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Abstract 

The aim of this paper is to investigate the problem of the vibrations of large arrays of elastic rods immersed in a perfect incompressible 

fluid. The case of an infinite spatially periodic bundle is firstly considered leading to use the Bloch wave method in order to describe the 

resonance spectrum of the coupled system. When the bundle is contained in a bounded domain, the homogenization technique combined 

with the Bloch wave method allows to obtain the eigenspectrum which is formed of two eigenfrequencies (of infinite multiplicity), and of a 

continuous spectrum. 0 1998 Elsevier Science S.A. All rights reserved. 

1. Introduction 

The study of vibrations of tube bundles immersed in a liquid is of great practical importance in engineering 
design concerning particularly heat exchangers, condensers and nuclear reactor cores. For this reason, numerous 
papers and books have been devoted to this subject. Among others, let us mention the works by Blevins [8], 
Chen [lo], Paidoussis [32], Gorman [22], Pettigrew [33] and Gibert [21]. 

These studies are based on the important notion of added mass matrix describing the reciprocal influences of 
the different elements of the bundle via the surrounding fluid. The computation of this matrix is often 
complicated because the number of tubes is generally high in practice, of the order of several thousands as it is 
the case for heat exchangers and nuclear reactors. However, this complexity may be overcome by means of the 
homogenization method which delivers constitutive equations and boundary conditions for an homogenized 
medium equivalent to the coupled fluid-tube system (see [35,16,15]). Another possibility consists in considering 
the bundle as infinitely large and spatially periodic, so that the fluid flow potential can be decomposed in terms 
of Bloch waves (cf. [l&17,1 11). Obviously, the effects of the boundary of the bundle are ignored in this latter 
approach. 

An alternative method is to combine the homogenization and the Bloch wave techniques. This process has 
been recently used by two of the authors in order to investigate the behavior of the spectrum of the added mass 
matrix as the number of tubes becomes infinite [3,4]. This so-called Bloch wave homogenization method is 
rather involved from a mathematical point of view. The aim of this paper is to present, in a less formal manner, 
this method for the time-dynamical behavior of large tube arrays. 
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2. Some reminders about the added mass matrix 

2.1. Notations and equations 

We consider a group of parallel cylinders immersed in a quiescent perfect incompressible liquid. The 
cylinders are rigid and elastically mounted by a spring system allowing transversal motions. In order to simplify 
the presentation, two-dimensional problems are considered. The generalization to the three-dimensional case, 
taking into account the tube bending, may easily be done. One denotes by x the wall of tube e and by r the 
rigid wall of the cavity containing the fluid and the bundle; 0 is the region occupied by the liquid. The cylinder 
motions are supposed small enough so 

Under these hypotheses, the coupled 

for x E 0 , 

for x E r, 

for x E yv , 

that the geometrical variation of the domain 0 may be neglected. 
system obeys to the following system of equations 

(2.1) 

in which C$ is the fluid potential, Zt is the displacement-vector of the tube ye, n’ is 
oriented outside R. The vectors ?‘! are assumed to satisfy the dynamics equation 

d’s’, 
%7=-P I * (x, t)n’ dy, - k&Q) + &t) , yp & e=l,2 ,..., N, 

the unit-normal on yf and r 

(2.2) 

where m, is the tube-mass (per unit length), k, is the stiffness of the spring system supporting ye; p is the fluid 
specific density and fe is an external force acting on the tube e, N is the number of tubes. The first term in the 
right-hand side of (2.2) is the hydrodynamical force on yf (recall that the pressure is equal to -p &$/at). 

2.2. The added mass matrix 

It is usual to eliminate 4 by setting 

#4x, t) = 5 i: Xe (4 2 Ct) , 

e=lj=1 ’ 

where xe satisfies I 

c AX!, = 0 in 0 , 

axe 
L=o 

an 
on r, 

axe. 
L = nj(x)S,,, 

an 
oneach y!,, C’=l,...,N 

(2.3) 

(2.4) 

where nj is the jth direction-cosine of the normal n’ and se, is the jth component of .?P The x8, are chosen such 
that Jo xp dr = 0, which determines these functions uniquely. 

Insertink (2.3) into (2.2), one obtains 

M$s?t)= -KS-wpH$jo+At). (2.5) 

where s’= col(S;, Tz, . . . , s’,), f= colcf;, f;, . . . , fN) and M = diag(m,), K = diag(k,) (m, and k, being repeated 
twice), and H is the matrix of order 2N with entries J,, xePj(x)ni(x) dy,. The matrix pH, so defined, is the added 
mass matrix: it is symmetric and positive definite, so its eigenvalues are real positive numbers, see (see [25,11). 

An immediate consequence is that the eigenfrequencies w of the coupled system 
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(2.6) 

are real and positive. Moreover, the following inequality holds 

O<w<max k, 
P 1 mp’ 

(2.7) 

Actually, a more precise result holds true. Setting q/ =J&&& the eigenfrequency of tube 8 when placed in 

vacuum and labeled in such a way that 

“01 s @o* 4 * . ‘rTl+~, 

then, there are at least 2f? eigenfrequencies o such that 

0<6J<0$r. (2.8) 

The proof of (2.8) may be found in the references [24,19]. Remark that an eigenfrequency w may well exist 

such that w = CL+,( (this obviously requires that qe < wONj; for such an eigenfrequency W, the corresponding 

flow potential 4 must satisfy J,,, &i dy, = 0, which means that the hydrodynamical force acting on ‘yp is zero. 

2.3. Behavior of the frequency spectrum when N increases 

It is now assumed that all cylinders are identical (same geomet and same mechanical properties, i.e. 

m, = m, k, = kj; they have therefore the same eigenfrequency w0 = v+ k/m in vacuum. The eigenfrequencies w 

and the eigenvectors C$ of the fluid-bundle system satisfy the variational equation 

a(+, uj = k ‘fti2 ;, GG 3 

for any smooth-test function U(X), where 

(2.9) 

a($,,)= RV4.VUdx, 
I 

N> = 
I 

u(x); dy, . 
YY 

Setting A = pw’/(k - mu’) and z = col(N; j, the Rayleigh quotient is defined by 

0, u) 
0) = j 1 

b-d2 
+ 

where /;I is the Euclidian norm of the vector g of components Np. 

The first eigenvalue A,, corresponding to the smallest eigenfrequency w,, is given by 

and the infimum is attained for some function 4,(x>. 

The second eigenvalue A, is 

v dx = 0 and 2 *N;, = 0 

and A, = q(42) for another function #Jo. More generally, we have 

and A+, = q(+“+ , ). The recurrence holds true up to n = 2N, since the number of eigenfrequencies w is exactly 

2N (see [19]). Furthermore, these eigenvalues can be characterized via the min-max principle 
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A, = max 
u,;i=I ,...( “_ 1 m,‘” q@) 

with NV .Nvj = 0, 

*II =",dT!$=n y!y 4(v). 
It’ n II 

(2.10) 

Now, our goal is to investigate the behavior of w, and w2,,, (corresponding respectively, to h, and A,,) as N 
increases. For this purpose, the tube bundle is assumed to be an assembling of identical cells C,, each one 
containing one cylinder. If fi@’ is a domain made up of m identical cells, then (see Fig. 1) 

n(m) = fi(m- 11 u cm . 

The rigid wall of 0 (m) is its external boundary. With these definitions, we introduce 

P=l 

and the eigenvalues A:’ associated with each fi’m’. 
A consequence of relation (2.10) is 

A:“,’ 2 AZ;!;) ) (2.11) 

which immediately implies that the largest eigenfrequency increases with the number of tubes (see [16, 
Proposition 5, p. 1071). 

