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BLOCH WAVE HOMOGENIZATION
AND SPECTRAL ASYMPTOTIC ANALYSIS

By Grégoire ALLAIRE and Carlos CONCA

ABSTRACT. ~ We consider a second-order elliptic equation in a bounded periodic heterogeneous medium and
study the asymptotic behavior of its spectrum, as the structure period goes to zero. We use a new method of
Bloch wave homogenization which, unlike the classical homogenization method, characterizes a renormalized limit
of the spectrum, namely sequences of eigenvalues of the order of the square of the medium period. We prove
that such a renormalized limit spectrum is made of two parts: the so-called Bloch spectrum, which is explicitly
defined as the spectrum of a family of limit problems, and the so-called boundary layer spectrum, which is made
of limit eigenvalues corresponding to sequences of eigenvectors concentrating on the boundary of the domain. This
analysis relies also on a notion of Bloch measures which can be seen as ad hoc Wigner measures in the context of
semi-classical analysis. Finally, for rectangular domains made of entire periodicity cells, a variant of the Bloch wave
homogenization method gives an explicit characterization of the boundary layer spectrum too. © Elsevier, Paris
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RESUME. — On considére une équation elliptique du deuxi¢me ordre dans un milieu périodique hétérogene borné,
et on étudie le comportement asymptotique de son spectre lorsque la période tend vers zéro. On utilise une nouvelle
méthode d’homogénéisation par ondes de Bloch qui, contrairement aux méthodes classiques d’homogénéisation,
caractérise la limite renormalisée du spectre, et plus précisément les suites de valeurs propres de I’ordre du carré de
la période. On démontre que le spectre limite renormalisé est constitué de deux parties : un spectre de Bloch, qui est
explicitement caractérisé comme le spectre d’une famille de probleémes limites, et un spectre de couche limite, qui
est I’ensemble des limites de suites de valeurs propres dont les vecteurs propres correspondants se concentrent sur le
bord du domaine. L’analyse présentée repose sur une notion de mesures de Bloch qui peuvent étre vues comme des
versions ad hoc des mesures de Wigner utilisées en analyse semi-classique. Enfin, pour des domaines rectangulaires
constitués uniquement de cellules de périodicité entires, une variante de la méthode d’homogénéisation par ondes
de Bloch permet de donner aussi une caractérisation explicite du spectre de couche limite. © Elsevier, Paris
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1. Introduction

Given a smooth bounded domain €2 in RY occupied by a periodic heterogeneous medium,
of period ¢ € R*, we consider the following spectral problem for the wave equation in £).
Find all couples (Ac,v.) € RT x H}(Q),v. # 0, such that

(1) {—div {A (a:, f)V?){' = i—ne in €,

v, =0 on J€) .

The coefficients of equation (1) are given by a coercive, symmetric matrix A(z,y) which
is smooth as a function of z and Y-periodic as a function of y (Y denotes the unit cube
[0,1]"). More precisely, we assume that

(2) Alz.y) € C( L (V)V),

In particular, assumption (2) implies that A z, f) is a measurable function in L>°(£2)V >V

and the spectral problem (1) is well-posed. Let o be the spectrum of (1), i.e. the set of
eigenvalues A, solutions of (1). As is well-known, for fixed ¢, and since 2 is bounded,
the spectrum o, is discrete, made of a countable sequence of eigenvalues converging to
0 (plus the accumulation point 0)

(3) ge={0U | J{AF} with A2 AZ>. >0 >0

k>1
To each eigenvalue AF is associated a normalized eigenfunction v¥ € L2?({2) such that
lvE||lz2¢y = 1 and the family {v¥},>; is an orthonormal basis of L*(£2).

The purpose of our work is to study the asymptotic behavior of the spectrum o. when
the period ¢ goes to 0. The second-order elliptic partial differential equation (1) is just a
model problem. Our original motivation comes from more complicated models, describing
the vibrations of fluid-solid structures, which were introduced by Planchard [39], [40] and
extensively studied in [1], [16], [17], [18]. Actually, all our new results presented here
were first applied to this problem of fluid-solid structures in [6], [7]. Our goal here is
to expose in a single self-contained paper our complete theory in a systematic way on
a simpler problem. Other motivations for studying the asymptotic behavior of o, are the
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numerical computation of solutions of the wave equation in periodic media (cf. [33], {45],
[46]), and the control of the wave equation in such media (¢f. [15]). Let us emphasize
that our method for studying the limit behavior of o, works equally well for a vector or a
scalar equation, and is indifferent to the type of boundary conditions.

In the next section we shall recall classical results of homogenization which describe
completely the “usual” limit of o, by finding the limit of each eigenvalue \* when ¢ goes to
0 with fixed index k. Such a limit is usually called a low frequency limit. Indeed, recall that
the vibration eigenfrequencies for the wave equation are related to the eigenvalues of (1) by

Physically, it means that the low frequency limit gives the homogenized behavior of
eigenmodes which vary on a scale much larger than the period €. This situation is by now
fairly well understood. However, a physically relevant case is the so-called high frequency
limit, i.e. the asymptotic behavior of eigenvalues AF which converge to 0 when ¢ goes
to 0 and & to +4oo.

In section 3 we state our main new results concerning this high frequency limit of o,. We
characterize renormalized limits of the type lim....q a_ 20, where a. is an eigenfrequency
scaling which goes to 0 with e. For all scalings a. such that either a. << € or a, >> ¢,
we show that the limit of a-2c, is simply the entire half-line R*. When a, = ¢, we prove
a deeper result, namely that the limit of e~20, is made of two parts: the so-called Bloch
spectrum, which is explicitly defined as the spectrum of a family of limit problems, and
the so-called boundary layer spectrum, which is made of limit eigenvalues corresponding
to sequences of eigenvectors concentrating on the boundary of the domain. We refer to
section 3 for a more detailed discussion of our results.

In section 4 we apply our new method of Bloch wave homogenization to equation (1)
in order to prove that the Bloch spectrum is indeed part of the limit of ¢~2¢.. The Bloch
wave homogenization method is a combination of two-scale convergence (see [2], [36])
and of Bloch wave decomposition (also known as Floquet decomposition, see [12], [22]).

In section 5 we prove a completeness result which states that the difference between the
limit of €20, and the Bloch spectrum is exactly equal to the boundary layer spectrum. Our
main tool is the notion of Bloch measures which is a new type of default measure, very
similar to the Wigner measure (see [24], [31], [32]) although specific to the present situation.

In section 6 we prove that all other renormalized limits of af‘?m with either a. << € or
a. >> € are equal to R*. In such a case, there is no interaction of the singular perturbation
at scale a. and the homogenization at scale €, and this result is obtained by using the
notion of three-scale convergence.

Finally section 7 is devoted to a complete study of the boundary layer spectrum when
the domain {2 and the sequence ¢ are chosen in such a way that {2 is always the union
of a finite number of entire periodicity cells. In this case, the boundary layer spectrum
is explicitly characterized as the spectrum of a new family of limit problems associated
to the boundary of €.
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2. Classical homogenization

The question of finding the limit of the spectrum o. has already attracted a lot of
attention. Indeed, using the classical homogenization technique (as described, e.g. in [9],
[10], [27], [35], [44]), the low-frequency or homogenized limit of ¢, has been found in
(131, [29], [38], [48]. We briefly describe the procedure to obtain this homogenized limit.

As is well known, for fixed €, to find the spectrum, i.e. the set of all solutions
(Ae,ve) € RT x HY(Q),v. Z 0, of

— div[A(z, f)V’UG] = %vﬁ in {2,
ve =0 on 992,

is equivalent to the spectral study of the following linear operator

(4) { S.: L¥H(Q) — L)

f — U,

where u, is the unique solution in H}(f) of

(5) —div[A(z,2)Vu,] = f in Q,
u, =0 on O0f2.

It is easily seen that S, is a self-adjoint compact operator in £(L?((2)). Its spectrum is
discrete made of a countable sequence of eigenvalues converging to 0 (plus the limit point 0)

o(S) = {0}u [ J{N\} with A 2X2>- 2 x> 0

k>1

To each A* is associated a normalized eigenfunction v* € L2(£2) such that [|v¥||2q) = 1
and the family {v*} is an orthonormal basis of L*({2).

To describe the limit or homogenized operator, we introduce the homogenized equation
for (5). Let us define first a homogenized matrix A*(z), for almost any z € §2, by

© A= min [ ATV VCeRY

.

REMARK 2.1. — Since A(z,y) is symmetric by definition, formula (6) makes sense and
defines a unique symmetric matrix A*(x). Furthermore, A*(x) enjoys the same coercivity
and boundedness properties than A(z,y).

Then, a limit operator S is defined by

{ S: LX) — L*Q)

f — U,
where w is the unique solution in H}(Q) of the homogenized equation for (5)

{—div[A*(m)Vu] =f in Q,
u=0 on 0f).
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Clearly S is a self-adjoint compact operator in £(L2(£2)). Its spectrum o(S) is exactly

o(S)={0}u U{/\k} with A'>A2>-.. > >... 0.

E>1
The main result of {131, [29], [38], [48] is the following:

THEOREM 2.2. — The sequence of operators S. converges uniformly to S in the space
L(L?(2)). As a consequence, for a fixed k > 1,

lim AF = A%
e—0

and there exists a normalized eigenfunction v* € L*(Q) of S, with |[v*||f2@) = 1,
associated to each \* such that, up to a subsequence,

k

v® — v* strongly in L*(5)).

REMARK 2.3. — In Theorem 2.2 the convergence of the eigenvectors holds up to a
subsequence, even if they are carefully normalized. The reason is that S may have
eigenvalues of multiplicity larger than one, implying that a sequence v¥ may have several
accumulation points which are all eigenvectors of S associated to the same eigenvalue.

REMARK 2.4. — Theorem 2.2 shows that lim._,q 6(S.) = o(S), but it does not say anything
on sequences \* where both € goes to 0 and k goes to +co (such sequences go to 0). This
latter situation is called a high frequency limit, while Theorem 2.2 gives a low frequency
limit. The goal of the remaining sections of this paper is to describe this high frequency limit.

Although classical, the proof of Theorem 2.2 contains many useful ideas for the sequel,
so we recall it briefly. The uniform convergence of S is a straightforward consequence
of the following classical result of the homogenization theory, the proof of which may
be found in {10}, [27], [35].

PROPOSITION 2.5. — Let f. be a sequence in L?(Q) which converges weakly to a limit f.
Let u, be the unique solution in H} () of

(7) { —divA(a:, f)Vue =f in Q
U =0 on 99,

The sequence u. converges weakly in H} (), and thus strongly in L*(2) by Rellich theorem,
t0 a limit u which is the unique solution in Hi () of the homogenized equation

(8) —divA*(z)Vu=f in Q
u=0 on 091,
where A*(x) is the homogenized matrix defined by (6).

Proof of Theorem 2.2. — To prove the uniform convergence of S to S amounts to
check that

IS =Sll=sup |ISef = Sfllzeqoy

I 1,2(n)=1
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goes to zero with e. For fixed ¢, let f. be an e-minimizer, ie. a function such that
Ifellz2@) = 1 and

sup  ||Sef = Sfllee) S NSefe = Sfellzo) + e

||f”[‘~’(n):1

Since the sequence f. is bounded in L?(€2), there exists a subsequence, still denoted by ¢,
and a limit f such that the subsequence f. converges weakly to f in L2(Q). By virtue of
Proposition 2.5 the sequence S, f. converges strongly to S f in L?({2). Moreover, since S
is a compact operator, S f. converges also strongly to Sf in L?(52). Thus, we have:

sup  ||Sef = Sfllrzy < NISefe = Sl + ISfe = SFlle) + e

”f“[,‘z(n):l

which goes to zero with €. This is true for any converging subsequence of f.. Therefore,
this result holds for the entire sequence «.

By the min-max principle, the k™ eigenvalue A* of S, is defined by

AR = . ) (S.f, f)L‘*’(Q’)
e = min ) max Wz e
(Froefr)EL @) fFL{frnfim) (111220

where 1 denotes orthogonality with respect to the usual scalar product in L?((2). For
any f € L*(Q), we have

<sz7 f)Lz(Q)
”f||2L2(9)

< (S flrxo < (S fs e

-5, = S S. — Sii,
e T/ R T el el

which implies that
A= A <118 = S,

thanks to the min-max principle. Thus, the uniform convergence of S, yields the
convergence of each individual eigenvalue, labeled by decreasing order. Now, let vf
be a sequence of normalized eigenvectors corresponding to the eigenvalue A

;S(’Uic = /\f?lf and “’Uf“Lz(Q) = 1.

There exists a subsequence, still denoted by ¢, and a limit v* such that the subsequence v*
converges weakly to v* in L?(Q). By virtue of Proposition 2.5 the sequence S.v* converges
strongly to Sv* in L2(€2). Since A\* converges to A¥, it implies that v* converges strongly
to v* in L?(2) and that v* is also a normalized eigenvector corresponding to the eigenvalue
A¥_ If the normalizing condition implies the uniqueness of the eigenvector v* (up to a
change of sign), then the entire sequence of eigenvectors v* converges to v*. But, in case

of a multiple eigenvalue A\¥, the convergence of v* to v* holds merely for a subsequence.
In the course of the proof of Theorem 2.2, we have proved the following Lemma.
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LEMMA 2.6. — Let S, be a sequence of compact self-adjoint operators acting in L*(€})
and denote their spectrum by o(S.). Assume that the sequence S. converges uniformly to
a compact limit operator S with spectrum o(S). Then,

(9) EEJ(SG) =o(S5).

