2)− δΣ2u2+ δσru1 .

(24)

Note that (23) is a singular nonhomogeneous system.
Therefore, by the Fredholm alternative there exists
a solution of (23) if and only if the following condition
holds:∫
Ω

f1v1+λ

∫
Ω

f2v2 = 0 , (25)

where (v1, v2) is the first eigensolution of the adjoint
eigenvalue problem



−div(D∗1∇v1)+Σ1v1−λ(σ1v1+σrv2) = 0 in Ω ,

−div(D∗2∇v2)+Σ2v2−σ2v1 = 0 in Ω ,

v1 = v2 = 0 on ∂Ω .

(26)

Note that the adjoint system (26) admits the same first
eigenvalue than the original system (12). Of course, the
solution (δu1, δu2) of (23) is unique only up to the add-
ition of a multiple of the first eigenfunction (u1, u2).
From (24) and (25) we obtain the following expression
for δλ:

δλ=

∫
Ω

δD∗1∇u1∇v1+
∫
Ω

(
δΣ1−λδσ1

)
u1v1−λ

∫
Ω

δσ2u2v1∫
Ω

σ1u1v1+
∫
Ω

σ2u2v1
+

λ

∫
Ω

δD∗2∇u2∇v2+
∫
Ω

δΣ2u2v2−
∫
Ω

δσru1v2∫
Ω

σ1u1v1+
∫
Ω

σ2u2v1
. (27)

We now investigate the last term in formula (21) for δJ∗.
As usual, to eliminate (δu1, δu2) an adjoint state (q1, q2)
is introduced (see e.g. Lions 1971). It is defined as the
solution of
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

−div (D∗1∇q1)+Σ1q1−λ (σ1q1+σrq2) = g1 in Ω ,

−div (D∗2∇q2)+Σ2q2−σ2q1 = g2 in Ω ,

q1 = q2 = 0 on ∂Ω ,

(28)

with

g1 =
(M(s̄))(1−r)/r

M(σ1u1+σ2u2)

I∑
i=1

(σi1u1+σi2u2)
r−1σi1θi

vol(Ω)
−

(M(s̄))
1/r

(M(σ1u1+σ2u2))
2

σ1

vol(Ω)
,

g2 =
(M(s̄))

(1−r)/r

M(σ1u1+σ2u2)

I∑
i=1

(σi1u1+σi2u2)
r−1σi2θi

λvol(Ω)
−

(M(s̄))
1/r

(M(σ1u1+σ2u2))
2

σ2

λvol(Ω)
. (29)

Note that (28) is of the same type as (26) but nonhomoge-
neous, and the Fredholm alternative implies the existence
of (q1, q2) since one can check that∫
Ω

g1u1+λ

∫
Ω

g2u2 = 0 . (30)

Multiplying the first and second equations in (28) by
δu1 and δu2, respectively, and integrating by parts we
obtain∫
Ω

D∗1∇q1∇(δu1)+

∫
Ω

(
Σ1−λσ1

)
q1δu1−λ

∫
Ω

σrq2δu1 =

(M(s̄))
(1−r)/rM

(
I∑
i=1

(σi1u1+σi2u2)
r−1σi1θiδu1

)

M(σ1u1+σ2u2)
−

(M(s̄))
1/rM (σ1δu1)

(M(σ1u1+σ2u2))
2 ,

∫
Ω

D∗2∇q2∇(δu2)+

∫
Ω

Σ2q2δu2−

∫
Ω

σ2q1δu2 =

(M(s̄))
(1−r)/rM

(
I∑
i=1

(σi1u1+σi2u2)
r−1σi2θiδu2

)

λM(σ1u1+σ2u2)
−

(M(s̄))1/rM (σ2δu2)

λ (M(σ1u1+σ2u2))
2 . (31)

Multiplying now the equations in (23) by q1 and q2,
respectively, and integrating by parts we have∫
Ω