We now turn to the case of the first eigenfrequency. Let 4, be the eigenfunction associated with the first 
eigenvalue A:“’ of a@’ 

and since the cells C, are identical, one has 

from the definition of A:!‘. Hence 

A:“’ 2 Ai” for any m . (2.12) 

On the other hand, we know that hi” = inf ql(u) = ql(d\‘)) for some function 4:“(x) (which satisfies 
Neumann boundary condition on the cell boundary) 

I 
]V&“l’dX 

(1) _ 
A, - 

cc on each cell C, , 

IN&Y2 

and we can write 

p& pg 
Fig. 1. Fluid domain flcm’. 
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(2.13) 

Let us define a function 4, in ti’m’ which is equal to 4:” in each C,. By construction 6, may be discontinuous 
at the interfaces of the cells. So we change the definition of I$, in order to obtain a continuous function. For this 

purpose, it is necessary to assume that the cells are symmetric with respect to their principal axes (cubic 

symmetry). By a standard reflection procedure with respect to the cell boundaries, we can extend 4:” from one 

cell to its neighbors and obtain a continuous function on the entire domain. Its gradient is also continuous since 

a~~“/& = 0 on the cell boundaries. Thus, (2.13) yields 

A :“=4,(4,). 

But A:“’ = inf, q,(u) G ~~(4,) = Ail), and using (2.12) 

Ar’=A:” foranyintegerm. (2.14) 

Therefore, in the case of symmetric cells, the smallest eigenfrequencies WY) of the different domains Q’m’ are 

equal, while the greatest ones increase with m. This behavior of the limiting spectrum has been observed by 

numerical computations (see [25,24]). For instance, for bundles containing, respectively, 16 and 49 tubes we 

have 

N= 16, w, = 40.7 Hz, wj2 = 51.8 Hz ; 

N=49, w, = 40.7 Hz, wg8 = 52.4 Hz. 

For largest values of N, some numerical troubles occur because the eigenfrequencies w become very close one 

from each other. 

Some remarks 

When the fluid is compressible, the added mass matrix is time - dependent and the term H d2s’/dt2 in (2.5) 

must be replaced by the time-convolution term H* d2s’ldt2. Moreover, there exists an infinite set of 

eigenfrequencies w’s which accumulate at infinity and there are at least 2N w’s which are strictly smaller than 

w0 = (k/m)“’ (see [16,36]). 

In [38], the small geometrical variations of the domain 0 caused by the cylinder motions, are taken into 

account and lead to additional damping and stiffness terms in Eq. (2.5). 

The case of a viscous fluid is investigated in great detail in [12,39,13,14]. 

3. Infinite tube bundle and the Bloch wave method 

3.1. The Bloch waves 

It has been shown in the previous section that the highest eigenfrequency q, increases with the number N of 
elements. Because the eigenfrequencies are lower than w,, = (k/m)“‘, they tend to cluster in a fixed interval. 
Thus, the effect of large N is to spread out the resonance frequencies over a certain interval located between 0 
and w,, and this interval is obviously inside the band corresponding to an infinite N. 

The case of an infinite bundle can easily be investigated by means of the Bloch wave method. Although this 
technique is well-known in solid state physics [9,40], it is only recently that it has been introduced in the context 
of fluid-solid vibrations [ 16,18,17,11,20]. For the reader‘s convenience, we briefly remind in the sequel. 

The cylinders are supposed to be located at the-nodes of a regular square network with period E (see Fig. 2). 
Each tube is labeled by a double integer index C= ( &,, 8’). Our purpose is to find the eigenmotions of 
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e2 

Fig. 2. Infinite array of tubes. 

The Brillouin’s book [9] suggests to search the eigendisplacements of frequency o for which the ;t are of the 

form 

(3.2) 

where e’= (0,, t9,), in which 4 is a parameter varying from zero to 2n, 80) is a vector which does not depend 

on 4?, and o is obviously a function of t? Remark that this idea was also evoked by Paidoussis and his 

co-workers [29]. An eigenmotion defined by (3.2) is quasi-periodic: this means that for any e’ and any 77 > 0 

there exists a double integer p’ = (pi, p2) such that ]eiiB - 1) < q; clearly, the tubes vibrate with quasi-identical 
vibration cells containing p, rows of pz tubes. This phenomenon was also effectively observed by numerical 

computations for a group of 10 X 10 cylinders [26]. 

Let 4(x; 19) be the flow potential associated to (3.2); it necessarily satisfies 

4(x + 86; 8) = e’“‘&x; g) , i = 1,2 (3.3) 

in which (4)i=,,, are orthonormal vectors parallel to the network lines. It is then said that 4 is &w-iodic. It can 

be checked that 4 solves 

on each yt , 
(3.4) 

(k - mw*)&~) = -iwp 
I 

4(x; e’$ dy, , 
Ye 

in each cell C, cot$ning the tube 8. Because of (3.3), it is sufficient to solve, in an arbitrary cell, say C, 

(corresponding to C= 0), the eigenproblem 

i 

A&x; 8) = 0 in C* , 

$ c&x; i) = ,f3( e’>ri * j- 4,(x; e’>n’ dy on Y , (3.5) 
Y 

+ 
4 is e-periodic , 

where C* is that part of the cell occupied by the fluid and y is in fact -yO. The eigenvalue p( 8) is related to the 
eigenfrequency by 
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p<(+ pwz 
k=mw2’ (3.6) 

The corresponding w’s are the Bloc_h wave eigenfrequencies. Remark that the additional condition 

_rc* &x; 8) dn = 0 is necessary only for 8 = 0. If 4 is assumed to be generated by a vector z’= (z, , z,) such that 
ac,6/an =z’.n’on y, then 

qs(x; 8, = 5 ,q(x; 62; , 
,=I 

4 

where ,&; 8) is the &periodic harmonic function satisfying 

2 (x; 8) = n,(x) on Y 

(ni is the ith direction-cosine of the normal Z). Replacing CJ by its expansion into (3.5), one gets 

z’= P(c+)Bi, 

where B is the 2 X 2 matrix whose entries are 

b, = 
I 

x,(x; e’n,(x) dy . 

Y 

The matrix B is obviously $omplex-valued if e’ # 0, and is self-adjoint positive definite. It implies that_(3.5) has 

only two eigenvalues (p,( 19))~~ 1 ,2 which are real and positive. The associated eigenfunctions +j(x; 0) are the 

so-called Bloch waves while the vectors 

v;.( 6) = 
I 

$(x; e’>n- dy (3.7) 
Y 

++ 
are known as the Bloch wave vectors. The 40) corresponding to (3.2) are obviously 

The eigenvalues P,( $)(and the potentials $) are continuous functions of 6 except for e’= 0 (for which _they 

have a well-determined value); this is due to the fact that the condition J, 4; du = 0 (is necessary when 0 = 0 

see [3,15]). 

3.2. The generalized added mass matrix 

Let s’ be the vector (of infinite length) with components A$ 

s’= col(s;) 

Each component T/ may be written as 

(where f(. ) dB means J,‘” Jb’” (. ) dB, de,) with 

(3.8) 

where <= (q,, q2) is a double integer index and the summation on 4’ means Zy,=_, ZTZ_;a; the upper bar 
denotes the complex conjugate. In (3.8), the vectors <( 19) are orthonormalized by a convenient choice of the 
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eigenvectors z’of the matrix B. The quantities uj( 6) are the generalized Fourier coefficients of the infinite vector 
+ 
S. 

The added mass is the operator H which associates to any vector s’= col(s’,) the infinite vector h’ of 

components L! = _f,, G(x); dy,, where +(x) is the harmonic function satisfying a+/ &Z(X) = T<. n’(x) on each ‘ye 

The operator H is obviously of infinite order and is symmetric positive definite (see [15,20]). The infinite vector 

i= Hi' has the following decomposition 

with 

One needs to rel?te d,(f) with the Fourier coefccient a,(g) of S: For this purpose, one associates with each 

Bloch vector 4(e) the &periodic function q(x; 0) which is the solution of 

A%&; 8) = 0 in C* , 
dq 
~(.x;i)=~C*G~(x;e’) on y, 

and from the definition of U;(e’) and 4j(x; 8) (see Eq. (3.5)), we have 

q(X; ~)=~8) 

Pj(') 

On the other hand, s’ is written as 

(3.9) 

2 

;=c s;(;)de 
j=l I 

whose components on each y! are 

(S;.), = aj( 6) eie”c( 6) . 