ReMARK 2.7. — The spectral convergence (20) has to be understood in the sense of
Kuratowsky (or I'-) convergence for subsets of R (see e.g. [20]). Namely, o(S) is the set of
all accumulation points A of sequences \. € a(S.) when ¢ goes to zero.

An interesting question is how can one relax the assumption of uniform convergence of
S, to S and still obtain a result similar to (9) ? In particular, if the sequence S, converges
merely pointwise to S, in the strong or weak topology of L?((2), what is the limit of the
spectrum o(S.) ? Remark first that, in such a case, the limit operator S needs not to be
compact. In the case of strong convergence, it turns out that the spectrum of the limit
operator is included in the limit spectrum but the inclusion may be strict. In other words,
for a strong convergence of operators the spectrum is merely lower semi-continuous. No
such result is available for a weak convergence of operators, which is therefore a useless
notion concerning spectral convergence.

Lemma 2.8. — Let S, be a sequence of compact self-adjoint operators acting in L*(Q2)
with spectrum o(S.). Assume that the sequence S. converges strongly to a self-adjoint limit
operator S (not necessarily compact) with spectrum o(S) (i.e. for each f € L*(Q), S.f
converges strongly to Sf in L*(2)). Then,

lirr(l) a(S.) D o(S).
Furthermore, denoting by (A, f.) a sequence of eigenvalues and eigenvectors of S, such that

SFfE = Aefm er“Lz(Q) = 15 }1_1}%' )‘6 = )‘7

if X does not belong to o(S), then the sequence f. converges weakly to 0 in L*(Q).

Proof. — Let A € o(S), and assume that A is not the limit of any sequence of eigenvalues
of S.. This means that there exists a positive constant § > 0, such that, for sufficiently
small ¢, and for any eigenvalue A. € o(S.), one has

[Ae = Al > 6.
Obviously, this implies that, for any function f € L*(Q),
(10) NS f = Afllezy 2> 0l fllrz)-
Since the convergence of S, to S is strong, one can pass to the limit in (10) and obtain
NSF = Afllzz) = 8l fllz2 ey,

for any function f, which is a contradiction with the fact that A belongs to the spectrum
of S. Thus, A is attained as a limit of a sequence A, € o(S,).
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To complete the proof, it remains to show that, if a sequence of eigenvalues A, converges
to a limit A outside o(S5), then any associated sequence of eigenvectors f. converges to
zero weakly in L2(2). The spectral equation is

(11) Seff = /\fff'

Multiplying (11) by a test function ¢ € L?(2), and using the symmetry of S, yields
(fea S((/)> = /\e<f6~, ¢)

Thanks to the strong convergence of S, we can pass to the limit (up to a subsequence),
and denoting by f the weak limit of a subsequence f. we obtain

Sf=Af.

Since A does not belong to o(S), it necessarily implies that the limit f is equal to zero.
This is true for any converging subsequence, thus it holds for the entire sequence.

3. Main results

The previous section has investigated the low frequency limit of the spectrum o, defined
by (3). Theorem 2.2 has given a complete characterization of }1_{1(1] o.. However, it says
nothing on the high frequency limit which is concerned with sequences of eigenvalues A,
which go to 0. We now focus on this latter case and try to characterize the renormalized
limits lim._ga”?c. where a. is a sequence of scales which goes to 0 with €. In other
words we are looking to eigenfrequencies we = Ac /2 which are of the order of a’l.

Let us first consider eigenvalues A, of the order of €2, which corresponds to a critical
case. To study the renormalized limit lim,_,¢ e %0, we introduce a family of limit operators
S, indexed by the macroscopic variable = € (1 and by the Bloch frequency variable
6 € [0,1]". Each operator S, g is defined by:

(12) {SM PLA(Y) — L4(Y)

Qb — Uy,

where wug is the unique solution in H#(Y) of

3)  div, [A(2,)9, (u0(n)e?"™*)] = 9{y)e?* in Y.
uo(y)Y -periodic.

Throughout this paper, the subscript # indicates a space of periodic functions. In the case
f = 0, equation (13) makes sense if S, o is restricted to the subspace of zero-average
functions in L;“;(Y). Each S, 4 is a self-adjoint compact operator in L(L3(Y)) with
spectrum

o(8:0) = {0} U | (A (2.0)}

E>1

with A'(z,0) > A%(z,0) > - > A¥(z,0) > -+ — 0.
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Using the min-max principle and the continuity with respect to x of the matrix A(z,y),
it is easy to prove (see Proposition 4.12) that each eigenvalue A\*(z,6) is a continuous
function of (z,0) € Q x Y. This allows to define the so-called Bloch spectrum ogjoc
as the union of all spectra o(S, )

OBloch = {0} U U min A (z,6), max M(x,0)].
i (z,0)eQxY (z,0)€QxY

Remark that the Bloch spectrum has a band structure. It could turn out that these bands
(i.e., each interval [min, ¢y A*(z, ), max(, ¢y A*(z,6)]) do overlap. This is the case, for
example, when the matrix A(z,y) does not depend on y. However, it is known for some
explicit examples that the gaps between bands are not empty (see [21]). A similar situation
arises in the context of Schrédinger equation (see e.g. [41]). The problem of finding
conditions on the matrix A(xz,y) for the bands to overlap or not is very difficult and
not addressed here.

We need also to define a so-called boundary layer spectrum opoundary- L€t Us consider
a sequence of eigenvalues and eigenvectors (A, ve) solution of the spectral equation (1).
Assume that for a subsequence, still denoted by ¢, there exists a limit A such that:

(14) fime™® A=A [lvellzq) = 1.

Then, the limit eigenvalue A is said to belong to the boundary layer spectrum if, for any
positive integer n > 1, there exists a positive constant C'(n) > 0 such that

(15) [lved(z, 0Q)" || 2y + ell(Vve)d(x, 0Q)" || 20y < C(n)e,

where d(z,0§2) is the distance function to the boundary. In other words, the boundary
layer spectrum is defined by

(16) Oboundary = {)\ € R* | 3(\.,v.) solutions of (1) satisfying (14), (15)}.

Physically speaking, the boundary layer spectrum corresponds to sequences of eigenvectors
concentrating near the boundary. Remark that, compared to the Bloch spectrum, the
definition of the boundary layer spectrum is not explicit. It may even depend on the choice
of the sequence ¢ (on the contrary of the definition of opjoch)-

Our main result (announced in [4], [5]) is:

THEOREM 3.1. — The renormalized limit spectrum is exactly equal to the Bloch and the
boundary layer spectra

(17) 11_r{1 6*20-6 = Oboundary U 0Bloch-

The statement of Theorem (3.1) is somehow weak since it concerns only eigenvalues.
However, its proof, which covers sections 4 and 5, gives much more informations.
In particular, we exhibit a family of limit operators to which different extensions of the
original operator S, converge strongly in some suitable topology. Then, by Rellich theorem
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we deduce also a strong convergence of the spectral families which can be interpreted as
an “averaged” convergence for the eigenvectors (see the original paper [42] or modern
textbooks as [28], or [43]). A key feature of Theorem 3.1 is that its proof does not use
any labeling of the eigenvalues which is consistent with the obtained densification of
the spectrum in the limit as € goes to 0. In a different context (Schrodinger equation in
the whole space RY) related results have been obtained in [25] by a completly different
method. In Theorem 3.1, the scaling €2 of the eigenvalues A, can be interpreted as a critical
size. Indeed, for any other scaling, we find a simpler result since there is no interaction
between the period size ¢ and the frequency size a..

THEOREM 3.2. — Let a. be a sequence in RT which goes to 0 with € and such that, either

lime ta, =0,

e—0

or

lim e ta, = 00,

e—0

then, we have:
lirr(l)(ae)*QaE =R,
€—>

REMARK 3.3. — The spectral convergence in Theorems 3.1 and 3.2 has to be understood
in the sense of Kuratowsky (or I'-) convergence for subsets of R (see e.g. [20]). Namely,
the limit is the set of all accumulation points A of renormalized sequences a7 %)\, as ¢
goes to zero, with A, € o..

The proof of Theorem 3.2 is given in section 6. Theorem 3.2 is consistent with Weyl’s
asymptotic distribution of eigenvalues for the Laplacian. Indeed, if there were no periodic
heterogeneities (i.e. if the matrix A(x,y) is constant), then Weyl’s result would imply that
the renormalized limit of the spectrum is always the entire positive half line.

Theorem 3.1 leaves open the question of how characterizing explicitly the boundary
layer spectrum. Indeed, our definition of opoundary iS NOt very enlightening, because it does
not characterize this part of the limit of e 20, as the spectrum of an operator associated
with the boundary 02 of €). In particular, it does not say whether ohoyndary 1S €mpty or
included in opecy,- There is a subtle point here: the definition of opoundary depends on
the choice of the sequence €. A striking result has recently been obtained by Castro and
Zuazua [14] when the sequence ¢ takes all real values close to 0.

THEOREM 3.4, — Let ¢ be the sequence of all real numbers in the interval (0, ¢y) with
€g > 0. Then,

lime %0, = R,
e—0
which means that the boundary layer spectrum opoundary must necessarily fill the gaps of
the Bloch spectrum opjoch.
In Theorem 3.4 it is crucial that the sequence ¢ takes all possible values near 0 (see ifs
proof in [14]). On the contrary, for a special choice of polygonal domains 2 and discrete
(countable) sequences €, we obtain in section 7 a complete characterization of Fhoundary
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which may not fill any longer the gaps of opi.cn. However, the general case is still open.
Let us assume from now on that {2 is a rectangle with integer dimensions

N
(18) Q=1T10;L:] and L;eN*

=1

and that the sequence ¢ is exactly
1 *
(19) €n = —, n €N,
n

These assumptions imply that, for any ¢,, the domain 2 is the union of a finite number
of entire cells of size ¢,. Let ¥ be the face of  in the plane z = 0. A generic point
x in RY is denoted by x = (2',zx) with 2’ € R¥~! and 2y € R. To define the part of
the boundary layer spectrum associated to X, we introduce a new periodicity cell which
is the semi-infinite band

G =Y'x]0; +o0],

where Y =]0,1[V~! is the unit cell in R¥~'. In LZ(G), we define a new family of
“poundary layer” limit operators S,/ ¢ indexed by the macroscopic variable ' € ¥ and
by the reduced Bloch frequency variable ¢ € [0,1]¥ . Here, L%(G) denotes the space
of squared integrable functions in G which are merely Y’-periodic with respect to ¢ (and
not yn). Each operator S, ¢ is defined by:

{SI/'GI : Li(G) —_— Li(G)

d) — Up,

where 1y is the unique solution of:

—div, [A((21,0), )7, (o)) = gl in @,
(20) uo(y',0) =0

liInyN—%i—oo Uo(yl, yN) =0

Yy — ug(y',yn) Y'-periodic.

If ¢ # 0, S, is well defined, as an operator acting in Li(G), by (20) (remark that
the limit behavior of ug as yy goes to infinity has to be understood in the L? sense).
However, for 8’ = 0 it is necessary to shift the spectrum of S,/ ¢ by adding a zero-order
term in (20) so as to avoid technical difficulties in defining S,/ ¢ acting in LZ,(G). In
any case, S, ¢ is a self-adjoint non-compact operator, and its spectrum (S, /) is not
any longer discrete, but it depends continuously on (z’,6’). Therefore, we can define the
boundary layer spectrum associated to the surface ¥

=l U olon
x'ex 0'€[0,1}V 1

which has again a band structure. Of course, the definition of oy can be achieved for any
face X of the rectangle €2, and a completely similar analysis can be done for all the lower
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dimensional manifolds (edges, corners, etc.) of which the boundary €2 is made up. For
each type of manifold, a different family of limit problems arise which are straightforward
generalizations of (20). For example, in two space dimensions, the corners of ) give
rise to a limit problem in the quarter of space Rt x R* (see subsection 7.3). Finally,
our last main result is:

THEOREM 3.5. — Under assumptions (18) and (19), the renormalized limit of the sequence
of spectra €%, is precisely given by

lim €, %0c, = oBloch U 050,

€,

with the notation

Ty = U ox

2CoN

where the union is over all hypersurfaces and lower dimensional manifolds composing the
boundary 0f).

Theorems 3.1 and 3.5 are proved in section 7. The difference between Theorem 3.1 and
Theorem 3.5 is that the latter boundary layer spectrum oyq is explicitly defined for the
specific sequence of parameters e, as the spectrum of a family of limit operators, while the
first of these boundary layer spectra, o,oundary Was indirectly defined for any sequence ¢
but not explicitly characterized. Remark also that we do not prove that gy and noundary
coincide, but merely that 0,qundary C Toq. We believe that the inclusion is usually strict,
even if a more precise definition of Thoundary 15 used.