D∗1∇(δu1)∇q1+

∫
Ω

(
Σ1−λσ1

)
(δu1)q1−λ

∫
Ω

σ2δu2q1 =

−

∫
Ω

δD∗1∇u1∇q1+ δλ


∫
Ω

σ1u1q1+

∫
Ω

σ2u2q1


+

λ


 ∫
Ω

δσ1u1q1+

∫
Ω

δσ2u2q1


−∫

Ω

δΣ1u1q1 ,

∫
Ω

D∗2∇(δu2)∇q2+

∫
Ω

Σ2(δu2)q2−

∫
Ω

σrδu1q2 =

−

∫
Ω

δD∗2∇u2∇q2−

∫
Ω

δΣ2u2q2+

∫
Ω

δσru1q2 . (32)

Combining (31) and (32) and introducing

t=
I∑
i=1

θi(σ
i
1u1+σi2u2)

r−1(σi1δu1+σi2δu2) ,

we obtain

(M(s̄))
(1−r)/rM (t)

M(σ1u1+σ2u2)
−
(M(s))

1/rM(σ1δu1+σ2δu2)

(M(σ1u1+σ2u2))
2 =

−

∫
Ω

δD∗1∇u1∇q1−

∫
Ω

δΣ1u1q1+

λ


∫
Ω

δσ1u1q1+

∫
Ω

δσ2u2q1


+

δλ


∫
Ω

σ1u1q1+

∫
Ω

σ2u2q1


−λ

∫
Ω

δD∗2∇u2∇q2−

−λ

∫
Ω

δΣ2u2q2+λ

∫
Ω

δσru1q2 . (33)

Substituting (33) in (21) we obtain the following expres-
sion for δJ∗:

δJ∗ = δλ


�1+ �2

∫
Ω

σ1u1q1+ �2

∫
Ω

σ2u2q1


−

�2

∫
Ω

δD∗1∇u1∇q1− �2

∫
Ω

δΣ1u1q1+
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�2λ


∫
Ω

δσ1u1q1+

∫
Ω

δσ2u2q1 +

∫
Ω

δσru1q2


−

�2λ


∫
Ω

δD∗2∇u2∇q2+

∫
Ω

δΣ2u2q2


+

�2
(M(s̄))

(1−r)/r

rM(σ1u1+σ2u2)
M

(
I∑
i=1

(σi1u1+σi2u2)
rδθi

)
−

�2
(M(s̄))1/r

(M(σ1u1+σ2u2))
2M(δσ1u1+ δσ2u2) , (34)

where

δσα =
I∑
i=1

σiαδθi , (α= 1, 2, r) ,

δΣi =
I∑
i=1

Σiαδθi , (α= 1, 2) ,

and δλ is given by (27). Introducing the combination
functions




z1 =
�1+�2

∫

Ω

(σ1u1q1+σ2u2q1)

∫

Ω

(σ1u1v1+σ2u2v1)
v1− �2q1 ,

z2 = λ
�1+�2

∫

Ω

(σ1u1q1+σ2u2q1)

∫

Ω

(σ1u1v1+σ2u2v1)
v2− �2λq2 ,

(35)

the derivative of J∗ reads

δJ∗ =

∫
Ω

δD∗1∇u1∇z1+

∫
Ω

δΣ1u1z1−

λ


 ∫
Ω

δσ1u1z1+

∫
Ω

δσ2u2z1


−∫

Ω

δσru1z2+

∫
Ω

δD∗2∇u2∇z2+

∫
Ω

δΣ2u2z2+

�2
(M(s̄))

(1−r)/r

rM(σ1u1+σ2u2)
M

(
I∑
i=1

(σi1u1+σi2u2)
rδθi

)
−

�2
(M(s̄))

1/r

(M(σ1u1+σ2u2))
2M(δσ1u1+ δσ2u2) . (36)

As we minimize over the set of simple laminates the vari-
ations of the diffusion tensors D∗α linearly depend on the
increments with respect to the density θ and the lamin-
ation angle γ, namely

δD∗α =(
δµ+α cos

2 γ+ δµ−α sin
2 γ (δµ−α − δµ+α ) sin γ cos γ

(δµ−α − δµ+α ) sinγ cos γ δµ+α sin
2 γ+ δµ−α cos

2 γ

)
+

(µ−α −µ+α )

(
sin 2γ cos 2γ

cos 2γ − sin 2γ

)
δγ , (37)

where

δµ+α =
I∑
i=1

∂µ+α
∂θi

δθi , δµ−α =
I∑
i=1

∂µ−α
∂θi

δθi , (38)

with

∂µ+α
∂θi

= diα , and
∂µ−α
∂θi

=
−(µ−α )

2

diα
.