Now, we associate with such S;( @), the vector HS;(& by means of the harmonic &periodic function $4~; 8) 

which satisfies on each yf 

and then 

(Hs;.(O)), = j- t,$(x; e’)ri dy, . 
ye 

It is clear, from (3.9), that 

in each cell C,. Consequently 

Thus, the spectral decomposition of H on the Bloch vectors c(g) 
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(3.10) 

The relation (3.10) means that Hs’ is decomposed on all the vibration eigenmodes of the tube array, + 
characterized by the vectors ((6)) (we note a certain analogy with the spectral decomposition of symmetric 
matrices). 

Such an operator H is continuous in the following sense. If (Is”)/* = XY &I2 is finite (ll;//2 represents, up to a 

multiplicative factor, the total kinetic energy of the tube bundle), there exists a positive constant c such that 

Il;ll d cl/</ (the smallest constant c satisfying this inequality is the norm of H). In fact, formulae (3.8) are 

established for s’ with a finite norm (see [15]). 

The spectrum of H is real and included in the interval [Amin, A,,,] where 

1 
1 

Amin =min min - 
J ’ FjtB) ’ 

1 
A,,, =max max - 

i d p,(i) . 

(3.11) 

Numerical calculations show that the values of I /p,(O) are inside this interval (see [ 11). Remark that; from the 

general theory of selfadjoint operators, the norm of H is A,,,. It results from the continuity of e(0) that the 

resonance spectrum of the coupled fluid-cylinder system is spread out in the interval [mmin, w,,,], where 

d k 

d 

k 
Wmin = m i- ph,,, ’ %M = m + pAmi, ’ 

In fact, each eigenvalue fij(s’, is associated to an eigenfrequency 

(3.12) 

(3.13) 

so that the frequency spectrum is continuous. The quantity p/flj( g) may be interpreted as the modal added 
mass. Numerical computations of the a,(g) have been published and can be found in [l&17,1]. 

3.3. Dynamical equations 

Let f(l) = colic) be an external force applied to the infinite rod array. It induces a motion of the structure 
defined by the dynamics equation 

(m + pH) $ $t) + ks’(t) = _&) . 

The force j(t) is then written in terms of Bloch wave vectors 

with 

(3.14) 

(3.15) 

If (a,( g; t)) is the family of Fourier coefficients of A?@), then inserting (3.15) into (3.14) and using the spectral 

representation (3.10) of H yields after identification 
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(m+&) dt: da,(~r)+ka,(8:t)=q(B:,t), j= 1,2, 

whose solution gives the time-behavior of the bundle. For zero initial conditions, we have 

kJ.(e’> r 
Uj(& t) =+- I 0 

sin[wj( t$(t - T)]T$( I?; T) dr , 

(3.16) 

(3.17) 

where oj( g) is the eigenfrequency corresponding to 2 Clearly, a resonance occurs when q( e’; t) is a sinusoidal 

function of time with pulsation equal to wj( 8) for a set of values of e’ having a non-zero measure, in which case 

i(t) = O(t) as t + +m with an oscillating behavior. 

REMARK 3.1. Formulae (3.15) to (3.17) are valid if the SF’s satisfy the condition 

However, in the particular case where se = p, i is then a constant vector of infinite norm, and the 

corresponding response is & = S’O for any e (i.e. l(s’O11 = a). The associated potential $ is periodic and 

where xj satisfies 

(Ax, = 0 in the fluid, 

‘Xj 
an (x) = n,(x) on each ye , 

Xj is periodic , 

and the dynamics equation is written as 

2 

(m+pWO)-$;O+k;O=J”; 

where the matrix Ho is constructed with the different terms f, ,y,n, dy,. 

Now, suppose that se =i: +i: where f: -so is constant and f’6 is such that E, If>\” is finite. The 

response s’ is decomposed as s’= s’ O + s”, where S’O and s’r correspond, respectively, to p and ii. The vector S’O 

is obtained via the matrix Ho defined above while s” is given via formulae (3.15) to (3.17). In other words, g(t) 
takes the form 

Z(t) = go(t) + 2 s;(i, t) d0 
j=1,2 i 

Remark however that the Bloch decompositions of f1 and s’r contain contributions at the Bloch frequency I!?= 6 

which are related by the same relationship as that for To and S’O. 

3.4. Bloch waves along a plane boundary 

An interesting case is when the infinite tube array is limited by a plane r parallel to the cylinder axes; the 

bundle is then contained inside a half space (see Fig. 3). The Bloch wave method has been adapted to this case 
in [4]. In this situation, one must consider cells containing a row of cylinders in the x,-direction (normal to r), 
and the eigenmotions are searched in the form 

it,m(t) = ei(ee+““$~(0), (3.18) 

in which e is the row index and m is the tube index in row 8, 0 is a one-dimensional parameter in [O, 2~1; 
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Fig. 3. Semi-infinite array of tubes. 

im(0) is a two-dimensional vector depending only on 19 (one considers in fact Sloth waves only in the 

x, -direction). 
We are interested only in bundles with finite kinetic energy; so we impose that IZ? C, I<?,,, / 2 is finite, implying 

that I;[,,, I-+ 0 as m + a for each row 8. 

Clearly, the corresponding flow potential is &periodic in x1, i.e. 

4(x, + 8,x2; 0) = eis+(xl, x2; 8)) (3.19) 

and from (3. IS), it satisfies 

A~(x; 0) = 0 

!$ (x; 13) = iw&(e) . n’ 

in the fluid domain, 

on each Y?,~ , 

when x2 = 0, 

(3.20) 

this last condition is a consequence of the finite kinetic energy assumption. In other words, we are interested by 

the eigenmotions concentrating along r (the tubes far from r do not vibrate). 
There is a subtle point here. The eigenvalue problem (3.20) is posed in an infinite domain, and therefore, as is 

well known, the corresponding operator lacks compactness. This implies that its spectrum is made of, at most, a 
countable number of eigenvalues of finite multiplicity, and also of the so-called essential spectrum (for a precise 

definition of the essential spectrum we refer e.g. to [42,15]). Loosely speaking, an element of the essential 
spectrum is either an eigenvalue of infinite multiplicity, or it does not have a corresponding eigenvector but an 
infinite sequence of approximated eigenvectors (a so-called Weyl sequence). Such approximated eigenvectors 

correspond to vibrations of the bundle far away from the boundary (see [4]). 

Eqs. (3.20) are written for e= 0 (for instance) and then, setting Z:, = iw& 

qxx; e> = E X,(X> m&(e) 
j=i 

(3.21) 
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where z,,,~ is the jth component of Z:, and xmj is the solution of 

AXmj(x, ‘I= 0 in C* , 

ax, 
an (x, 0) = nj(x)Smm8 on each y,, , 

Xmj(‘, ‘) = O when x2 = 0, 

ax, 
ax cG~)~O asx,++w, 

2 

Xmj is &periodic in x, 

where S,,, is the Kronecker symbol and C* is that part of 

tube in the row C,. For 8 = 0, it is necessary to have the 

xmjdx=o. 

(3.22) 

C,, occupied by the liquid; y,,, is the wall of the mth 

additional condition 

In practical applications, it is enough to suppose that 8 / &X,X, = 0 for a sufficiently large value of x2, for 

instance x2 = m,,~, m, being a positive integer (one only considers rows with m, cylinders). 
Assuming that the functions x,(x, 8) have been computed, using (3.21), the relation (3.20) leads to the 

eigenvalue problem 

(3.23) 

i = 1 and 2, m = 1,2, etc. where /3(e) = pw’/(k - mw’). 
The infinite matrix (or operator) B(8) formed with the different integrals occurring in (3.23) is self-adjoint and 

positive definite. Considered as an operator in 8*, the space of square summable sequences (or finite kinetic 

energy displacements), the infinite matrix B(0) has positive eigenvalues P(0). The spectrum of B(8) is globally 

continuous with respect to 0, excepted at 6 = 0 [3]. 