4. Bloch wave homogenization

This section is devoted to the first part of the proof of Theorem 3.1. By means of a new
method of homogenization, called homogenization by Bloch waves, we shall prove that

TBloch, C lim e 2o,
e—0

This convergence result holds for any choice of the sequence . To analyze the behavior
of eigenvalues of the order of ¢, the spectral problem (1) is rewritten as follows: find
(pe,ve) € RT x HYD),v. £ 0, such that:

(21) —¢? div[A(:(:$ f)V'{)F] + v, = ﬂ%vf in Q,
v, =0 on 092.

Passing from (1) to (21) leaves invariant the eigenfunctions and change the eigenvalues
Ak into p* (labeled in decreasing order) defined by

(22) ne = A€+ D).
This has the effect that p¥ ~ 1 if \F ~ €.
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To (21) is associated a new operator S. € £(L?(£)) defined by:

(23) {i:LQ(Q) — L)

f —_— U,

where . is the unique solution in Hj(§2) of:

(24) —e2div[A(z, 2)Vu] +u. = f in Q,
u. =0 on 0f).

Of course, for fixed €, S. is still a self-adjoint compact operator. We denote by o(S.)
its spectrum made of a countable sequence of eigenvalues converging to 0, plus the limit
point 0,

o(S)={0}u [ J{uf} with pl>p?>->pf> =0
E>1

REMARK 4.1. — It is an easy exercise in homogenization to show that the solution u. of
(24) has a tendency to periodically oscillate like ug| x,% | when ¢ is small, and therefore it

converges merely weakly in L?(Q). Furthermore, its weak limit is easily shown to be nothing
else than f. This implies that S. converges weakly to the identity operator in L{L2()).
In terms of spectral convergence, we cannot deduce anything from this weak convergence.
In any case, the limit operator (the identity) does not contain much information left from

the sequence S..
Since the solution u. of (24) behaves like an oscillating function ug (w, f), the key

idea in order to obtain a strong convergence of the sequence S is to extend it to a larger
space of “two-scale oscillating” functions, capable of describing this oscillating behavior.
In other words, we first embed L2(€2) in the larger space L%(Q x Y) of functions ¢(z,%)
of two variables x € 2 (the slow variable) and y € Y = [0,1}" (the fast periodic
variable). For reasons that will be clear afterwards (mainly because of the Bloch waves
decomposition), we actually extend the operator S, to the space L2(; Li(K Y')) where
K > 1 is a given positive integer, and K'Y denotes the cube [0, K]*. In other words, we
use two-scale oscillating functions on a larger period K'Y. More precisely, we define an
extended operator S € L(L*(Q; LL(KY))) by

SK = EKg§ pPX,

where P and E} are respectively a projection from L*(Q; L2 (KY')) onto L?(£2) and
an extension from L*(Q) into L*(Q; L% (KY')). To be sure that SX is still self-adjoint,
we ask PX and EX to be adjoint one from the other. To insure that S, and SX have
the same spectrum, we ask the product PX EX 1o be equal to the identity in L2(€2). The
Hilbert space L(€%; L (KY')) is equipped with the scalar product

@y =K [ [ ole,pyia,)dsdy
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To build such extension and projection operators, we introduce a regular mesh of size
Ke on the domain §2: let (K‘)ls,ign(() be a family of non-overlapping cells of the type
[0; K€e]™ covering 2 (the number of cells is n(¢) which is of the order of (K¢)~Y
denote by z{ the origin of each cell Y and by x{(x) its characteristic function. Dcﬁmng
a projection operator by

PR LA LA(KY)) — L*(9Q)
(25) ) € 1 ! x ’
QS(.’IJ,?/) Z:I Xi (:I”) (Ke)N f d)(flf 3 :)(’ix?
i= Y

and an extension operator by

EN . IXQ) — LA LL(KY))

n(e)
(26) f(x) — Z X (@) f(x + ey),

their announced properties are checked in the following:
LemMa 4.2. - The operators PX and EX defined by (25) and (26) satisfy
PRER =1deq) and (PX)" = EX.
Furthermore, the product Ef‘ PX  converges strongly to the identity in the space
C(L2(9 L2, (KY))).

REMARK 4.3. ~ At first look, the most natural projection operator from the space
L2(Q; 12 #%(KY)) onto L?(2) seems to be the application that maps ¢ (a‘ J;) to any function
d(x,y). Unfortunately, this is not a continuous operator. There is even no guaranty that
¢\ x, L | is measurable on ) for a general ¢. This explains the complicated definition of

the projection operator PX which is as close as possible to this idea, while having good
Sfunctional properties.

Proof. — A simple computation yields that PX EX = Id: (). Furthermore,

n(e)
/ oz, ) (EX F)( 'L’ydrdy—Z/ 451’1/ V(25 + ey)dzdy
aJky

Ye .

—Z fJ: +6y)/ d(z’,y)dx' dy = ’VZ/ flz ,%)dm'dm

Sy
n(e)
—KN/f(:c ZX, K)N <z$(1 )dT)dr—KA/f(:r P (z)dz,

which proves (PX)* = EX. A similar computation shows that

n{e)
(EKPK Ly U Z Xz (KG / (/) .I' U
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i.e., EX PX is the projection operator in L?(€; LZ(KY')) on piecewise constant functions
in x in each cell Y£. As is well-known, such a projection EX PX converges strongly
to the identity.

PROPOSITION 4.4. — The sequence SX converges strongly to a self-adjoint limit operator

SX in the sense that, for any ¢(z,y) € L*(Q; L(KY)), SX¢ converges strongly 10 S* ¢
in L2(; L (KY')) and S¥ ¢ = u™ is the unique solution in the space L*(Q); Hy(KY)) of

(27) { —divy [A(z,y)Vyuf] +uf =¢ in Qx KY

y — ul(z,y) KY -periodic.

We shall prove below (see Proposition 4.12) that S® is a non-compact operator in
L*( L% (KY)). Therefore, the convergence of SX to S¥ cannot be uniform since SX
is compact, but not SK_ Thus, from Proposition 4.4, we can only deduce the lower
semi-continuity of the spectrum (see Lemma 2.8).

COROLLARY 4.5. — The spectrum o(S%) of S¥ satisfies
o(8%) lir% o(S.).

Furthermore, as a consequence of Rellich theorem (see e.g. [42], [28], [43]), for any u
which is not an eigenvalue of S¥, the spectral family EX (1) of SK converges strongly to
that EX (u) of S¥ in L*(Q; LL(KY)).

The key ingredient in the proof of Proposition 4.4 is the notion of two-scale convergence
introduced in [2], [36], that we briefly recall in the following

PROPOSITION 4.6.

(1) Let . be a bounded sequence in LQ(Q). Then there exists a subsequence, still denoted
by € and a limit uo(z,y) € L*(Q; L5 (KY)) such that u. two-scale converges
weakly to ug in the sense that

iy [ @)oo Yo = ol [ [ st ),y
for all functions §(z,y) € L*(Q;C4(KY)).

(2) Let u. be a sequence of functions in L*(Q) which two-scale converges weakly to a
limit uo(x,y) € L*(%; L (KY')). Assume further that

1
. 2 _ 2
l%llu€l|L2(Q) = ,—KT'HU()HLz(Q;Li(KY))-
Then u. is said to two-scale converge strongly to its limit uq in the sense that,

for any sequence v. which two-scale converges weakly to a limit vo(z,y) €
L*(O; L (KY)), we have

€e—0

. 1
iny [ e (2.2 o = [ [ wntegpunto)ite, oy,
for all smooth functions ¢(x,y) € C’(ﬁ; Cx(KY)).
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(3) Let uc be a bounded sequence in L*(S)) such that €Vu, is also bounded
in L2(Q)N. Then there exists a subsequence, still denoted by ¢, and a limit
uo(x,y) € L*( Hy(KY)) such that u. two-scale converges to ug(x,y) and ¢Vu,
two-scale converges to NV up(x,y).

Another technical Lemma is required before the proof of Proposition 4.4.

Lemma 4.7. —

(1) Let ¢(x,y) be afunction in L*(£Y; Li (KY)). Then the sequence (PX ¢)(x) two-scale
converges strongly to ¢(x,y).

(2) Let ¢ (x,y) be a sequence converging weakly to ¢(x,y) in L*(€2; Li(KY)). Then
the sequence (P ¢.)(x) two-scale converges weakly to ¢(x.y).

Proof. — To prove 2, let 8(x,y) be a smooth, K'Y -periodic function. We have:

. N T o i &
[ @ee Dn = g [ [0t ot Dy
Furthermore, N
EX [0, ) = 0z + ev.y)

in each cell YS of the type [0; K¢]". Here, x¢ is the origin of Yy . Since 6(x.y) is
a smooth function, it is easily seen that EX[#(z, Z)] converges strongly to f(z,y) in
L2(; L%(KY')), which completes the proof of 2.

To obtain 1, it remains to prove that, for a fixed test function ¢, ||PX ¢||12(q) converges
t0 777 |#|l 22 (2x xy)- Thanks to Lemma 4.2, we have

. 1 ' -
1PX 8l = g | [ (BE PR g)odady

and EX PX converges strongly to the identity. This proves the desired result.

Proof of Proposition 4.4. — Let v.(z,y) be a sequence converging weakly to ¢(z,y) in
L2 LL(KY)). For any ¢ € L*(Q; L3 (KY')), we need to show that

e—0

lim / / (SEpYipdady = / (SE ¢)ydrdy.
QJEY JaJry
By definition of S¥, one has
@) [ [ SRewdsdy = [ GPEOES ) de = [ ulPFe
KN Jo Jry Ja Ja
where u. is now the solution of

€

(29) —e2divA(z, 2)Vu, + u = PX[¢(z,y)] in Q
e = 0 on Ofl.
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By Lemma 4.8 below, u. two-scale converges strongly to the solution u¥ of (27). By
Lemma 4.7, the sequence PX1). two-scale converges weakly to 1. Then, by Proposition
4.6, we can pass to the limit in (28)

" - 1 " . 1 .
lim [ w(PXp)dr = ——/ / uFrpdady = —~/ SE p)dzdy,
=0 Jo ( ) KN Jo Jry KN Jqo m( )

which concludes the proof since the map ¢ — u®

in L2(; L4(KY)).

LEMMA 4.8. — The solution u. of (29) two-scale converges to u™ (x,y) which is the
unique solution in L*(Q; HL(KY)) of

is obviously continuous self-adjoint

— div,, [A(w,y)vyuK] +uf =¢gin Qx KY
y — uf (x,y) KY -periodic.

Furthermore, u, two-scale converges strongly to u¥ (x,y), i.e.:

. 1
fimg el 20 = W”“K”Lzmxmw-
Proof. — The following a priori estimate is easily derived from equation (29):
llwellL20) + €l Vitell L2y < C.

Then, there exists a limit w* (z,y) € L*(%; H(KY)), such that, up to a subsequence,
u. and eVu, two-scale converge respectively to u*(z,y) and V,u®(z,y). Multiplying
equation (29) by a test function f(z, £), where 0(z,y) is a smooth, K'Y -periodic function,
we pass to the limit and get:

/ / A(z,y)V,u®V,0dzdy + / / u®fdzdy = / dOdzdy,
JOQJKY QJKY JQAJKY

which is nothing else than the variational formulation of the limit problem which clearly
admits a unique solution. The limit u* is therefore unique, and the entire subsequence
u. two-scale converges to u¥.

Besides, multiplying the equation (29) by u., we obtain

/ €2A(IL', E)V'Lllf . V'U:g + / |/U45|2 = / PGK(tbue
Q € JQ Q

which, by virtue of Lemma 4.7, converges to

1 1 ’
fﬁ /Q /KY ¢1LKd9:dy = —ﬁ/(z/m [A(x,y)vyuK-VyuI‘ + |uK|2]dzdy.

Then, using the lower semi-continuity of the two-scale convergence (see [2]), we conclude

which finishes the proof of Lemma 4.8.
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To compute the spectrum of o(S*), we use a discrete Bloch waves decomposition in
Li(KY) (see [1], or [10], [121, {22}, [23], [37], [41], [49] in the continuous case). This
Bloch decomposition allows to diagonalize S*.

Lemma 4.9. — For any function ¢(y) € Li(K Y) there exists a unique family

{¢;(y)} € Li(Y)KN, indexed by a multi-index j whose N components belong to
{0,...,K — 1}, such that

(30) )= Y iy
0<j<K-1
and 1 .
2 [ wPa= [ iefan
0<j<K -1

Furthermore, if y)(y) is another function in L% (KY') with Bloch components {1;(y)} €

Li(% )KN, we have
=% Prpdy =
KN /A)

This decomposition, denoted by B, defines a unitary isometry from L, (KY') into L (Y)KN.

/¢w@

0<j<K—1"

REMARK 4.10. — Even if the function ¢ € L2 4(KY) is real-valued, its Bloch components
¢; € L? (Y) are complex-valued. Therefore, from now on all functions are supposed to be
complex -valued. To simplify the exposition, for any functional space we shall use the same
notation for its real or complex-valued version.