Finally the gradient of the objective function J∗ is given
by (36), (37), and (38).

According to the structure of U lad, the two design
parameters γ and θ are independent, and J∗ can be min-
imized separately with respect to them. We therefore
deduce from (36) the partial derivatives of J∗ in the fol-
lowing propositions.

Proposition 1. When δθ = 0, the partial derivative of
J∗ with respect to γ is〈
∂J∗

∂γ
, δγ

〉
=

∑
α=1,2

(µ−α −µ+α )

∫
Ω

(
sin 2γ cos 2γ

cos 2γ − sin 2γ

)
∇uα∇zαδγ . (39)

Therefore, the optimality condition for the angle γ is

tan 2γ =−

∑
α=1,2

(µ−α −µ+α )

(
∂uα

∂x2

∂zα

∂x1
+

∂uα

∂x1

∂zα

∂x2

)
∑
α=1,2

(µ−α −µ+α )

(
∂uα

∂x1

∂zα

∂x1
−

∂uα

∂x2

∂zα

∂x2

) . (40)

Proposition 2. When δγ = 0, the partial derivative of
J∗ with respect to θ is

〈
∂J∗

∂θ
, δθ

〉
=

I∑
i=1

∫
Ω

δθiQi(x) dx , (41)

where
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Qi(x) =
∑
α=1,2

·


 ∂µ+α
∂θi

cos2 γ+
∂µ−α
∂θi

sin2 γ
(
∂µ−α
∂θi
− ∂µ

+
α

∂θi

)
sin γ cos γ(

∂µ−α
∂θi
− ∂µ

+
α

∂θi

)
sin γ cosγ

∂µ+α
∂θi

sin2 γ+
∂µ−α
∂θi

cos2 γ


 ·

∇uα∇zα+

(
Σi1−λσi1

)
u1z1−λσi2u2z1+Σi2u2z2−σiru1z2+

�2
(M(s̄))

(1−r)/r

rM(σ1u1+σ2u2)

(σi1u1+σi2u2)
r

vol(Ω)
−

�2
(M(s̄))

1/r

(M(σ1u1+σ2u2))
2

σi1u1+σi2u2

vol(Ω)
. (42)

5
Numerical algorithm

This section is devoted to a gradient-type numerical al-
gorithm for solving the proposed relaxed formulation of
the re-loading optimization problem (in two space dimen-
sions). It relies on our knowledge of the optimality con-
ditions. The design parameters are the volume fractions
θ = (θ1, · · · , θI) and the rotation angle γ. We use a gradi-
ent method for the density θ, coupled with a projection
step in order to satisfy the admissibility constraints (10).
We could do the same for the rotation angle γ, but it is
more efficient to use the optimality condition (40). The
algorithm is then structured as follows.

1. We initialize the design parameters θ1 = (θ11, · · · , θ
1
I)

and γ1 (for example, we take a constant angle γ1 and
volume fractions θ1i , which satisfy the volume con-
straints).

2. Until convergence, for n ≥ 1 we iteratively compute
the state (un1 , u

n
2 ) and the adjoint state (qn1 , q

n
2 ), so-

lutions of (12) and (28), respectively, with the previ-
ous design parameters (θn, γn), and then update these
parameters by

θn+1i (x) = max
(
0,min

(
1, θni (x)−

tn

(
Q
n

i (x)−Cn+10 (x)−Cn+1i

)))
where Cn+1i are Lagrange multipliers (constant
throughout the domain) for the global volume con-
straints

∫
Ω

θi = γi, C
n+1
0 (x) is the Lagrange multiplier

(varying at each point x) for the local volume
constraint

∑I
i=1θ

n+1
i (x) = 1, and tn > 0 is a small

step such that

J∗(θn+1, γn)< J∗(θn, γn),

and γn+1 is given by the optimality condition

tan 2γn+1=−

∑
α=1,2

(µ−α −µ+α )

(
∂unα
∂x2

∂znα
∂x1

+
∂unα
∂x1

∂znα
∂x2

)
∑
α=1,2

(µ−α −µ+α )

(
∂unα
∂x1

∂znα
∂x1
−

∂unα
∂x2

∂znα
∂x2

) .