Let /3,,(e), 1 G m < +m, j = 1,2, be the eigenvalues and 4,,(x, 0) the corresponding eigenpotentials. We 

define the xi-Bloch wave vectors by 

(3.24) 

and the eigenvectors may be chosen such that 

u’,,(O)’ Gm’j’(e) = ‘m,m’,jj’ = 

1 if m=m’, j=j’, 
0 otherwise 

For any s’= col(s’,), where Z! is the displacement-vector of the set of tubes of the row f, it is decomposed as 

follows: 

2 

I 

2Tr 

;=C ?(0) de , s’(O) = col(g$(B)) where 
j=, 0 

i+;(0) = 2 a;(0) e'"'v',,(O) , 
m 

S:, being the displacement-vector of the set of tubes of the row q. 

It is then possible to express the added mass matrix H of the half infinite bundle by 

(Ha, = 2 c (2n s eieezimj(f3) de 
j=, m 0 mJ 

(3.25) 

(3.26) 

where & denotes the row index. 
Suppose now that the half tube array is subjected to external forces fit) concentrated near r These forces f(t) 
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are therefore decomposed in Bloch 

equations 
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waves, which leads to the following second order system of differential 

(3.27) 

where a,? and f ,” are the Fourier coefficients of s’ and f, respectively. 

REMARK 3.2. In the case of an infimte bundle, the band of resonance frequencies may be easily obtained by 

only computing the functiyns X,(X, 8) on the elementary cell (which is a small domain) and constructing the 

corresponding matrices B( 0) (which are of order two) whose eigenvalues and eigenvectors can be calculated in a 

trivial manner. Observe, from the previous section, that the spectrum of the half infinite array (limited by a 

plane) is bounded by the limits of the spectrum corresponding to the entire bundle. However, there may be new 
eigenvalues inside these limits. For a discussion on this point, see Subsection 5.4. 

4. Classical homogenization 

4. I. Preliminaries 

In the previous section, it was supposed that the infinite tube array occupies the entire space or a half space. 

Here, we assume that the bundle has a large number of elements but its size is finite. The distance E between 

adjacent cylinder centers is consequently small and our aim is to derive a simplified model allowing one to carry 

out numerical calculations with reasonable cost. This can be done thanks to the homogenization theory which 

amounts to replacing the fluid-tube system by an homogeneous medium for which homogenized equations have 

to be found. Homogenization has been intensively studied by BabuSka, Bensoussan et al. [6], Sanchez,-Palencia 

et al. [43,42], and many other authors. Applications of this method to fluid-structure interaction have been 

performed by the authors of this paper during these last few years [35,16,15,3]. 

4.2. The homogenized equations 

These equations are obtained by means of the standard multi-scale asymptotic expansions. The tube bundle is 

still assumed to be a regular rectangular network of cylinders with spatial period E (the period is the same in X, 
and x2 directions, but one could also consider different periods). Because 6 is small compared to the size of the 

bundle, the flow potential is expected to have small fluctuations around a mean value & of the order of E with a 

spatial period equal to E. Then, we a priori set 

4 = &(x, t) + G&(X, y, t) + &“&(X, Y, t> + * . * 7 (4.1) 

where y = X/E and the C#I~ are periodic, of period 1, with respect to y, +&, y + <., t) = qf+(x, y, t), for i = 1,2 and 
any X, y, t. Now, x is the macroscopic variable (roughly x: indicates the position of a tube inside the bundle) and 

y is the microscopic variable which describes the microscopic geometry near each cylinder. The principal role of 
the variable y is to model the local periodic variations of the flow generated by the presence of the rods. 

In writing (4.1), we a priori suppose that the displacements of any two adjacent cylinders differ only slightly 

from each other, and thus we can replace the set of tube motions 3, by a continuous function S’<X, t) which 

slowly varies with respect to X. More precisely, the family (s’,) is extended to a function i(x, t) such that each S; 

is given by s’, = ?(.x~, t) where xg is the center of 3% 
It is convenient to introduce for ; an asymptotic expansion in E 

s’= s;,(x, t) + &s-,(X, t) + &(x, t) + . . . (4.2) 

in which the s’, are smooth functions of X. Note that y is not present in (4.2) because the cylinder displacements 
are rigid. Thus, the first terms & and s’, will describe the bulk behavior of the fluid and of the mechanical 
structure. 



346 G. Allaire et al. I Comput. Methods Appl. Mech. Engrg. 164 (1998) 333-361 

When applied to each c##, y, r), with y = X/E, the derivative with respect to xj has to be replaced by 

8 / ax, + E- * a / ay, from the rule of derivation for composed functions. Hence 

d = d, + 2&-‘~l~~ + c-‘Ay 

where 

and an obvious similar definition for a/an,; IZ~ is the ith direction-cosine of the normal L 
Introducing these definitions into A+ = 0, using (4.1), (4.2) and after identifying the different terms in L2, 

& -‘, etc. one obtains 

1 

@,=O~ 

A,+, = -2A& 3 (4.3) 
A,& = -&& - 24,,4, , etc., 

Since +0 does not depend on y the first equation above is obviously satisfied. 

Now, some care must be considered for using the boundary condition for 4 qn each tube and, for that, it is 

necessary to take into account the gradient of s’on each cell. Because <(x(, t) represents the displacement of the 
tube placed at x,, the boundary condition on each -ye can be written as 

2 (x, t) = -$ i(xe, t) . ii(x) for x E ye , 

and $xF, t) may be expressed by 

Z(+, 1) = $X, t) -v&X, t) * (x - Xf) + O(2) . 

Then, setting x - x, = my and introducing (4.2) in the Taylor expansion of < the boundary condition on yp gives 

successively via the identification of the different powers of E 

1 
WI -= 
an, 0, 

a4 
+ 

-= -- 
an, a; &+$pT, (4.4) 

a+z a&, + -=-- an1 +~.~-&(v;()(x,f)y).~, 
an, x 

etc. . . . 

The relations (4.3) furnish the partial differential equations, with respect to y, which must be satisfied by 
c#+,, #+, &, etc. on the part Y* of the enlarged cell Y (in the ratio 1 /E) occupied by the fluid. The relations (4.4) 

give the corresponding boundary conditions on the enlarged boundary y of the tube in the cell Y. The functions 

+,, & must satisfy a periodicity condition in y. Grouping two by two Eqs. (4.3) and (4.4), it follows that 4, is 
of the form 

in which x,(y) is the solution of 

AyXi(Y) = 0 in Y* , 

a 
an X,(Y) = UY) on Y f 

X,(Y) is periodic of period 1 in both directions y, and y2 

(4.5) 

(4.6) 
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Introducing the expansion (4.5) into the third equations (4.3) and (4.4), we obtain 

equation (with respect to the variable y) for c$* on Y*, with a boundary condition on 

condition for this differential condition with its boundary condition leads to the relation 

((Y*l = area of Y*) or 

where 

347 

a partial differential 

y. The compatibility 

(4.7) 

A = c ai, & 1 a,, = -IY*l6, + b,] , 
r.j 1 J 

b iI = 171 = area of the interior of y. 

The reader may find the details of these calculations in [16,15]. The matrix B of coefficients b, is symmetric and 

positive definite. Moreover, the central symmetry of the square-shaped elementary cell implies that b,, = b,, = 
0 and b, , = b,, = b > 0. On the other hand, ui i = uZ2 = -(Y C 0, so that the homogenized equation (4.7) may 

be rewritten as 

-aAX,rbO(x, r) = (b + Ij$ div, 2 (x, t) . (4.8) 

Now, let us turn back to the dynamics equation 

@r each cylinder 

f, = &(x, t) (th’ 

yp; f, is an external force acting on yP It is convenient to suppose that m = moc2, k = k,,c*, 
is point will be discussed in the following section). 

The asymptotic expansions of 4 and s’ and the expression of 4,, after being inserted in the dynamics 

equation, lead to the homogenized equation (see [16]). 

where B is defined above (B = bl in case of central symmetry). 

Thus, Eqs. (4.7), (4.9), whose coefficients do not depend on X, describe the global behavior of the structure. 