Proof. — For each multi-index j = 0, ..., K — 1, let us define ¢; in Li(Y) by

K-1

$i(y) = KN Z Gy + j)e "™

(y+/ )-J

It suffices now to check that (30) holds true with the above definition of ¢;:

K-1K-1 K-1
(31) KNZZ¢(y+J ”2”’“—Z¢U+7 (KNZe‘Q’”—>

=0 j'=0 j'=0

If 7/ = 0, the expression between brackets in the right hand side of (31) is equal to 1.
If 5/ # 0, it is equal to 0, thanks to a well-known property of the K-th roots of I in
the complex plane. This proves (30). Parseval and Plancherel formulae are obtained in
a similar fashion.

From Lemma 4.9, we easily deduce the following:

PrOPOSITION 4.11. — The operator 8% can be diagonalized as
SE = B*TEB with TX = dlag[( Ti/K )o<j<k - 1]
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where, for each Bloch frequency 0 = j/K, Ty is a self-adjoint non-compact operator
defined in L(L*(S%; L3 (Y))) by

(32) 5 .

{Te PLA(Q LR(Y)) — LA LL(Y)
where u(x,y) is the unique solution in L*(Q; H4(Y)) of
— div, [A(a:,y)Vy (uezme.y)] + ue?™ Y = ge® Y in QA xY.

Consequently the spectrum of S¥ is

o(S%) = U a(T,).

K
0<y<K -1

Proof. — To diagonalize S¥, we apply the Bloch wave decomposition to the variational
formulation of equation (27) defining S¥. For any ¢(z,y) in L}(Q x KY), SK¢ is
defined as the solution u(z,y) of

./Q KYA(m‘,y)Vyu(z,y)Vyd’(x,y)+/Q/m/u(:v,y)1/)(m,y):/Q qus(x’y)wm’y)’

where 1) is a test function in L?(Q; H ;(K Y)). Applying the Bloch decomposition operator
B to both u and %, we get

Bu = Z ui}‘{_($7y)62iﬂ-—k—a By = Z d)%(xvy)e%ﬂ'lk_y
0<j<K—1 0<j<K-1
and, since A(zx,y) is Y-periodic,

(33) Z /Q/) (A(%y)vy(u%e%i—i;—-y)_vy(a%e—%i%-y)_‘_u%a

0<j<K -1

)

e

For each Bloch frequency % (33) is nothing but the variational formulation of the equation
defining T, ¢, . Therefore, (TL) ~ BSKB*.

K/Jo<i<K-1

PRrOPOSITION 4.12. — For any fixed x € Q and 0 € Y we introduce an operator Ty,
acting on L (Y), defined by

(34) {Tg,m CLAR(Y) — LA(Y)

(»b — U,
where u(y) is the unique solution in Hy(Y') of

(35) ~div, [A(z,y)V, (ue%w'y)] + ue?™ Y = g2V Y,
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Then Ty . is a self-adjoint compact operator and its spectrum is

o(Ty.) = {0} [ J{u* (8.0},

k>1

where each eigenvalue 11*(8, x) is continuous with respect to (6,z) € Y x Q. Finally, the
operator Ty defined by (32) is non-compact and its spectrum is

o(Ty) = | o(Tp.x) = {0} | J[min p*(8, x), max u* (8, 2)).
0= U ot = (0} Um0, mai9.)

REMARK 4.13. — We recognize in the operators Ty, a simple transformation of the
operators S, ¢ defined by (12) since, due to the change of variables (22), their eigenvalues
are related by

X AF
(36) pk = Ul

Proof. — Clearly, each operator T, is self-adjoint compact. Therefore, its spectrum is
discrete, and labeling the eigenvalues in decreasing order it is given by

Go. = {0} U | J{w*(6,2)}

k>1

with
ph(8,x) > pP(0,2) > - > p*(0,2) > - — 0.

Multiplying equation (35) by ¢~ 27®¥_ yields a new definition of T, which has the
effect that both x and @ appear as parameters in the coefficient matrix. More precisely,
u(y) = Ty .¢(y) is the unique solution in Hy(Y) of

{ —(Vy, — 2in0)A(z,y)(V, + 2inf)u(y) + u(y) = ¢(y)in Y
y — u(y) Y-periodic.

The eigenvalues are then characterized by the min-max formula:

[y Az, y)(Vyu + 2irbu) - (Vyu + 2inbu) + [, |uf?

#*(8,2) = min max 5
FCLZ () w€FNHL(Y) Jy lul
dimF=k

This implies that ¥ (x, #) is continuous (and even Lipschitz) as the min-max of continuous
functions as remarked by P. Gérard [24]. Here, we have used the assumption that
x — A(z,y) is continuous in Q. To prove that Ty is non-compact and compute its
spectrum
o(Ty) = | o(Tv.0),
€Q

we use the Weyl criterion. For any eigenvalue p in o(Tp ), with eigenvector u(y), a
sequence u, of almost eigenvectors for T, is defined by u,(z,y) = ¢,(x)u(y), where
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¢n(z) is a smooth function concentrating at the point ¢ with ||¢n||L2(0) = 1. It is not
difficult to check Weyl’s criterion which implies that 4 belongs to the essential spectrum
of Tg.

Conversely, if u ¢ o(Ty,.) for any z € Q, we have
1(To.e — udd) | c(z2ery < C < +o0,

which implies, since |J o(Tp.) is a closed set, that
z€Q

N(To — pId) Y| cer2gaxyy) < +00

and hence, i does not belong to the spectrum of Tj.

THEOREM 4.14, — When K goes to o0, we have:

Klililooo(sﬂ’)z U o@a)={0}{Jl min p*0.2), max u*6,).

€T ey E>1 z€Q, 9eY z€Q, 9eY
z€Q, bd

Since oBlocn and limg_. o, o(SE) are related through the change of variables (36), we

deduce that, for any sequence € converging to 0, 0gioen C lir% e %0,
€~

Proof. — Recall that the choice of the integer K is arbitrary, and that we proved
. ~ . K _ .
fingo(5) > Jlim o(5™)= U o(Ty).
0<j<K~1

Since the spectrum o(7}) is continuous with respect to 6, letting K go to +oo yields
the desired result.

REMARK 4.15. — Let us indicate that this method of Bloch wave homogenization has
already been applied to a different model of fluid-solid structure (see [6)).

5. Completeness

This section is devoted to the proof of the second part of Theorem 3.1. In the previous
section we proved that

OBloch C lim e %0,.
e—0

Here, we prove that the difference between the limit renormalized spectrum and the Bloch
spectrum is the so-called boundary layer spectrum

N
hn(l) € "O¢ = OBloch U Uboundary'

€—

A precise definition of the boundary layer spectrum ououndary 18 given below in
Definition 5.1.
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To characterize the limit of the renormalized spectrum ¢~ 20,, we consider a sequence
of eigenvalues y. and eigenvectors v, € H}(Q) such that, up to a subsequence,

(37) lvell 2oy = 1. lin(l)ug = and

(38) { —é? div[A(;z:, %)VUE] 4+ v = 7,1?11( in

v, =0 on 0f).
We introduce the distance function to the boundary, denoted by d(x, 9§2), and defined by

d(x,00) = uie%fn |z —y| Vee.

Assuming that the boundary 92 is Lipschitz, the distance function d(z,d) belongs to
WO1 "*°(£2). We are now in a position to define the boundary layer spectrum.

DEFINITION 5.1. — The boundary layer spectrum Ovoundary S defined as the set of all
limit eigenvalues y such that any corresponding sequence of eigenvectors v. satisfying (37)
and (38) has also the property that, for any positive integer n. > 1, there exists a positive
constant C(n) > 0 and the entire sequence satisfies

(39) lved(z, 0R)" |2 () + €ll(Vve)d(z, 02)" || L2y £ Cn)e”.
In other words,
Oboundary = {,u € RY | 3., ve) solutions of (37)-(38) satisfying (39)}.

Remark that, compared to the Bloch spectrum, the definition of the boundary layer
spectrum is not explicit. It may even depend on the choice of the sequence € (on the
contrary of opjecn). There is also no guarantee that the boundary layer spectrum does not
overlap the Bloch spectrum. From (39) we deduce that the sequence v. stays near the
boundary 9€2 at a maximum distance of the order of ¢ in the sense that

lim (|vellz2o,) + €ll(Vollzzw.)) =0,

for any sequence of subsets w. of {2 such that d(w.,d0) >> e. We shall say that
such sequences of eigenvectors, whose limit eigenvalue belong to ohoundary, decrease
exponentially fast away from the boundary in the sense that, by virtue of (39), they
decrease faster than any inverse power of the distance function d(z, 9%2).

The main result of this section states that, if the sequence of eigenvectors v. does not
concentrate near the boundary, then automatically the limit eigenvalue ;2 belongs to the
Bloch spectrum.

THEOREM 5.2. — Let v, be a sequence of eigenvectors satisfying (37) and (38). If the limit
eigenvalue 1 does not belong 10 Oboundary, then it must belong to opioc,. Consequently,
it implies

: -2
hn(l] € ~0¢ = OBloch U Tboundary -

€—
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REMARK 5.3. — Theorem 5.2 gives only a sufficient condition (not necessary) for p to
belong to opioch. There may well be some limit eigenvalues | which belong to both ogiocn
and Opoundary- We do not know if a more stringent definition of Oyoundary could yield an
empty intersection between these two limit sets.

Before proving Theorem 5.2, we introduce a definition of so-called “quasi eigenvectors”
for the spectral problem (38) and prove several intermediate results.

DEerINITION 5.4. — Let i be a sequence of eigenvalues for the spectral problem (38) which
converges to a limit eigenvalue p. A sequence u, € H'(RYN) is said to be a sequence of
quasi eigenvectors associated to the eigenvalues . if it satisfies

(D) ue =0in RY\Q and ||uc||r2q) = 1,

(2) u, is the solution in the sense of distributions in the whole space RY of

x 1

(40) —e2div [A (9:, z) V’u,s] + U = —u, + 7o,
€ Ll

where 1. is a remainder term which satisfies

lim <T€,w€>H—1’H1(RN)

= (),
e—0 Hwe“L’Z(RN) + €||VUIE”L2(RN)N

for all non-zero sequences w. € HY(RY).

REMARK 5.5. — Equation (40) holds in R™; there is no more boundary conditions on
0. Clearly, Definition 5.4 implies that a sequence of quasi eigenvectors u. satisfies also
CHVUGHLZ(RN)N < C.

Sequences of quasi eigenvectors are easily built from sequences of eigenvectors which
do not correspond to a limit eigenvalue ft € Opoundary-

PROPOSITION 5.6. — Let v, be a sequence of eigenvectors satisfying (37) and (38). Assume
that it does not satisfy (39), namely that the limit eigenvalue does not belong to the boundary
layer spectrum. Then, there exists a positive integer n > 1 and a subsequence, still denoted
by €, such that the sequence

_ ved(x,0Q)"
vad(;r,, 8(2)" ”L'Z Q)

(41) Ue

is a sequence of quasi-eigenvectors in the sense of Definition 5.1.

REMARK 5.7. — We wrongly announced, in our previous note (5], that Proposition 5.6 is
an alternative, 1.e. that either a limit eigenvalue belongs to Oboundary OF there exists an
associated sequence of quasi eigenvectors of the type given by (41). Unfortunately, we are
unable to prove that, if there exists a sequence of quasi eigenvectors defined by (41), then
the limit eigenvalue can not belong t0 Opgundary-

In several places in the sequel, the following estimate will often be used.

LEMMA 5.8. — Let v, be a sequence of eigenvectors satisfying (37) and (38). For any
positive integer n > 1 there exists a positive constant C(n) > 0 such that:

elld(z, Q)" Vvl 2y < C(n)|[[|ved(z, 8Q)" || 12(2 + €l|ved(z, 9" 2]

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES



176 G. ALLAIRE AND C. CONCA

Proof. — For simplicity, let us denote by d the function d(x,9€2) and by A the matrix
A(a:, f) Multiplying the spectral equation by v.d?" leads to

(42) e / A(d"V,) - (d"Vu,)
Q

1 ‘ .
= <—— -~ 1) /(d"uf)z — 2ne? / ved?" AV, - Vd.
He JO JQ

Using the coercivity of A° in the left hand side, and estimating the right hand side,
(42) yields

ANVl < C (vl + NVl oy " ol ).

This gives the desired result.

Proof of Proposition 5.6. — If a sequence v, does not satisfy (39), then there exists a
positive integer » > 1 and a subsequence, still denoted by ¢, such that

. 1 n T
(43) P.I}(l) n (H”I/Fd '“Lz(ﬂ) + €||(V’U€)d ”L;z(Q)N) = +00,

€

where, as in the previous proof, d denotes the function d(x, 0€2). Let us take the smallest
integer n for which (43) holds. Necessarily n > 1 since [|vel|r2(q) + €]|Vve|lr2(yv is
bounded due to the spectral equation (38). Up to another subsequence, v, satisfies also

3 1 (
(44) lim —fJod" |20y = +00.
Indeed, if it were not the case, ¢ "||v.d"||L2(q) would be bounded while

1

Fn~1

lin(l) (Vv )d™|| L2y = 400.