The Lagrange multipliers are iteratively adjusted in
a inner loop at each step n of the above algorithm. This is
more delicate for I = 4 phases than for just I = 2 phases
(especially during the penalization process). In practice,
we made no special efforts to optimize the choice of the
step size tn, neither did we try to implement a conjugate
gradient method or an approximate second-order Newton
method (this would be important if CPU time efficiency
was our first concern).

Table 1 Physical constants of the 4 types of assembly

Label of Diffusion Absorption Fission Slackness
assembly D1 Σ1 σ1 σr
proportion D2 Σ2 σ2

1 1.340 0.0244 0.0073 0.0149
40/157 0.434 0.103 0.161

2 1.356 0.0251 0.0063 0.0146
40/157 0.429 0.118 0.173

3 1.390 0.0256 0.0055 0.0144
40/157 0.428 0.117 0.160

4 1.410 0.0260 0.0048 0.0143
37/157 0.428 0.114 0.145

We test our method on a core with 157 squared as-
semblies (with side length 21.5 cm) of 4 different types
with properties given by Table 1 (these data are repre-
sentative of a 900MW pressurized water reactor). By
symmetry, the computation are performed on one fourth
of the geometry using the Matlab software. There are
362 P1 finite elements in the mesh and the volume frac-
tions are constant on each assembly. In other words, the
spatial discretization is finer for the neutron flux than
for the design parameters. The main advantage is that
the phase proportions are always constant by assem-
bly, which helps a lot in the penalization process. We
choose �1 = 0, �2 = 1 and r = 10 in the objective func-
tion (other choices work as well). We first compute the
optimal solution for the relaxed formulation after 120 it-
erations. Figures 2 and 3 display the optimal volume frac-
tions, and Fig. 4 the resulting power distribution σ1u1+
σ2u2. The convergence is smooth as shown by Fig. 5 and
the power peak max(σ1u1+σ2u2) is globally decreasing
(there is no reconstruction of the fine structure of the
flux).

In the above example, we started from a previous solu-
tion obtained with the one-group diffusion model (see our
previous work Allaire and Castro 2001).We checked that,
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Fig. 2 Volume fractions of assembly 1 (left) and 2 (right)

Fig. 3 Volume fractions of assembly 3 (left) and 4 (right)

if our initial guess is different (typically a random initial-
ization), we converge to the same homogenized solution
(we believe we reached a global minimum).

The above relaxed or homogenized optimal solution
gives a lower bound on the minimal performance of any
discrete distribution of assemblies. More than that, by
penalizing the intermediate values of the volume frac-
tions, we can recover a quasi-optimal distribution of as-
semblies. We introduce a penalized objective function,
defined by

Jpen(θ, γ) = J∗(θ, γ)+
η

vol(Ω)

∫
Ω

I∑
i=1

θi(1− θi) dx .

For η = 0 we recover the relaxed objective function J∗,
while for η > 0 we force the volume fractions to take
only the values 0 or 1. Starting from the previous re-
laxed optimal design, we minimize the penalized objec-
tive function and increase progressively the value of η.
Since by virtue of Theorem 2 any relaxed design is the
limit of a sequence of closer and closer classical designs,
the penalization process amounts to build such an ap-
proximating sequence for which the objective function
should not change too much. This procedure is now well-
established in structural optimization (see Allaire 2001;
Bendsøe 1995; Rozvany et al. 1995). Here, we run about
300 iterations with η progressively increasing from 0.01
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Fig. 4 Power distribution σu

up to 10. This is probably not optimal in terms of CPU
time. The reason for this very slow and progressive penal-
ization is that we used the one-quarter symmetry of the
core. Indeed, only the assembly of type 4 can be put in
the central assembly because of the imposed proportions.
Similarly, the half assemblies on the symmetry axes can
not be occupied arbitrarily for the same reason of volume
constraints.
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Fig. 7 Distributions of assembly 3 (left) and 4 (right)

Figures 6 and 7 display the discrete distribution of
assemblies, and Fig. 8 the resulting power distribution
σ1u1+σ2u2. Note that the obtained pattern is symmetric
with respect to the first diagonal. This result is different
from that obtained by Allaire and Castro (2001) (where
another model was used, namely the one-group diffusion
equation).