They obviously hold on the homogenized domain L?,,,,,, which is occupied by both the fluid and the tubes. 

4.3. Boundary condition for (6, 

The flow potential satisfies a4/&z = 0 on r which is the wall of the cavity containing both the fluid and the 

mechanical structure (it is reminded that r is rigid) and this boundary condition is true at the microscopic scale. 
But the first term #+, does not satisfy a boundary condition of the same type. Suppose indeed that the tubes move 
towards r, the mass conservation law leads one to think that this motion generates a flow in the opposite 

direction, in other words, that there exists a linear relation between 8&/&z and a;0 /at at the macroscopic scale 
on the boundary K 

In truth, the boundary condition is implicitly contained in the variational formulation of our problems. 
Homogenizing the variational equation automatically gives the homogenized boundary condition. The details, 

too long to be presented here, may be found in [16]. 
The result is then 
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where a/ an, = C,,j aijn, a/ax, (conormal derivative), and in the case where we have central symmetry 

(4.10) 

(4.11) 

Let us mention that the homogenized equation (4.7) and its corresponding boundary condition (4.10) have 

also been derived in [3] by using the two-scale convergence method recently introduced by Nguetseng 1311 and 

Allaire [2]. The main interest in the approach of [3] is that is gives a rigorous proof of convergence for the 

homogenization process, as well as a detailed study of the spectrum of the homogenized equation (see 

Subsection 4.5 below). The reader can easily check that (4.10) is compatible with (4.7) by integrating this last 

equation on the homogenized domain @,,, and using the Green identity. So, Eqs. (4.7), (4.9) and (4.10) form a 

well-posed problem when initial values for s’, and &?O/at are prescribed (see [16]). It is noted that there is no 

boundary condition for s’,. 

REMARK 4.1. In certain situations, the cylinders are linked by a system of springs (spacers) that leads to a 

dynamics homogenized equation containing a differential operator with respect to x (generally of second order) 

applied to s’,, requiring then a boundary condition for this variable. This interesting case is discussed in 

[35,16,7]. 

4.4. The homogenized added mass operator 

We consider only the case of cells with central symmetry, and let us turn back to (4.8) and (4.11) 

o---=-t, as,.; Ml - 
&7 y at 

on r, 

where the subscript x is omitted and 

b, = b + IT]. 

Remark that these equations determine +0 up to an additive arbitrary constant, so that one imposes the condition 

Johorn +,, dx = 0. The potential c#+, may be expanded in terms of as-,/ at via the Green function g(x; 5) of the 

operator -ad with Neumann boundary condition. This Green function is expressed with the eigen-elements of 

the Laplacian operator 

g(x; 5) = ; k;, ; w,(x)w,(0 

where pk > 0, ~~w~~~~~~~~,,,~ = 1, and 

L 

-hw, 7 pkw, in q,, , 

aw,_ 
an 

-0 on r . 

The Laplacian has also the eigenvalue p0 = 0 with the eigenfunction w,Jx) = est., but this eigen-element is not 

present in the above expression of g(x; 5). Since _fDhom wt(x) dx = 0 for k > 0, it results that 

I 
g(x; 5) d5 = 0. 

%m 

These things being remembered, we then have 
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-O g(x; 5) div, c (8, t) d[ - by 
ai0 + 

ham I r 
g(x; 5),,(5;t)4s?dr,. 

one gets from (4.9) 

a’s;, 
[m,, + p(b + X,)1 -p + kot, = 6 . 

(4.12) 

(4.13) 

pJY= p(b + X0) is the homogenized added mass operator. The operator pXO models the interaction of the 

different tubes via the fluid while pb is the added mass of each cylinder in its own cell at x. The operator Z, so 

defined, is symmetric and positive definite, so that its spectrum is real and positive, from which it immediately 

results that the resonance w-spectrum of the homogenized system is located between zero and o. = (k/m)““. 

4.5. The eigenfrequencies 

This section is devoted to the computation of the eigenfrequencies of the homogenized system which has been 

first fully performed in [3] and [ 161. From now on the cells are assumed to have a central symmetry (the 

unsymmetric case is more complicated, see [3]). We rewrite the coupled system (4.8), (4.9), (4.1 l), in terms of 

the eigenfrequency w 

[-a A#0 = iob, div s’, in G0ln ’ 

(Y x = -iwb,& . n’ on r, 

(k, - mAw2)T0 = iopb,V+ in f&,,, 1 

(4.14) 

where ml, = m, + pb,. 
Two cases have to be considered. If k, - rnho’ = 0 with s’, # 0, then Vqf+, = 0 and @o is constant over L&,,,, 

which leads to div S;, = 0. The boundary condition implies s’, . n’= 0 on K Then, 

k” 
w, = 

m, + pb, 
(4.15) 

is an eigenfrequency of infinite multiplicity: its eigenspace is made of all the divergence-free displacements s’ 

satisfying s’. ii = 0 on I? 

Suppose now k,, - rnhw* # 0. Plugging the third equation of (4.14) into the first one yields 

-a(k,, - m;w’) A+o = -w’pbt A+(, . 

If AC&, = 0, which is equivalent to div s’, = 0 and corresponds to an eigenvector of the previous eigenspace, we 
are back to the eigenfrequency w,. Therefore, a new eigenfrequency is obtained if we assume that A& # 0, or 
equivalently div S;, # 0. Then, necessarily 

k,,-(mh+$)w’=O, (4.16) 

whose unique root is 

(4.17) 

If (4.16) holds, T0 must be proportional to V40, while s’, . n’ may take any values on IY Therefore, w2 is also an 
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eigenfrequency with infinite multiplicity, and its eigenspace is made of all s’ which are the gradient of some 
potential and have arbitrary values on r (for details, see [3]). 

Thus, the spectrum of resonance of the homogenized tube bundle is formed of two points w, and w2 with 
infinite multiplicity. The homogenization process has the effect of concentrating the spectrum in two points 
whereas the fluid-structure interaction spread out the eigenfrequencies over an interval when the number of 
cylinders is high, as is confirmed by numerical computation. This anomaly is due to our assumption that two 
neighbor rods have similar displacements. However, there may well be eigenmodes with different motions for 
two neighboring tubes. To avoid this difficulty, a method of homogenization by packets has been suggested in 
[35], and rigorously applied in [3], which considers unit cells containing several tubes instead of just one. 
However, in certain applications, like the effects of a seism on a nuclear reactor core, the standard 
homogenization may be sufficient, as it has been confirmed by comparison with experiments, with a relatively 
good agreement (see Hammami [23]), because the inertial force acting on the tubes is constant through the 
domain O,,,, . Another experimental confirmation of homogenization may be found in [37] concerning the 
acoustical eigenfrequencies of heat exchangers. 

REMARK 4.2. In certain situations where spacers are present between adjacent rods, the resonance spectrum 
may be infinitely discrete or continuous depending on the nature of the spacers (see [16,36,7]). 

4.6. Homogenization by packets of tubes 

Numerical calculations and experiments show that the cylinder bundles can vibrate with certain identical 
patterns in which the motions of two adjacent rods may be different at any instant. In order to take into account 
this possible situation, the elementary cell must contain several tubes ([35,3]) and it is necessary to have a 
displacement function Cp(x, t) for each tube of the cell (of size E’ small compared to the diameter of the bundle; 
8’ is a multiple of 8); x is the position of the cell. This obviously supposes that the external forces, acting on the 
rods, present a certain periodicity characterized by E’. The second term of the asymptotic expansion of 4 must 
then be written as 

(4.18) 

where s’: is the first term of the asymptotic expansion of the displacement Te of the tube yc of the packet (i.e. 
the cell of size 8’); the summation on 8 is done on this packet. Each function x,((y) is the solution of 

I d,X,%Y) = cl in Y* , 

on each ye’ of the packet, 

is l-periodic in y with 
I y* X;(Y) dy = 0. 