By application of Lemma 5.8, this would imply that

. n—1
lim —= [loed" |12 (@) = +00,

which is a contradiction with our choice of n being the smallest integer such that (43) holds.
Another consequence of such a choice is that for n — 1 there exists a constant C such that

[ved" Y22 + el (Vve)d™ |2 (ayv < Ce™

Let us define

v.d”

U = ———
lved™[| 2o
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and prove that u. is a sequence of quasi eigenvectors. Defining . by equation (40), for
any sequence of test functions w. € H*(RY) such that |jw||12(q) + €l|Vwel|pz(oy~ is
bounded uniformly in €, we have

‘ 1
(resweyH-1 HI@RN) = 62/ A(:L‘, E)Vm -Vw, + <1 - —)/ UeWe -
Q € He J Ja

There is no contribution on the boundary 02 because Vu, (and not w,) vanishes on 02
when n > 1. Using the spectral equation satisfied by v., an integration by parts yields

[ / AV (vd") - Vo, — / A5V1;(~V(d"%u€)}
JQ

TesWe)H-L H' RN = T 0 r
( | JHURN) — llve dn“L ()

€2

=— | pnd" AV (v.Vw. — w V)
lved™||L2(2) /Q

[Ivfd"—IHLZ(Q) + 6||dn-1vvf”L2(Q)N

< Ce
- [ved™ (L2 (o)

6“

Cr—r—>
= oed™ Lz
which, by virtue of (44), goes to 0 with ¢. Thus u. is a sequence of quasi eigenvectors.
This property of quasi eigenvectors can be localized in the sense that the matrix of

coefficients A{ z, £ | can be replaced by a purely periodically oscillating matrix A(mo, %)
for some fixed z, € 2.

PROPOSITION 5.9. — Let u, be a sequence of quasi eigenvectors in the sense of Definition
(5.4). Then, there exists a subsequence, still denoted by ¢, a point x, € Q, and a sequence
ite € HY(RY) of quasi eigenvectors for the matrix A(xo, %), i.e.:

() . =0inRV\Q and |G|l = L

(2) @, is the solution in the sense of distributions in the whole space RY of

(45) —*div]A(wo, £)Vai] + i = L
€

fie
where 7. is a remainder term which satisfies
(FesWe)g—1 11 (RV)
im
e—0 ”weHL?(RN) + GHV’er“LQ(RN)N

for all non-zero sequences w, € H(RY).

Proof. — If u, is a sequence of quasi eigenvectors, then there exists a sequence of real
numbers «, converging to 0, such that

l(”'fv’lve)H“l,H‘(RN)l S ae(“wf“L‘z(Q) + E“V’IUEHL2(Q)N)

for any sequence w. € H'(f2) and with r. defined by equation (40). We introduce an
intermediate scale 8. > 0 such that ¢ € 8. <« 1 and . is an entire multiple of €, i.e.

3
lim 4, = 0, lim S =0, and 5=p eN.
€—r €

e—0 5,
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The domain {2 is covered by a mesh of non-overlapping cubes (F)i<;<.(s,) of the type
[0, ﬁE]N. The number of such cubes is n(/3.), which is of the order of ‘qi}\i We denote by x§
the center of each cube Pf, and by i(e) the index such that the L?-norm of u. is maximum

on the cube Pf(f). For the sake of simplicity, we denote P‘.‘(F) by P¢. In other words,

(46) [tell 2Py = 1§?%?z)((ft) H’U,FHLZ(]D;).

Since 32 cicni.y luellZz pey = L, we deduce that there exists a positive constant C' > 0
such that

(47) NuellL2py = CBNZ.

Since x5, runs in the compact set £, there exists a subsequence, still denoted by ¢, and

a limit point zo € {2, such that
}gr(l) Ty = To-
Let us define a smooth function ¢ € D(RY) such that
$>0 in RV,
¢p=1 in [-1/2,+1/2)",
$=0 outside [-1;+1]" .

The quasi eigenvector w. is localized around zj, by multiplying it by a cut-off function
¢. defined by

r— xf(e)
(48) be (T) =¢ .
Be
This yields a function 4. defined in H'(R™) by
. Pe e
i,

B ”QSEue”Lz(RN).

Let D¢ be the support of ¢.. We choose the intermediate scale 3, to be

(49) B = max (\,/E ai/N).

(This implies that ¢ < B. < 1 and a?’" <« fB..) Then, by Lemma 5.10 below, the

following estimates hold for u. in D¢

(50) ltellz2 ey < CllutellLz ey
and
(1) eIVl 2oy £ Clluellzzpr)-
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To prove that @, is also a sequence of guasi eigenvectors for the matrix A<:c, f—) we
define a remainder term 7. by

1
(52) —e*divA (:r, f)VﬂE + le = —Ue + Te-
€

€

We check the desired property for 7. by multiplying 52) by w. € H L(RYN). Integrating by
parts and using equation (40) satisfied by u., we obtain:

.
H(;bfueHLz(Q)

_52/ AV, - V(¢€w5) + <T67¢swe>H*1,H1(RN)>
Q
1

B [[¢6u6HL2(Q)
H(re, pewe) -1 m@n))-

(eQ/ AV{(¢eu,) - Vwedz—
Q

(Tes W) -1, 1 RN) =

(62/ AV, - (uVwe — wVue)dz+
Q

Thus o
[(Fe, we) -1 1 mvy| < W(62/85_1(H“’é“L'Z(Df)uvwfuﬂ(Q)N
ellLz(pe)
Hlwell 2@ Vuell L2 (pey)
+ ae(“‘f’ewe“Lﬂ(n) + €||V(¢ewe)||L2(Q)N))-
Using estimates (47), (50), and (51) leads to

|(Fe, we) -1, @y | < CeB (lwell 2oy + elVw L2 )v)
+ Ca BTN (Jlwel 2oy + €l Vwell2yv ) -

From our choice (49) of f., we know that both a8 /”

we obtain the desired result

and ¢3! converge to 0, and

) (Fey We) H-1, H! (RY)
(53) lim d =
=0 ||welL2(a) + €|lvwe||L2(Q)N

To conclude, let us prove that 7, is also a sequence of quasi eigenvectors for the matrix
A(zg, %). Defining a remainder term 77 by

1
_e divA(a;O, ‘f)ws 4 = i+ 7
€

€

we multiply it by w. € H*(RY) with ||we|r2(0) + €||Vwe]|z2(q)~ uniformly bounded

(54) (70, w) = (Fe,we) + € /D (A(mo,§>—A(w,§>>Vas - V.
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The first term in the right hand side of (54) goes to zero in view of (53), while the
second term is bounded by

(ellVwell z2coyn ) (€l Vel £z ) sul})) |A(z0,y) — A(.’IT,’]/)”L;(Y)NJ,
xr€De

which goes to zero with e since the set D concentrates near xy and the matrix A(z,y)
is continuous in x with values in L (Y)"".

LemMA 5.10. — Let P be the cube of size 3. where the L*-norm of u,. is maximum (see
(46)). Let D* be the support of ). (see (48)). If the intermediate scale (3. is chosen such that

(55) B> a¥N,

then there exists a positive constant C > () such that:

(56) el z2(pe) < Clltel|L2e
and
(57) llVuellzzpeyy < Clluellzzcpey-

Proof. — Estimate (56) is obvious since P€ is included in D¢, which is covered by at
most 3V cubes P¥, and the maximum L?-norm is attained on P*. To prove estimate (57)
a smooth function ¢ € D(RY) is introduced such that

$p >0 in RN,

=1 in  [-1,+1)"V,

=0 outside [-2;+2]".
Defining another cut-off function ¥.(z) = 1/)(:;—(—1) and multiplying equation (40),
satisfied by u., by ©¥?u., yield

' L
(58) 62/ YIAVu, - Vu, = (— — 1) | @*uide
)

He JQ

— 2¢? / A Vu) - (w0 V) + {re. YU -1 1 my)-

J Q2

Using the coercivity of A° in the left hand side, and estimating the right hand side,
(58) leads to:

lltpe Ve[| F2i0)v < C(tf?lli/ffvuel 2@~ e Vel L2y + Jpeuell 720
+ae ([92ucll2 ) + el V2ul 2 v )
< G (87 eVl s el ey + el
Fa (lluellpo + 87 well2 ) + €llve Vaell o))
< C(fllwsvuellu(szw (e + €8 uellzpe)) + luellzzpe)
+ acllucllpep) (1 +€671)).
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since the support of 1. is covered by a finite number (independent of €) of cubes
Pfoand ||[Vye||p=@vyy < CB7'. On the other hand, (47) and (55) implies that

k2
N/2

a. < B < Cllue||rz2(pey and €8 goes to zero. Finally, we obtain

Tl < C(uliZson + ellpeTucllaoy ludlz e )

from which the desired result (57) is easily deduced.

Proof of Theorem 5.2. — By Propositions 5.6 and 5.9 we already know that, if 1 does not
belong t0 Ohoundary, then there exist zo € Q and a subsequence u. of quasi eigenvectors
for the matrix A(xq, Z). Remark that if the matrix A depends only on y, and not on z,
Proposition 5.9 is unnecessary since it is used only to “freeze” the macroscopic variable
. The quasi eigenvectors i, have compact support in Q. Let us define K. as the smallest
integer such that the cube Q. = [0;¢K " contains Q (K. is of the order of e~!). Since
@, is identically equal to zero outside €2, it belongs to H#(Qe).

In a first step, we apply the Bloch wave decomposition to 4. in the cube Q.. Let j
be a multi-index running in {0, 1,..., K. — 1}*¥. For simplicity, we indicate its range by
the notation 0 < j < K. — 1. According to Lemma 4.9 (and its generalization to Sobolev
spaces), there exists a unique family (u?(y))o<j<x, -1 of functions in H(Y') such that

e (x) = Z uZ(E)eQ”%.

€

By Plancherel theorem,

”ﬁeH%z(Q():(ﬁKf)N Z ”Uﬂli'ay)

0<j<K, -1

and

~ : . ] .
EViiel2 gy = (KON Y |IVyud + 2im == | 7o (v

0<j<K, —1 K
Remark that (eK, )" is just the volume of the cube Q. and is therefore of order 1. Then,
each Bloch component v/ (y) is decomposed on the hilbertian basis of Lié(Y) made of the
eigenfunctions of Ty ., defined by (34), with the same Bloch frequency 6 = j/K.. Here,
Ty is precisely the same point in €2 that appear in the purely periodic matrix A(zo, z).
We denote by (1*(8),v%(8,y))x>1 the eigenvalues and eigenvectors of Tp ,,, which satisfy
0"z, vy = 1 and

(59) _ ley [A($0,y)Vy (vkEQﬂ'iQ»y)] + ,Uke2m‘0'y — T]&t_?_)vke%rie-y inY.
2

Actually, the eigenvalues and eigenvectors (1*(6),v*(8,y))x>1 depend also on the point
xg. For simplicity, we do not state explicitly this dependence. There exist complex
coefficients {a*(j/K.)}r>1 such that

a-E(2)+ ()

E>1
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The orthonormality property of the eigenfunctions implies that

iy = D

k>1

2

ko J
oc(3)

In a second step, we introduce a modulation M(4.) of the sequence of quasi-eigenvectors
G defined by:

rwro= 2 E () (42

0<j<K, —1k>1

where the functions 1/*(6) are continuous, Y -periodic, and uniformly bounded
sup 'l?/)k”c’#(y) < +00.
k>1

It is easily seen that, by definition, the modulation A{1.) belongs to H. #(QF) and satisfies
the same a priori estimates than 1,

M (@) 2.y + VM (@)l L2 gy~ < C.

Multiplying the quasi-spectral equation (45) by the conjugate M (i), leads to

(60) 62/(14(3;0, ')vuf VM) dz

YN[ e Rt e = {7 T
+ (1 _ ;;)Q/(ge ueM(Ue)dJ' = <rF1M(u€)>H’1,Hé(RNY

in which the right hand side tends to 0 by virtue of Lemma 5.9. Then, using the orthogonality
properties of the Bloch waves and of the eigenfunctions as well as the spectral equation
(59), equation (60) becomes

(61) > Y wlak *W( T 1):0(1»

0<j<K.—1k>1

where o(1) tends to zero with e.

In a third step, we define a family {v*()}r>1 of Bloch measures, associated to the
sequence ., by

2(5:

?

O = (K Y ek

0<j<K. -1

J
Ke

where 6¢—g, denotes the Dirac mass at the frequency 6. Each v*(#) is a non-negative
Radon measure defined in Y. Since %, has a unit norm in L2(), the sum of the integrals
of these measures is equal to 1

>

k>1
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The sequence of Bloch measures is therefore bounded. Up to a subsequence, there exists
a family of limit measures {v*(8)};>1 such that each v¥ converges to v* in the sense
of vague measures. Of course the limit measures are all non-negative. Let us show that
they satisfy

(62) Z/ dvk(9) =1,
E>17Y
which proves that, at least, some of them are not identically zero. Of course, we have
0< Z/ dv*(0) < 1.
k>17Y

For each fixed £ we have

lim | dvF(8) = | dvk(6).

e—0 3 Y
If for all § > 0, there exists a rank ks such that, for any e,
5 [[wko<s
E>ks VY

then we easily deduce (62). Let us assume it is not the case: there exists a positive
constant 4 > 0, a subsequence, still denoted by ¢, and a sequence of integers k(e), going
to +oc, such that

> / dvk(8) > 6.
k>k(e)” Y
Now, recall that

Qs 12

€ Hvue”m(Qc)N

=K > >

2 . . .
J N B | 2

[Vok (2, y) + 2im = 0* (2, y)| 22y

0<j<K.~1k>1 K. K. ‘K. ()

K
ot(3)
and, by virtue of (59),

IVo*(8,y) + 2imdv* (6, y)||* > C(—k—l— - 1) Yk, V0,
15(6)
where the positive constant C' does not depend on k nor 6. We deduce that
1
21175 |12 :
€ ”V’UJF“Lz(Q()N _>_ C&gél)l/l (m - 1)
which goes to +o0o since for any § € YV

. k _
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This is a contradiction with the fact that ¢V, is bounded in L?*(2)". Therefore (62)
is proved.