Table 2 Comparison between the homogenized and penal-
ized designs

Objective function Power peak

homogenized design 1.187 1.388

penalized design 1.225 1.571
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In Table 2 we compare the values of the objective func-
tion for the relaxed optimal design and for the penalized
one (the penalization term Jpen−J∗ is almost zero at the
end of the penalization process).

6
Conclusions

This paper describes the application of the homogeniza-
tion method for optimizing the fuel assemblies positions
in a nuclear reactor core. We believe that this approach
is interesting in this context for at least two reasons.
First, the homogenized optimal design gives an absolute
lower bound to any proposed discrete distribution of as-
semblies. Therefore, it is a good element of comparison
with any other optimization method. Second, the homog-
enization algorithm is insensitive to the initial guess and
the resulting penalized discrete distribution of assemblies
is free of any implicit or explicit constraint on its pat-
tern (in structural optimization this is called topology
optimization, see e.g. Allaire 2001; Bendsøe 1995). We
do not view this method as an alternative to other opti-
mization algorithms but rather as a pre-processing step.
Indeed, it gives rise to new patterns that may be dif-
ferent from initial guesses or intuitions, but that can be
improved by local optimization using more realistic con-
straints or objective function. There is still more work
to be done in order to treat real industrial problems. In-
deed, we have to take into account more realistic con-
straints such as e.g. multi-cycle optimization, or assembly
rotation. Finally, more numerical comparisons with other
approaches in the literature are necessary for assessing
the potentiality of the homogenization method in this
context.

Acknowledgements This work has been partially supported

by the French Atomic Energy Commission (CEA Saclay,

DRN/DMT/SERMA).

References

Allaire, G. 2001: Shape optimization by the homogenization
method. Berlin, Heidelberg, New York: Springer

Allaire, G.; Castro, C. 2001: A new approach for the optimal
distribution of assemblies in a nuclear reactor. Numerische
Mathematik 89, 1–29

Bendsøe, M.P. 1995: Methods for optimization of structural
topology, shape and material. Berlin, Heidelberg, New York
Springer

Cherkaev, A. 2000: Variational methods for structural opti-
mization. Berlin, Heidelberg, New York: Springer

Habetler, G.; Martino, M. 1961: Existence theorems and
spectral theory for the multigroup diffusion model. In: Nu-
clear reactor theory (Proc. Symp. Appl. Math.), Vol. XI,
pp. 127–139, AMS. Providence

Ho, L.-W.; Rohach, A. 1982: Perturbation theory in nuclear
fuel management optimization. Nucl. Sci. Eng. 82, 151–161

Kropaczek, D.J.; Turinsky, P.J. 1991: In-core nuclear fuel
management optimization for pressurized water reactors uti-
lizing simulated annealing. Nucl. Technol. 95, 9

Levine, S. 1986: In-core fuel management of four reactor
types. In: Ronen, Y. (ed.) Handbook of nuclear reactor calcu-
lations, Vol. II, pp. 87–201. CRC Press

Lions, J.L. 1971: Optimal control of systems governed by
partial differential equations. Die Grundlehren der mathema-
tischen Wissenschaften 170. Berlin, Heidelberg, New York:
Springer

Lysenko, M.G.; Wong, H.I.; Maldonado, G.I. 1999a: Neural
network and perturbation theory hybrid models for eigenvalue
prediction. Nucl. Sc. Eng. 132

Lysenko, M.G.; Wong, H.I.; Maldonado, G.I. 1999b: Predict-
ing neutron diffusion eigenvalues with a query-based adaptive
neural architecture. IEEE Trans. Neural Network 10

Maldonado, G.I.; Turinsky, P.J. 1995: Application of nonlin-
ear nodal diffusion generalized perturbation theory to nuclear
fuel reload optimization. Nucl. Technol. 110, 198–219

Murat, F.; Tartar, L. 1985: Calcul des variations et hogénéisa-
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