Using (4.18), the homogenized equation for the flow potential becomes, after some tedious calculations 

A&= i aij$ 
a&$ 

i,j=l I J 

(x, t) = c div,(B “’ + IT”‘&,,) at 
e.e, 

in which Bee’ is the matrix with entries 

(4.19) 

IT”] = interior area of ye, A = IX.. a.. d’/(&v, ax,). 
The associated boundary cond&oX has then the form 
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(4.20) 

We note, in the right-hand sides of Eqs. (4.19) and (4.20), the interaction of the cylinders of the cells via the 

matrices B ” ’ For the dynamics equation, the first term of the asymptotic expansion of s’” satisfies 

(mb~+B~~~~=p[ly’tV~~-&~~~~,(x.Y,r)ri(Y)dyi] +$ 

Again, using (4.18) yields the homogenized dynamics equation 

(4.21) 

in which B” = ISft Bee . The matrix B” is symmetric and positive definite. 

It is noted, in this approach, that the tubes inside a same cell can be different (different mass, stiffness and 

geometry) and placed in any position inside the cell, but all the packets must be identical. 

Suppose now the tubes of each cell are identical. Replacing d/at by iw and eliminating &, the following 

eigenfrequency problem is obtained (we do not present the details) 

[k,, - w2(m0 + pB, + p%“,)]s’, = 0 

where s’= col(s”, s’2,. . . , ?), n is the number of tubes in a cell. pB, is the added mass matrix of the tube in a 

same packet, p%$ is an integro-differential operator (with respect to the macroscopic variable X) describing the 

interaction of the different packets. It can be shown that B, and x0 are symmetric and positive definite. This 

yields the well-known fact that the eigenfrequencies w are located between zero and w,, = (k/m)“‘. 

If one assembles the tubes by groups of p rows of q elements and p, q are varied, it can be expected, from this 

manner, to obtain all the eigenfrequencies but the amount of computation becomes high for large p and q, so 

that the advantages of the homogenization technique disappears. A solution to overcome this difficulty consists 

in combining homogenization and Bloch wave techniques. This will be the object of the next section. 

4.7. A particular case 

Suppose the bundle is formed by tubes of circular cross-sections. The homogenized equations are 

;=b,V$+&, 

(4.22) 

with adequate boundary conditions on I: 

In certain applications, the tubes are grouped in identical assemblies L$ (of square cross - sections), and 0 is 

the union of such 0,. The tubes of each assembly are linked by means of rigid grids, and consequently their 
motions are identical at any time. Such a situation occurs in the dynamical analysis of cores of pressurized water 

nuclear reactors (PWR): each L& is an assembly of fuel pencils. 

This implies that C$ is harmonic inside each assembly and consequently the first equation of (4.22) can be 
written on the common interface C,, of 0, and Q 

(4.23) 

where ~5~~~ is the Dirac distribution on qe, T! is the displacement of L$, Gf is the outward unit-normal on G!~ 
The dynamics equation of each assembly is, IL&l denoting the area of L&; 
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(4.24) 

The potential $J may be expressed as follows, N being the number of assemblies, 

46, r) = 5 5 X!,(X) 2 (0 , 
8=1,=1 

where xej satisfies 

Z(,:) and Z>T’ are, respectively, the upstream and downstream faces of fit in the x,-direction (6 is the Dirac 

distribution associated with the corresponding face); xe, must also satisfy certain boundary conditions on r 

which are left to the reader’s sagacity [34]. 

Then, using the expansion of 4, we get a relation of the form 

(m,,+pb)$+k, 1 s’<t)= -pH$+,_ 

where s’= col(S;, S;, . . . , s’,) and pH is the (symmetric and positive definite) added mass matrix of all the 

assemblies. 

5. Combination of standard homogenization and Bloch wave method 

5.1. Preliminaries 

Let us consider a regular tube network of step E with E small compared to the size of the entire domain. When 

the small parameter E goes to zero, it is interesting to investigate the behavior of the added mass matrix H = H, 
(which obviously depends on E) and its associated eigenfrequencies w. 

Let p-’ be the eigenvalues of the matrix H,. Their eigenpotentials 4 satisfy the variational equation 

a,(+, V) = ,8 5 j- 
Y( 

&i dr!. j- vii dy, = j?;$ *Nt 
YY 

for any test-function u(x) such that _f, h u dx = 0, is the fluid domain (it depends on E), and 

a,($+ v) = I 
v+.vudx. 

% 

The eigenfrequency o of the fluid-structure system is related to p by 

p= PJ2 
k-mw2’ 

Denoting by fi L ’ the highest eigenvalue of H,, there exist positive constants C and C’ such that as 8-0 (see 

Appendix A) 

cE-2 2 p, 2 C’K2. (5.1) 

It results, since H, is a symmetric matrix, that its Euclidian norm is 

llH,ll= p,’ = O(E’) . (5.2) 

Suppose that m and k are left fixed, hence independent of E. Clearly, since p, -+ 00 as &+ 0, the 
eigenfrequencies tend to w0 which is the resonance frequency of the tubes in vacuum. Thus, as the tubes become 
finer and finer (and closer and closer), the added mass effects vanish because the fluid pressure force on each 
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cylinder is then insignificant. Viewed from the fluid, each tube seems to be infinitely rigid and heavy. This 

contradiction shows that it is necessary to make m and k dependent of E during the homogenization analysis. 

Now suppose that 

m=t?l,E2, k=k,e2. (5.3) 

Doing that, the o’s no longer converge to w0 and remain smaller than this frequency. As the tubes are finer and 
finer, thanks to (5.3), their eigenfrequency in vacuum remain equal to w,. 

The first condition (5.3) is quite evident because the tube mass (per unit length) is of the order of the square 
of the cylinder radius r, hence of E. Generally, k represents the stiffness coefficient associated with the first 
bending eigenmode of the tube, so that k is proportional to EI, where E is the Young modulus and I is the inertia 
moment with respect to a characteristic diameter of the tube cross-section. Because the tube is hollow with a 
thickness e (the tube generally contains a liquid or a gas which does not contribute to stiffness), I behaves 

consequently as 0(r3e). As we impose that the ratio r/E is constant which implies that I = O(~,F~) with e = eg&. 

The Young coefficient is often high (the tubes are made of steel) and so we can take E = EOF2, whence Ihe 
second equality (5.3). These relations are justified by the fact, repeated again, that we are interested by 
computations done with the present value of E. On the other hand, the external forces applied to the cylinders 

are generally proportional to their cross-section area, and we can therefore set 

These things being reminded, the scaled added mass S,, = .C’H, is introduced. This new matrix obviously 

depends on E but it remains bounded from below and from above; it is then expected that the scaled added mass 

converges to a certain linear operator S. The spectral properties of the limit-operator has been studied using 

functional analysis arguments (see [3,4]); the proofs are done in the particular case where the flow potential is 

zero on the external boundary but they can be extended, with minor changes, to more realistic situations. 

.The main novelty of [3] is twofold. First, by using a mixture of two-scale convergence and Bloch waves, this 

paper furnishes a unified method which combines the advantages of the Bloch wave method (as described in 
Section 3) and the classical homogenization method (as described in Section 4). It allows to obtain in a single 

asymptotic analysis a limit spectrum of S,, which is made of the previously known Bloch spectrum 

(characterized in Subsection 3.2) and the homogenized spectrum (characterized in Subsection 4.5). Second, a 
so-called completeness result is proved which states that the complete limit spectrum of S,, is precisely made of 

these Bloch and homogenized spectra, plus a so-called boundary layer spectrum which corresponds to tubes 

which vibrate only in the vicinity of the boundary of Q,,. No other situation may occur: a limit vibration mode 

has to be either a homogenized mode, or a Bloch wave mode, or a boundary layer mode. Finally, the companion 

paper completely characterizes the boundary layer spectrum for a rectangular domain. Each part of the boundary 

is locally approximated as an infinite hyperplane. This allows to use Bloch waves along a plane boundary, as 
described in Subsection 3.4. The resulting boundary layer spectrum may contain new eigenfrequencies 

corresponding to tubes vibrating only close to the boundary (their displacements decay exponentially fast away 

from the boundary). 