With the help of the Bloch measures, equation (61) can be rewritten

(63) S [0 (g - 1)) = ot

= fhe

Since the test functions ¢* and the eigenvalues p* are continuous in 6, one can pass
to the limit in (63)

Z/} 1/)’“(9)(”:(9> — %)duk(e) o

k>1

Since by virtue of (62) some of the limit measures * are necessarily not zero, there exists
at least one energy level & and a frequency ¢ such that

p= ),
which finishes the proof of Theorem 5.2.

REMARK 5.11. — In the proof of Theorem 5.2 we used a sequence of quasi-eigenvectors
U, rather than the sequence of true eigenvectors v.. The reason is that, although u. or
ve are equal to 0 outside S, it is not the case for the modulation M(u.) or M(ve).
Therefore, multiplying the spectral equation by M(v.) and integrating by parts would
produce a contribution on the boundary 0§) which, unfortunately, cannot be neglected.
Such a difficulty does not occur with @i, which satisfies an equation in RY without boundary
conditions (see Proposition 5.9).

REMARK 5.12. — We emphasize that the Bloch measure technique allows only to prove that

lim 0 C OBloch u Oboundary -
e—0

The reverse inclusion has to be proved independently by the Bloch wave homogenization
method. In this sense, these two methods are complementary.

The Bloch measures introduced here play, more or less, the role of semi-classical (or
Wigner) measures in the context of Schridinger equation (see e.g. [24], [31], [32], [47]).

6. Non-critical scalings

The goal of this section is to prove Theorem 3.2 concerning the asymptotic behavior of
the rescaled spectrum a_ %0, for a non critical scaling a., i.e. for a sequence of positive
numbers a, such that:
either lim % =0,

e—0 €

limac =0 and {or fim & = +oc.
€—
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To study the eigenvalues A, of (1) which are of the order of a?, we again modify slightly
the spectral equation which becomes

(64) { —a? div(A(x, f)VUE> +v. = :/1:7)6 in Q

. =0 on OfL
When labeling the eigenvalues of (1) and (64) in decreasing order, this has the effect of
a change of variable for the eigenvalues
M
€ az + A,: k)
while leaving invariant the eigenfunctions v*. As in section 4, we introduce an operator
S. € L(L*(Q)), associated to (64), defined by

S.: L) — L*Q)

6(" €

( 0) { f - U,

where u, is the unique solution in H}(2) of

(66) {—ﬁm{AGyavm}+m=f in Q,
ue =0 on 0f).

The analysis of the sequence of operators S, is similar to that presented in section 4.
However, the main difference here is the absence of interaction between the homogenization
scale € and the singular perturbation scale a.. Roughly speaking, if ¢ is smaller than a.,
then homogenization occurs first and the singular perturbation concerns the homogenized
system. On the other hand, if € is larger than a., then the singular perturbation occurs
first at a microscopic scale and homogenization is irrelevant. This yields some technical
differences between these two cases. We begin with the largest scales a..

6.1. Large scales: ¢ < a. < 1

As in section 4 we extend the operator S, originally defined in L?(2), to a larger space
of oscillating functions with period a.. For any positive number £ > 0, let Z be the cube
= [0,4)N. We define an extended operator S* € L(L*(Q2 x Z)) by

(67) St = E'S P!

where P/ and E! are respectively a projection from L2(€}; L%(Z)) into L*({) and an
extension from L*(Q) into L*(Q; L% (Z)). To insure that S! is still self-adjoint, we ask
P! and E! to be adjoint one from the other. To be sure that S, and S¢ have the same
spectrum, we ask the product P/E? to be equal to the identity in L2(£2). Such conditions
are satisfied by:

Vo(z,2) € L( Ly(2)), (Pl¢) (x) Z Xz 33)(@ L fo 7', )da’,

Vf(z) € L), (B'f)(z,2) = Z xze () (5 + acz),
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where the family (Zf);<,<,+() of non-overlapping cells of the type [0;4a.]" covers ¢
(xz: is the characteristic functxon of Z¢ and z¢ its origin). As before, S! is self-adjoint
because (Pf)* = Ef and its spectrum is exactly that of S, since P/E! = Idyz (o).

THEOREM 6.1. — The sequence S¢ converges strongly to a limit operator S* in the sense
that, for any ¢(x,z) € L*(; L3(Z)), Stp converges strongly 1o S°¢ in L*($2: L3,(Z)),
and S'¢ = ut is the unique solution in LQ(Q;H#(Z)) of

(68) —divz[A (£)V.u } +ut=¢ in QxZ

Moreover, S¢ is a self-adjoint non-compact operator in L? (Q; Li(Z ))-

COROLLARY 6.2. — For any choice of the sequence € going to 0, the limit of (a.) %0, is
the entire positive real axis, or equivalently

lim o(S,) = U o(8Y) = [0,1].

€~—>00
£>0

REMARK 6.3. — Corollary 6.2 can be interpreted as a densification of the spectrum of S,
upon rescaling at size a’. However, the limit problem (68) is probably not the only one to
describe the limiting behavior of the spectrum at this range of frequency.

Proof of Corollary 6.2. — From Theorem 6.1 we deduce that lim_g o(S?) D o(S5%).
Moreover, for any positive £ > 0, the spectrum ¢(S*) is obtained from o(S*) by a simple
transformation since the coefficient matrix in (6.8) does not depend on z. Labeling in
increasing order the eigenvalues (vF)x>1 of S, they satisfy

,yk _ 52%’
CT Ryt (1)

By varying ¢ > 0 the range of each eigenvalue ~; (for k¥ > 2) is exactly [0, 1]. Since all
the eigenvalues of S, lie in [0, 1], this implies the desired result.

In order to prove Theorem 6.1, we have to analyze the asymptotic behavior of the
sequence of solutions to problem (66) when f = P![¢(z,z)], where ¢(z,2) is a given
function in L2(§2; L2 %(Z)). Problem (66) with such a sequence of right hand sides involves
three different scales, namely 1, € and a.. Therefore, the classical two-scale convergence
is inoperative here, and one has to call for its generalization as described in [3]. We
briefly recall the main results of the multi-scale convergence method (in our case, we
just have three scales).

ProposiTiION 6.4. —

(1) Let v, be a bounded sequence in L2(Q) There exist a subsequence, still denoted by
€, and a ltmlt vO(x,2,y) € L*(G L% (Z x Y)) such that v, three-scale converges
weakly to v° in the following sense

T T

lim z)o(x, —, = )dr = // (z, 2, y)o(x, 2, y)drdzdy
ve(m)el a 5) [ZXYI QJZxy ( )

c—0 Q ¢

for all functions p(x,2,y) € L*(Q;Cx(Z x Y))
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(2) Let v, be a sequence of functions in L?() which three-scale converges weakly to a
limit v°(z,y) € L*(Q; L% (Z x Y)). Assume furthermore that:

. 1
z%llvell%‘z(g) = l_Z_;(‘Y—l“UOH%ﬂ(Q;Li(ZXY))'

Then v, is said to three-scale converge strongly to v° in the sense that, for any
sequence w, in L*(Q) which three-scale converges weakly to a limit w°(z,y) €
LA L%(Z x Y)), we have

. Ir T
iy [ wu(oyunla)ote. =, )ds

€

1 o
N |_Z_><—7|/ / (@, 2, y)w'(z, 2, y)¢(z, 2, y)dzdzdy
QJZxXY

for all smooth functions ¢(x,z,y) € C((;Cx(Z x Y)).

(3) Let v, be a bounded sequence in L?()) such that a.Vu, is also bounded in L>(Q)".
There exist a subsequence, still denoted by ¢, and a limit v°(x, z) € L*(Q; Hy(Z)),
which is independent of y, such that v, three-scale converges to v°(z, z). Moreover,
there exists v'(x,z,y) € L*(Q x Z; Hy(Y')) such that a.Vu, three-scale converges
to [V 0%z, 2) + Vol (z, 2,9)).

Proof of Theorem 6.1. — Let ¢(, z) be a function in L2(2x Z) and 6°(z, z) be a sequence

of functions converging weakly to a limit 6(z, ) in L2(Q x Z). By definition, we have

(S (z,2), 6z, 2)) = / u(2) (PLO°) (2)de,

Q

where wu, is the solution of
, —aldivA( z,Z |Vu +u. = (P!¢)(z) in Q
(69) ‘ ‘
ue = 0 on Of).
From Lemma 4.7, we know that ( P*6¢)(x) two-scale converges to #(z, z). From Lemma 6.5
below, u(x) two-scale converges strongly to u°(x, z), solution of (70). Thus, defining a

limit operator S¢ by u° = S}, we obtain
1
Lim(Sfp(z, 2), 8%(x, 2)) = —~/ / u(x, 2)0(z, 2)dxdz = (S%¢, 6).
=0 1Z JaJz
Therefore, the sequence of operators S converges strongly to S¢, and as a consequence

Iir% a(8%) > a(8H).
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LEMMA 6.5. — Let u, be the mlutwn of problem (69). The sequence u.(x) two-scale
converges strongly to u®(z, z), where u° is the unique solution in the space L2(S): H;L( )]

of
(70) —div. [A*(2)V.u)]+ v’ =¢ inQxZ
z — u’(z, 2) Z-periodic.

Proof. — Standard a priori estimates on w. are
“uf”Lz(Q) + (LGHV'IL(”Lz(Q)N <C.

By virtue of Proposition 6.4, there exists a subsequence, still denoted by ¢, and two limits

u’(z,z) € L*(Q; Hy(Z)) and v'(x,2,y) € Lz(Q H1 4#(Z x Y)), such that u. and a.Vu,
three scale converge weakly to u” and V.u® + V,u! respectively. Let us now multiply
equation (69) by a test function of the following form

2o
. @, e €

where ¢(z,z) and ¥'(z,2,y) are smooth functions, periodic in z and y. Integrating by
parts, and recalling that e, > ¢, we get

'/§2A<w,§)a€vuf Ve + V4 ](r g—%)dx
+/S‘2ug¢(x,%)da:=/;( o) (x) (1: a—f)da:#—o(l),

Passing to the limit, it becomes:

/ / Alz, [V’ + V,u') - [V + V9t dedydz
QJzxy

+./Q/Z‘><Y uwpdrdydz = /Q -LxY d(x, 2)(x, 2)dxdydz.

Since u° and ¢ are independent of y, the y variable can be climinated by introducing the
solutions of the usual local problems

—div, A(z, y)(Vyw'(z,y) +¢) =0 inY x
y — w'(x,y) Y-periodic.
A simple calculation shows that

Yy, 2 Zd (z, 2)w'(x,y).

Thus, u°(z, 2) resolves the homogenized problem corresponding to the usual homogenized
matrix A*(x).

To prove that u. two-scale converges strongly to u’, we repeat the argument used in
the proof of Lemma 4.8. Thanks to Lemma 4.7, applied to the reference cell 7 instead of
KY, we see that P’¢(x, z) two-scale converges strongly to ¢(z, z). Therefore, we have

lim (afA(x,z)VuE-Vuf-l-uf)da::—l—// (A*(2)V.ul - V.l + (u’)?)dadz.
=0ja \ € 1Z] Ja Jz

Therefore, using the lower semi-continuity of the two-scale convergence (see [2]) we
conclude that u. two-scale converges strongly to u°.
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6.2. Small scales: a. € ¢

To study the case of small scales, we keep the definition (65-66) of the operator 5’6 and
slightly modify the extension S¢ as follows

= E!S.P' : L*QxY xZ) — L*(QxY x Z),
where Z = [0, €]V is the reference cell and P! is a new projection operator, defined by
Pt =pPYPD . [2(QxY x Z) — L*Q),

where PV and P{* are respectively a projection operator from L2(Q2 x Y') onto L?(Q)
and a projection from L?() x Y x Z) onto L*(€2 x Y'). They are defined as follows

ey € @ y), (FO8)@) = x [ ot

in each one of the non-overlapping cells Y, of the type [0;¢]™ covering €2, and

€

Voo € @ xY x 2). (PP0)ew) = G2 [ oty Dyay

in each one of the non-overlapping cubes Z7 of the type [0, =% LN covering Y.