The reason for combining Bloch waves and homogenization is the following. Recall that the major interest of 

Bloch waves is that they reduce the original problem to the solutions of a family of similar problems on the 

elementary cell, which is a much smaller domain (leading to save numerical computational time and 
programming). As this method does not take into account the influence of the bundle boundary, the idea is to 

mix the Bloch wave decomposition with standard homogenization techniques in which boundary conditions on 
the external frontier are included. This will allow to split the force field acting on the rods into two distinct 

contributions: one leading to a homogenized uniform behavior of the bundle (where boundary effects are taken 

into account), and the other one yielding a quasi-periodic behavior of the bundle, made of a superposition of 
Bloch waves (which are indifferent to the boundary condition). 

5.2. Homogenization process with &periodic functions 

Because the bundle is large and periodic, it is natural to consider it as an infinite array at the region far from 

the physical boundary r Consequently, by virtue of Section 3, we may intuitively assume that the flow potential 
is a superposition of g-periodic functions (it may be justified, see [3]). 
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Suppose that the external forces ip are zero in the cells near the boundary. These forces can be decomposed 
via the Bloch wave method 

where the functions &( 6 t) are defined by relations of the same type as (3.25). Each f,( 6 t) is in fact of the 
form at?) el@‘, where_ $(I?) does not depend on k 

To each field Cfe( 0, t)) corresponds a set of displacements z!( 4 t) and a flow potential 4(x, 6 t) which is 
&criodic, whence the idea of computing these quantities by means of homogenization using quasi - periodic 
functions. 

After replacing the field .G’e( 8: t) by a smooth function L&X, 8: I), the following asymptotic expansions are 
introduced 

1 

4 = &(x, y, e: t> + qf+(X, y, e: t> + E2&(X, y, 6 t> + ** 

s’= s’,(x, e: t) + &s; (x, e: t) f E2s;(X, 6 t) + * * . 
(5.4) 

+ 
with y =X/E and each 4k is B-periodic in y, i.e. 

&(x, y + 5, 6, t) = ei81#& y, e, t) 

for any x, y, t, and j = 1,2. 
Plugging (5.4) into the set of equations (2.1), and identifying the different powers of E, we obtain 

[ 

A,&=0 in Y*, 

$=O ony, (5.5) 
* 

i 

Q#J, = -2A&, in Y* , 

Q, a& + WrJ 
an=at*n-an, any, 

(5.6) 

Y 

1 

A,& = -244, - 44, in Y* , 

a& as; at& aTo 
~=at*ri-an-V~dt(“, 8:t)q*n’ on y, (5.7) 

Y x 

where Y* is the part of the unit cell Y occupied by the fluid and y is the frontier of the cylinder. 
The case I$= 0 has already been studied in Subsections 4.2 and 4.3. Hence, we consider the case e’# 0 in 

some detail in what follows. Eqs. (5.5), together with the r$-periodicity condition, show that +,, is constant with 
respect to the microscopic variable y, but a constant function cannot be &periodic when e’# 0. Consequently, 
&, must be equal to zero. 

Eqs. (5.6), with &, = 0, leads then to 

where xi(y) is the unique solution of 

A,xj(y, 6 = 0 in Y* , 

$(p, ~)=ni(Y> on Y, 

xi is &periodic . 

It is easily seen that & is therefore of the following form 

(5.8) 

(5.9) 

(5.10) 
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where i = col( x,) and X is a differential operator defined as follows: 

in which Gj = col(~,$) with +$ solution of 

in Y*, 

on y , 

hj is &periodic . 

As customary, one sets 

i?l=??l,E2, k = k,c2, j,( s: t) = E2&(X, e: t) 

and the dynamics equation gives after the standard identification process 

The relations (5.11) and (5.8) yield the homogenized equation 

C (rno + pB( i)) $ + k, 1 s’,(x, e: t) = &(x, e: t) 

(5.11) 

(5.12) 

(5.13) 

where B(g) is the matrix of order two whose coefficients are 

f y X,(Y? $lni(Y) dY 9 

so that B(8) is self-adjoint and positive definite. Actually, @(I?) is the added mass of the cylinder in its own 

cell. Note that this matrix is the same as B( e’) defined in Subsection 3.1. 

Note tha{ the interaction of the different tubes does not explicitly appears in Eq. (5.13), but we must have in -. 
mind that f, and s’, are dependent of 8; the coupling occurs when one integrates s’, with respect to 8. Eqs. (5.10) 

and (5.12) give 

(m,+pB(&$+k, 1 s;(x, e:t)= -p f( + a2Zo 
~C(Y, @a,2 Gdy, 

Y > 
(5.14) 

which is similar to (5.13). One sees that the coupling of the cells is explicitly present in (5.14) via the term XT0 

since X is a differential operator with respect to the macroscopic variable. 

5.3. The eigenfrequencies w 

Setting f;, = 0 and replacing d/at by io leads to the eigenfrequency problem in w. We yet know that there 

exist only two eigenfrequencies wL and o2 of infinite multiplicity when e’= 0 (see Eqs. (4.15) and (4.17)). The 
situation is quite different when 8 is different from zero. In this case, (5.14) yields 

k,(m, + pB( f?))-‘~o(x, et) = w”~‘(x, ;) (5.15) 

and it is clear that w is a Bloch wave eigenfrequency defined in Section 3 and there are two eigenfrequencies for 
each value of e’ # 0. Since the spectrum of the matrix B(g) depends continuously on & except at B’= 0, we have 
a continuous spectrum of Bloch wave eigenfrequencies. 

Thus, the frequency spectrum of the operator S defined in Subsection 5.1 contains two eigenfrequencies w, 
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and w2 associated with e’= 0 and resulting of the standard homogenization process, and a continuous Bloch 

wave spectrum corresponding to e’# 0. A rigorous proof of this result is given in [3]. 
As a consequence, and from the self;adjointness of the homogenized added mass operator, the response $x, t) 

corresponding to the external forces fr can be written, by analogy with Remark 3.1, as 

s’<x, t) = s‘,(x, 0, t) + 
I 

$,(x, e: t) de , (5.16) 

in which s’,(x, 0, t) is obtained from the classical homogenized equations while S’,(X, e, t) is the solution of the 

second-order differential equation (5.13). It is understood that the integral in (5.16) is taken on the square 
[0,21r]‘. The flow potential is given by 

in which +,,(x, 0, t) results from the classical homogenized equations. 

REMARK 5.1. Let us denote by &(g) an eigenvector (of dimension two) of the matrix k,‘(m, + p&g)) with 

the normalization I{,( $)I = 1. As the matrix B(i) does not depend on x, the same is true for &. This implies that _ 
s’,(x, 0) satisfying (5.15) may be written as 

in which p is an arbitrary function of x. Consequently, the eigenfrequencies have an infinite multiplicity. 

5.4. Boundary layer frequency spectrum 

It is proved in [4] that the fluid-tube bundle system has also a spectrum whose cylinder eigen-displacements 

are concentrated near the frontier r and it is called boundary layer spectrum. It may be excited by external 

forces acting on the tubes and concentrated near IY When r is piecewise parallel to the reference axes, this 

spectrum, denoted by a,, is explicitly characterized in [4] by means of the Bloch wave method along r 
described in the subsection 3.4 (replace d/dt by iw and set f= 0); we refer to [4] for more details. 