On the other hand, Ef is an extension operator whose deﬁmtlon is as follows:
E'=EPYED . [}(Q) — L2 xY x 2Z),

where, EX? and B are respectively an extension operator from L2(£2) into L?(2 x Y)
and an extension from L2(Q x Y) into L?(Q2 x Y x Z). They are defined by:

n(e)

Vi) € L2(Q), (B®f)(= Zx (5 + ey),

where, as usual, z{ is the origin of each cell Y, and x{ is its characteristic function and

n'(e)

Vo(z,y) € L@ xY), (EN)(w,y,2) = Y xz:(2) (a5 + ey, §

i=1

where y{ is the origin of each cell Z;.
It can be checked that E! = (PY)* and PfE! = Idj»(q). Therefore, S¢ is also a
self-adjoint, compact operator and it has the same spectrum as S..

THEOREM 6.6. — The sequence of operators S° converges strongly to a limit S* which

is given by

SCLPIXY xZ) — LAQXY x Z)
¢($,y72) = uo(xsyvz)v
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where u®(z,y,2) is the unique solution in L*( X Y H;#(Z)) of

—div,A(z.y)V.ul +1u° =¢ in QxY xZ
U Z-periodic.

Z kU

Therefore, lirr(l) o(S8) D o(S%) and furthermore,

— lime(S) =] a(s) =10,1].

e 0
>0

Proof. — The proof is completely analogous to that of Theorem 6.1. It appeals to the
same ingredients, and still uses techniques from the three-scale convergence method. In
particular, a new technical lemma generalizing Lemma 4.7 is required in order to prove that:

(1) If 6(z,y, z) is a given function in L*(£%; L% (Y x Z)), then the sequence (P!6)(x)
converges strongly in the sense of three-scale convergence to #(x,y, z).

(2) If 6(z,y,2) is a sequence converging weakly to 6(z,y, z) in L*(; L5 (Y x Z)),
then the sequence (Pf#.)(z) converges weakly in the sense of three-scale
convergence to #(z,y, z).

Since these results are quite standard generalizations of their two-scale counterparts, we

refer to Lemma 4.7 without further details.

7. Boundary layer spectrum

The goal of this section is to prove Theorem 3.5 which characterizes the boundary layer
spectrum. We proceed in two steps corresponding to sections 4 and 5 adapted to the special
case of Opoundary. In a first subsection, we extend the operators 5’6 to a functional space
made of functions which oscillate transversaly to a plane boundary ¥ and which decay
away from Y. This extended sequence of operators converges to a new limit operator
which captures these sequences of eigenvectors concentrating on . We characterize this
limit spectrum oy which may contain new eigenvalues not included in opjoc,. In a second
subsection, we prove a completeness result which states that the boundary layer spectrum
Oboundary 15 precisely contained in the union of all the limit spectra oy corresponding to
the different parts ¥ that make up the whole boundary 0f2. Finally, a third subsection
is devoted to a brief generalization of the previous analysis to the case when X is a
lower-dimensional part of the boundary 0f2, namely corners in 2-D.

7.1. Boundary layer homogenization

In this subsection we assume that €2 is a cylindrical bounded open set in RY in the sense
that there exist 3, a bounded open set in R¥-1 and L > 0, a positive length, such that

(71) 0 = x]0; L[.

With no loss of generality, we assume that the axis of the cylindrical domain {2 is the N*"
direction: a generic point z € €2 is denoted by z = (z', ) with 2’ € ¥ and x5 €]0; L[.
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The goal of this subsection is to analyze the asymptotic behavior of that part of the
spectrum ¢ (S, ) which corresponds to eigenvectors concentrating on the boundary ¥ x {0}.
At this point, no restrictions are made on the sequence ¢ which goes to zero.

Similarly, we define a semi-infinite band
G =Y'x]0; +o0],

where Y’ =]0,1[¥~1 is the unit cell in R¥~1. A generic point y in G is denoted by
y = (y,yn) with ¢/ € Y’ and yy € R™.
Recall that the operator S. is defined by (see (23)):

Se: LA(Q LXQ
(72) { f( ) : . ()
where u, is the unique solution in H} () of
(73) —e2div[A(z, 2)Vu] +u. = f in ©,
ue =0 on 0f2.

As in section 4, we extend the operator S.toa space of two-scale oscillating functions.
However, here we choose a space corresponding to boundary layers near ¥ x {0}:
L2 (% Li(K G)) where K > 1 is a given positive integer, and K G denotes the semi-infinite
band [0, K]V ~1x]0; +o0]. It is a space of two-scale functions oscillating periodically in 3’
parallel to X, and decaying to 0 as yy goes to infinity (in the sense of square integrable
functions in the semi-infinite band G). More precisely, Li(G) is defined by:

LY(G) = {e(y) € L*(G) | ' v &(y,yn) is Y'-periodic}.

Similarly, we define Hj,(G) as the Sobolev space of all functions in H'(G) which are
Y'-periodic and vanishes for yy = 0

(74)  Hou(G) = {$(y) € H'(G) | y' — ¢(y',yn) is Y'-periodic, and ¢(y’,0) = 0}.
An extented operator BYX € L(L*(Z; L% (KG))) is defined by
(75) Bf = BXS.PF,

where P/ and E are respectively a projection from L(%; L% (K G)) onto L*(2) and an
extension from L*(€) into L*(X; L2 (KG)). To insure that BY is still self-adjoint, we ask
PX and EX to be adjoint one from the other. To be sure that S, and BX have the same
spectrum, we ask the product PXEX to be equal to the identity in L2(€2). The Hilbert
space L%(%; LQ#(K G)) is equipped with the scalar product

W)= g | | ol e iy,

To build such extension and projection operators, we introduce a regular mesh of size
Ke of the boundary I let (35)1<i<n'(e) be a family of non-overlapping cells of the type

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES



192 G. ALLAIRE AND C. CONCA

[0; K]Vt covering X (the number of cells is n/(¢) which is of the order of ; \1 r).
We denote by z;° the origin of each cell 3¢, and by x{(x') its characteristic funcllon
Defining a projection operator by:

PX . L2(E;Li(KG)) — L)

n'(e) . B
(76) o) D) e o L D

and an extension operator by

EF L) — LY LL(KG))
n'(e)
(77) flx)— > xi@) f@ + ey eyw),

=1
their announced properties are checked in the following

LEMMA 7.1. — The operators PX and EX defined by (76) and (77) satisfy:
K c K
”Es fIIL‘Z(Z;Lf%(KG)) < ﬁuf“L?(Q)a ”P€ ¢”L2(9) < C\/E||¢“L2(E;Li(KG))

and ) . .
PEXEK =1dp:(n), (PX) =¢EF.

€

Furthermore, the product EX PX converges strongly to the identity in the space
E(L2(E L2 (KG)))

Proof. — The proof of lemma (7.1) is very similar to that of Lemma 4.2. Therefore,
we simply sketch the derivation of the estimate for PX ¢ (that for EX f is parallel). By
definition of the mesh (Xf)i<i<n(c), We have

n'(e)

[ 1ot = > [P

Since by Cauchy-Schwartz inequality in ¢

1 " x
K12 « P29,
PR < e [ 1022
we deduce
n'(e)

K 4124, 1 . ! i 2 i
/Q |PEp|*dx < oL g/ﬁ /z;x]o,u'd)(z’e)} dzrd? .

1
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By the change of variables y = %, we obtain

n’'(e)

[ipsopas<oey [ ot Pz
Q o1 /I JEY xR
< Cé/ / |¢(zl7y)|2d?/d2, = C€H¢||iz(z;Li(KG))-
L JKY xR+

THEOREM 7.2. — The sequence BX converges strongly in L(L*(%; LZ#(KG))) to a limit
operator B defined, for any ¢ € L*(X; L3 (KG)), by B¥¢ = uX the unique solution
in L*(; Hy,(KG)) of:

— div, [A((#',0),9)V,uf ()] + uX(2',y) = §(='y) in ©x KG
(78) uwf(z', (y',0)) =0 on yn =0
y = uf (2, (v, yn)) [0, K]V -periodic.
Moreover, BX is a self-adjoint non-compact operator in L(L*(3; L% (K G))) satisfying
o(B¥) c hII(l) o(Se).
Remark that, since the solution u® of (78), considered as a function of y, belongs to
Hé#(K G), it decreases to 0 in a weak sense as yy goes to infinity. Of course, by Rellich
theorem (see e.g. [42], [28], [43]), we can also deduce from the strong convergence of
BX 1o BX the corresponding strong convergence of the spectral families which can be
interpreted as an “averaged” convergence of the eigenvectors. To compute the spectrum
of B we diagonalize B¥ by using a variant of the Bloch wave decomposition: Bloch

frequencies are introduced only for the space variables parallel to the boundary %. The
proof of this partial Bloch wave decomposition is identical to that of Lemma 4.9.

LEMMA 7.3. — For any function ¢(y) € Li(KG) there exists a unique family

$i(y)} € LL(G)X Y7 indexed by a multi-index j' whose N — 1 components belong
J #
to {0,..., K — 1}, such that

)= 3 by

0<j'sK-1

1 / 2 E: 2
KN_l.KGll Y GljI Y

0<y'<K-1

and

This decomposition, denoted by B', defines a unitary isometry from L;&(KG) into
¢ N-1

L2,(G)"
From Lemma 7.3, we easily deduce the following:

PRrOPOSITION 7.4. — The operator BX can be diagonalized as
B* = B"diag[(Bj:/k)o<j <k 1] B,
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where, for each Bloch frequency 6' = j'/K, By is a self-adjoint non-compact operator
defined in L(L*(X; L3(Q))) by

79) {Bg, PS5 L(G) — LS5 LA4(G))

0 — 1,

where u(z',y) is the unique solution in L*(3; H}.(G)) of

—div, [A((x’,()), yV, (ue%m/‘y/)] + w2 iy = g™V iy Y x G

(@', (y',0)) =0 on yy =0
Yy — u(a’, (v, yn)) Y’ -periodic.
The spectrum of BY is then o(B¥) = | o(B,).
0<jiZK-1 %

In order to characterize the spectrum of By, we freeze the x’ variable. For any fixed
#' € ¥ and ¢ € Y’ we introduce an operator By .+ acting on L% (G), defined by

(80) {Bﬂ',w' FLL(G) — LL(G)

¢ — U,

where u(y) is the unique solution in Hg,(G) (defined by 74)) of:

— divy [A((;L-’, O)’ y)vy (uezmpay/” n ueQﬂ,ig/_y/ _ gbe?”’:a"y/ n G
u(yl)o) = 0 on yN — O
Yy — u(y',yn) Y'-periodic.

Remark that each operator By .- is non-compact since the band G is unbounded. Therefore
its spectrum may be not purely discrete. As usual its spectrum can be decomposed into
its discrete and essential parts

U(BH’,JC’) = Udisc(BG’,w’) U o-css(BG’,;v’)‘

ProposiTioN 7.5. — The operator By .+ is a self-adjoint non-compact operator whose
essential spectrum is given by

Oess(Be o) = U a(Tor,65),(2,0))5
0<8y <1

where Ty, is the operator defined in Proposition 4.12. Furthermore, each discrete
eigenvalue in 04;5.(By ) is locally continuous in (8, 2'), and its associated eigenvector
is exponentially decreasing when yy goes to infinity.

Globally, the spectrum of By, is continuous in (¢',z') as a subset of R*. Therefore,
defining the limit spectrum associated to the surface Y. by

(81) o = lim o(BY%),

K-—+oo

we have

Oy = U O'(Ber) = U O'(Bgrrml).

g'ecy’ -’L”EE,G’G)”

TOME 77 — 1998 — n° 2



BLOCH WAVE HOMOGENIZATION AND SPECTRAL ASYMPTOTIC ANALYSIS 195

REMARK 7.6. — The discrete spectrum of By . is made of, at most, a countable number
of eigenvalues. In some cases it may be reduced to a finite number of eigenvalues, or even
be empty, according to the choice of the matrix A(z,y). If A(x,y) depends only on yn
and has a simple form (for example, it takes only a finite number of values), an explicit
computation of the discrete spectrum of By . can be performed by solving a simple 1-D
ordinary differential equation. Such an example shows that the discrete spectrum may be
empty or not, depending on the values of A(x,y).

To prove Theorem 7.2, we recall the following results from [7] concerning two-scale
convergence in the sense of boundary layers (for further references on boundary layers in
homogenization, see e.g. [8], [9], [11], [27], [30)).

ProrosITION 7.7.
(1) Let u. be a sequence in L*(Y) such that

el z2 @) < CVe.

There exists a subsequence, still denoted by wu., and a limit uo(x',y) €
L*(%; LL(K G)) such that u. two-scale converges weakly in the sense of boundary
layers to wuy, i.e.

1 z 1
1- - . !z d — ., ’ ’
im = [l D=z [ e et iy

e—0 ¢ Ja
for all test functions o(z',y) € L4(G;C(X)).

(2) Let u. be a sequence which two-scale converges weakly in the sense of boundary
layers to ug, and furthermore satisfies

I 1 _ 1
lim -\/—EHUEHL?(Q) = WHUOHL?(EMG)-
Then, u. is said to two-scale converge strongly in the sense of boundary layers to uq,
which means that, for any sequence v. in L?(Q2) which two-scale converges weakly
in the sense of boundary layers to a limit vo(z',y) € L*(X x KG), one has

. 1 7 1 ! ! / !
i~ [ u(@)oule)ol', Do = / /K ol ol (e’ )y,

E——»OG.Q

for all smooth functions ¢(z',y) € C(5; CL(KQ)).
(3) Let u. be a sequence in H}(Q) such that

1
Ve
There exists a subsequence, still denoted by u., and a limit ug(z',y) €

L2(%; Hj,(KG)) such that u, two-scale converges in the sense of boundary layers
to ug, and eVu, two-scale converges in the sense of boundary layers to V ,uy.