As already mentioned in Subsection 3.4, the boundary layer spectrum a, is made of two parts: a so-called 
essential spectrum (keys’, and a so-called discrete spectrum aysc made of finite multiplicity eigenvalues (which is 
at most countable, but may well be finite or empty). The essential spectrum is a classical mathematical notion 

defined e.g. in [42,15]. Loosely speaking, an element of the essential spectrum is either an eigenvalue of infinite 

multiplicity, or it is an ‘almost’ eigenvalue in the following sense: there exists an infinite sequence of ‘almost’ 

eigenvectors which satisfy the spectral equation up to a remainder term that goes to zero. In any case, each 

element of the essential spectrum is characterized by a so-called Weyl sequence of infinitely many approximated 

eigenvectors (see Theorem 3.27 in chapter 1 of [15], or Proposition 3.2 in chapter 4 of [42]). It is proved in 

Proposition 2.3.1 of [4] that such approximated eigenvectors correspond to vibrations of the bundle far away 

from the boundary, and therefore the essential spectrum a;’ is contained in the previously known Bloch 

spectrum (described in Subsection 3.2). On the other hand, Proposition 2.3.5 in [4] shows that an eigenvector 
corresponding to an eigenvalue of finite multiplicity in Us decays to 0 exponentially fast away from r. 
Therefore, the only new contributions to the limit spectrum due to the boundary layer spectrum a, stem from 

eigenvectors concentrated on a few cells near the boundary r 
It is believed that generically ur disc is not empty, but we shall prove below that in the special case of a 

symmetric cell (~dyi” is indeed empty. Therefore, although interesting from a theoretical point of view, the study 
of the boundary layer spectrum o-~ is unnecessary in practice since for a symmetric cell a;. = uFss which is 
already characterized by the usual method of Bloch waves. This result does not mean that there does not exist 
eigenvectors concentrated near the boundary, but simply that their corresponding eigenfrequency belongs to the 
Bloch spectrum (remark that such an eigenvector is necessarily of infinite multiplicity since uysc is empty). In 
other words, taking into account the boundary r does not create new eigenfrequencies, although it may have an 
effect on the spatial distribution of the eigenvectors. Let us remark in passing that the numerical computations in 
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[26] strongly suggest that there are eigen-displacements concentrated on a band of a few cells thickness parallel 

to the boundary. 

We now prove that ur disc is empty if the unit cell containing the rod is symmetric with respect to its principal 

axes (cubic symmetry). Assume the converse is true, i.e. there exists an eigenvalue of finite multiplicity w and a 

corresponding non-zero eigen-displacement (J$>,~, for each tube ym aligned in a semi-infinite band G 
orthogonal to the boundary r (see Fig. 4). To fix ideas, we assume that r is the axis x2 = 0. 

From Section 3.4 we already know that, by using Bloch waves in the single direction x1, it is enough to 

consider a &periodic potential 4 which is the solution of an equation similar to (3.20) 

A&x) = 0 

84 . + 
nn = ‘wsm . lT 

in the fluid domain x2 2 0, 

on each y,, m 2 1, 

(k - mo2).(n, = -iwp &)n‘ dy, > 

a4 -= 
an 

0 when x_? = 0, 

x1 +e-‘“*I&x,,x2) periodic of period 1, 

(5.18) 

where the last condition is a consequence of the decay at infinity of the eigenmotions (i,,,),s,. Although the 

potential 4 is only defined for x2 >O, we extend it to the whole space by defining 

&x,,x~)=&x,,-xz) ifx,GO. 

It is readily checked that, by definition, $ is continuous through K and that, 

boundary condition on c its gradient is also continuous through r 

We now define an image domain by symmetry with respect to the r axis. Let 

tubes (Urna, by this symmetry. Similarly, let (<_-m)mP, be their corresponding 

z--, . d, = im . e’, and ?_,,, . ~7’~ = -S:, * t?2 for m 2 1 . 

It is not difficult to check that the extended potential is a solution of 

since it satisfies a Neumann 

(Y-Jrn&, be the image of the 

displacements defined by 

in the fluid domain --CO < x2 < +m, 

on each ym, m 2 1 and m c - 1 

46); dr, > 

periodic of period 1, 

(5.19) 

But note now that 4 is a solution of the spectral equation in an infinite band --CC <x2 < +w we can apply the 

Bloch wave decomposition in the x2 direction as is done in Section 3. This yields that o must be an 
eigenfrequency for at least one Bloch wave mode. Then, using the technique of Proposition 2.3.1 of (41, tt is not 

difficult to construct from that Bloch wave eigenmode a Weyl sequence of approximated eigenvectors for o in 

the semi-infinite band G. Consequently, this proves that o belongs to the essential spectrum 0-y‘. However, by 
definition the intersection of gdyisc and a:’ is empty. Therefore, (T;!” is itself empty. 

Fig. 4. Semi-infinite band G. 
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Fig. 5. Frequency response by Rimy and Campistron [41]. 

REMARK 5.2. The same argument of image domain obtained by symmetry with respect to the boundary r can 
be applied in the case of a Dirichlet boundary condition for the potential 4. Recall that r#~ = 0 on r can be 

interpreted as a boundary condition on the fluid pressure. 

5.5. Some additional comments 

The display phenomenon of the eigenfrequencies of the tube bundles due to the presence of a fluid is 

confirmed by the experiments carried out, several years ago at the Electricite De France Research Center, by 

Rtmy and Campistron [41]. These authors have studied the behavior of a group of 49 cylinders (7 X 7) 

elastically supported by means of piano strings (with a resonance frequency in vacuum equal to 40 Hz) and 

placed in a water crossflow. The bundle was excited by the turbulent forces generated by a high pressure drop 

between upstream and downstream. It is observed that Fig. 5 (taken out from [41]) presents several peaks at 27, 
30 and 34 Hz, while the foot of the tube-response ‘hill’ is relatively wide, corresponding probably to the 

continuous Bloch wave spectrum. 
On the other hand, when the ‘exciting’ force $ is sp$ally constant through the domain Q,,, f has no 

contribution both on the Bloch wave vectors 5( 8) for 8 # 0, corresponding to the interior of L?,,,, and the 

boundary layer. Consequently, classical homogenization can be used, as it is verified by the experiments done at 

the Atomic Energy Commission (CEA) Center of Saclay, France, see [23]. 

Before concluding, let us mention a homogenized model proposed by Shimogo and Shinohara 1441, and 
recently considered again by Jacquelin et al. [27,28]. Their method leads to enclose into the homogenized added 
mass a new partial differential self-adjoint operator of second order. The presence of this differential operator 
has for effect to display the spectrum (which is an advantage), but it also introduces spurious eigenfrequencies; a 
part of these ones are filtered by the discretization process and consequently they do not seem to have a great 

influence on numerical results by comparison with experiments. 

6. Conclusion 

Several methods describing the global mechanical behavior of large tube banks immersed in a fluid have been 
presented, allowing to carry out computations with a low cost. In particular, in the case of symmetric rigid rods 
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elastically mounted, it is shown that the limit resonance spectrum is formed of two eigenfrequencies with infinite 
multiplicity, and a continuous spectrum corresponding to the Bloch waves for an infinite spatially periodic 
structure. The Bloch wave method gives the lower and upper bounds of the eigenfrequencies in an easy manner, 
requiring only to solve elliptic partial differential equations on the elementary cell of the bundle. 
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Appendix A. Proof of the inequalities (5.1) 

The lowest eigenvalue p, of the coupled fluid-tube system is given by 

P, =m;ln q(u), 64.1) 

with 

Let ,x, and u,(x) be the first positive eigenvalue and the associated eigenfunction of the Laplacian on 
homogenized domain q,,, with Neumann boundary condition on f. Clearly, the following bound holds 

the 

64.2) 

From a homogenization result by Vanninathan [45], 

64.3) 

where d is a positive number (actually d = a/]Y*l). On the other hand, for a smooth function u,, a Taylor 
expansion around the center xp of each boundary yf yields 

where rF is the radius of yc, and 

(A.4) 

If 5 = r,g then (A.2), (A.3) and (A.4) imply 
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P, c----- 2 l4 2 + O(& . 
Tr YO& 

(A.3 

It remains to prove a reverse inequality. Let 4, be the eigenfunction associated with /3,. By application of a 

result of Tartar [30], there exists an extension operator P, such that PC+, is defined on the homogenized domain 

Go,,,, PzP, = 4, on Q and 

i, IVP,& I2 h s C0 If> IW, I2 h 3 
IloIn E 

where C, is a positive constant which does not depend on 4,. This yields 

L4.6) 

and using an equality analogous to (A.4) for VP,4,, we obtain 

p, 2 c;&-2, 

where CA is another positive constant. Combining (AS) and (A.7) leads to the desired inequalities. 

(A.7) 
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