(Huean(Q) + CHVUEHLZ(Q)N) < C.
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We also need another lemma, very similar to Lemma 4.7, the proof of which is safely
left to the reader.

Lemma 7.8.

(1) Let ¢(x',y) be a function in L*(X: L% (K G)). Then, the sequence PX ¢ two-scale
converges strongly in the sense of boundary layers to ¢.

(2) Let ¢°(2',y) be a sequence converging weakly to $(x’,y) in L*(¥; Li(KG)). Then,
the sequence PX ¢¢ two-scale converges weakly in the sense of boundary layers 10 ¢.

Proof of Theorem 7.2. — Let (', y) be a sequence converging weakly to ¥(x’,y) in
L*(Z; LL(KG)). For any ¢ € L*(%; L3 (KG)), we need to show that

lim / / (BE ¢Yepeda’dy = / / (BE ¢)epda’ dy.
SJRG JYJKG

e—() .

By definition of BX and since (EX)* = ¢~ PX, one has

1 - I ) ,
Eﬁ/ / (BE¢)peda'dy = e 1/SE(PFA¢)(P3‘?/JF)(11’:€ 1/?%(1351‘1/%)(1-77»
s JKG Ja Ja
where u, = S.(PX¢) is the unique solution of
{ —e2divA (zr f) Vue+u, = PE¢p in Q

ue = 0 on 0f) .

Since [|[PX¢||12(0) < CV/e, the following estimate holds
HUFHLZ(Q) + ﬁnvu(”LQ(Q)N < C\/E

Using Proposition 7.7, it is easily seen that u, two-scale converges weakly in the sense of
boundary layers to a limit u* (2, y) which is the unique solution of (78) in L*(%; Hj,(G)).
Furthermore, since PX ¢ two-scale converges strongly to ¢, a simple computation (similar
to that in the proof of Proposition 4.4) shows that u. two-scale converges strongly too.
Finally, using Lemma 7.8, we can pass to the limit

1 f ' 1 . ,
lim = [ u (P )dx = ———/ / ufpda' dy.
c—0¢ ./Q (E24e) IKY'| Js Jra v /

Defining the operator BY by u® = BX ¢, one can easily check its desired properties.

Proof of Proposition 7.5. — The operator By .+ is clearly non-compact since G is
unbounded. Let us first characterize its essential spectrum by using the Weyl criterion. Let
w be in o..5(By /) and v, be an associated Weyl sequence of eigenvectors, i.e.

lvallLz(y = 1. v, — 0 weakly in L*(G),
By pivy, — pv,, = 1, — 0 strongly in L*(G).
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Let us check that for any R > 0 the sequence v,, converges strongly to 0 in L?(Gg) with
Gr = GN (Y’ x (0,R)). By definition w, = By /v, satisfies

(82) — div [Av (a9 )] + 0 = 0,2 i G

From equation (82) we deduce that w,, is uniformly bounded in H 1(G r) and, by Rellich
compactness theorem, that w,, is compact in L2(Gg). Since v, = %wn + r, converges
weakly to 0, we deduce that both v, and w, converge strongly to 0 in L?(Gpg). Then,
using again equation (82) it is easily seen that w, converges strongly to 0 in H*(GR).

Let ¢(yn) € C(R) be a smooth cut-off function such that ¢ = 0 on | — oc,1] and
¢ = 1 on [2;400[. We build a new Weyl sequence defined by u, = ¢v, (remark
that ||¢vn|lz2y — 1). Defining ¢, = ¢w,, it is the solution in the entire band
[0, 1]¥"1x] — o0; +oc[ of

. cnl ! Y Y
—dIV[AV(thQTHO Y )] +tn627r19 Yy ¢,Un€27r19 Y +T;13

with

n= -

= —w, div [Av (¢>e2“‘9"y’)] — 24V (wnew"y’) V.

Since w,, converges strongly to 0 in H} .(G) and V¢ has compact support, it implies that
7!, converges strongly to 0 in the band [0, 1]V~ x] — co; +o0|. Therefore, u,, is a Weyl
sequence for an equation similar to (82), but posed in the whole band [0, 1]V ! x]~o0; +oq.
It is possible to apply to this equation the Bloch decomposition in the yn direction, and
therefore to prove that its spectrum is nothing but the union of the spectra of the operators

T(..0),(6",6,) When 8 runs in [0, 1]. This yields that x belongs to  |J  o(T(wr0),67.6x))-
D<oy <1

To prove the reverse inclusion, o(T(. oysr,65)) C 0(Berar), we take an eigenvalue
v and eigenvector u of T(,r g)er 6y), Normalized by ||uf[z2yy = 1. We build a Weyl
sequence v, for By , defined by

_u{y)¥n(yn)

) = e

where v, is a sequence of smooth cut-off functions given by

Yn(yn) = yn on 0<yy <1,
Yu(yn) =1 on 1 <yy<mn,
Yolyn) =n+1-—yn on n<yy <n+l,
Yn(yn) =0 on n+1<yy.

Remark that ||utn||z2(¢) goes to +oc with n. It is easily seen that v,, converges weakly
to 0 in L%(G), while the function r, defined by

- 9 ' 0 ]. 07 a7
—div [AV (vne2’”9 v )] + 0,20y = ;vneQ"’o Y +r,

converges strongly to 0 in L?(G). Therefore, i belongs to the essential spectrum of By ..
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We now prove that the eigenvectors associated to eigenvalues in gy..(Bg ) decay
exponentially in G. Our argument is by contradiction of the Weyl criterion. Let
it € 04isc(Bgr o) and u(y) be an associated normalized eigenvector. Let ¢,, be a sequence
of smooth cut-off functions defined by

Pulyn) =0 on 0<yy <n,
¢n(yN) =Yy —n on n < YN <n+ 1’
$n(yn) =1 on n+1<yyn.
Let u, = ﬁ;g—(—). Clearly u, converges weakly to O in L?(G). However, any
i G

subsequence of u, can not be a Weyl sequence for u, since p belongs t0 04i5.(Ber »)
which is disconnected from o..,(By ). Defining 7, = By ,ru,, — fiu,, this implies that
there exists a positive constant C and an integer ng such that

VY > ng |Iralleee 2 C.

Since u is an eigenvector, an easy computation yields

—div [AV (rnezﬂel'y/)] + rpe?™ Y = _——‘—“?@nﬁw(a) (u div [AV (¢n627ri0"y/)J
124V - v(qsne%""’"y’)).

Multiplying this equation by r,, and having in mind that V¢, has compact support in
G, = GN (Y’ x (n,n+ 1)) leads to the estimate

Irnllzz ey + IVTallLz @y~ (IVull L2y + llullze@.))-

C
S - .
Hud)n”L’z(G)

Since ||ry||r2(q) > C, we deduce

lunllz2 ) < C(IVullz v + llul

L3(G.))-

Since u satisfies the spectral equation in G it is not difficult to check that

IVullz,yv < Cllulliza, - ,u6,06,41)-

Therefore, defining a function F(n) = [|ul|?. (v y» we have proved

X (n,+o0)

Fn+1)<C(F(n-1)- F(n+2)).

)

I
c ) F(n) which yields the exponential

Since F is decreasing, this implies F'(n+3p) < (5+—1

decay of u when yy goes to +oo.

It remains to prove that the eigenvalues in 04;5.(Bg ) are locally continuous with
respect to (z,6’). Labeling these discrete eigenvalues by decreasing order, this is a result
of a classical spectral perturbation theorem (see Theorem 7.9 below, the proof of which
may be found in e.g. [26], [28], [43]). The continuity of the eigenvalues of 04;sc(Bg 2)
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is only local since the labeling of the eigenvalues allows for jumps when one discrete
eigenvalue happens to merge into the essential spectrum as 6’ varies. However, because

Oess(Borw) = U 0(Tier 6n),(20))» the essential spectrum of By . is continuous
0<n <1
(considered as a subset of RT), and so is its entire spectrum.

THEOREM 7.9. — Let A,, be a sequence of bounded operators in a Hilbert separable space
which converges uniformly to a limit operator A in L(H). Let T be a smooth compact
curve in the complex plane which encloses a finite number of eigenvalues in o 4;5.(A) and
does not intersect o(A). There exists an integer ng such that for any n > ny, the same
curve 1" encloses the same number of eigenvalues (including multiplicities) in 04;,.(Ay)
and does not intersect o(A,).

7.2. Completeness of the boundary layer spectrum

In this subsection we assume that 1 is a rectangle with integer dimensions, i.e.

(83) Q=

i

N
]0; Ll[ , and L; € N*.
=1

The sequence of small parameters e is restricted to be of the type
(84) L e N*
€pn = — 1 >
n

in such a way that Q is the union of a finite number of entire periodic cells Y. To

simplify the notations, we shall not indicate the dependence on n and simply denotes by
¢ the particular sequence defined in (84).

REMARK 7.10. — Remark that the assumption on the geometry of S can be slightly relaxed.
Any polygonal domain with faces parallel to the axis (1.e. the normal is everywhere one of
the basis vectors) and having vertex with integer coordinates could equally be considered.
The crucial point is that there still exists some periodicity of semi-infinite bands normal to
the boundary. The general case of a non-polygonal domain and of any possible sequence
€ is not treated here and is a difficult open question.

In the previous subsection, we proved that
oy C 1in(1) o(5.),
where o is the boundary layer spectrum associated to the surface ¥, defined by (81) and

S, is the operator defined by (72). Remark that, due to our hypotheses on the domain )
and on the sequence ¢, the surface ¥ can be any of the faces of {2 defined by

N N
[D0:z;0x{0} or  []I0;Li[x{L:} for1<i<N.
o g
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Of course, the analysis of the previous subsection can be repeated for any other lower
dimensional manifolds (edges, corners, etc.) which compose the boundary of 2. For
0 <m < N -1, let us define the m-dimensional parts of 0f2

m N
1n T H 0 LT(]) H {'rT(j) =0or LT(j)}?

j=m+1

where 7 is any permutation of {1,2,..,N}. There are 2¥-™Cy ™™ m-dimensional
manifolds of the type %,,,. A simple adaptation of the two-scale convergence in the
sense of boundary layers for such manifolds allows to prove that, for any m and 7,

oz, Climo(5.),
where oy, _ is the spectrum of a family of limit problems posed, not in a semi-infinite band
G, but rather in a periodic domain bounded in the variables (1), ..., Z7(m) and unbounded
with respect to the other variables. Eventually, defining the union of all these spectra

(85) g0 — U 0%, 79
m,T

we deduce from the geometric assumptions on {2 and ¢ that
(86) gsa C 1irr(1] o(S.).

Comparing our results (17) and (86), a completeness result amounts to link the two
definitions of the boundary layer spectra gsn and Ohoundary-

THEOREM 7.11. — For the sequence ¢, defined by (84), the boundary layer spectrum
satisfies

Tboundary C os0-

Therefore, the limit spectrum of the sequence S, is precisely made of two parts, the
Bloch and the boundary layer spectrum

lim o(S.,) = oBloch U 050,

e, —0
where the boundary layer spectrum g is explicitly defined by (85).

REMARK 7.12. — Theorem 7.11 does not state that Oyoundary, defined by (16), and o5
coincide. Indeed, we have shown in Proposition 1.5 that oaq contains some parts of the
Bloch spectrum. It is not clear whether Gyoundary cOntains these parts of the Bloch spectrum
too. The comparison of caq and Opoundary IS definitely a very difficult question. Note,
however, that ogq may contain eigenvalues which do not belong to opoch, according to
Remark 17.6.
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To prove this completeness result, we need an intermediate result in the spirit of Section 3.

THEOREM 7.13. ~ Let us consider Q as a cylindrical domain defined by ¢ = ¥ x]0; L],
with ¥ a bounded open set in RN ! and L > 0. Consider a sequence of eigenvalues .
and eigenvectors v. € H} () such that

(87) locllzaey = 1. limpe =g,

(88) { —e2div[A(z, £) Vv ] +v. = Lo, in ©,

v, =0 on 0N,
Assume that p belongs 10 ohoundary, 1.€. for any n > 0, there exists a constant C(n) such that
(89) llved(z, 0Q)™ || L2(q2y + €ell(Vve)d(z, I)™ || L2(yv < C(n)e™.

Assume further that there exists a (N — 1)-dimensional open set o, with & C %, a positive
number 1, with 0 < | < L, and a positive constant c such that

(90) i [Jve| 22 o xjoup 2 € > 0.
Then 1 belongs to the boundary layer spectrum associated to the surface

W€ oy,

where oy is defined by (81).

Let us admit for a moment Theorem 7.13, as well as its generalizations concerning all
other manifolds ¥,,, ; making up the boundary 9{2. We are in a position to complete the

Proof of Theorem 1.11. - Let {i € Oboundary- By definition there exists a subsequence
(still denoted by ¢) of eigenvalues p. and eigenvectors v, of S, such that

S.v, = peve With ||ve]|p2y =1 and lin%p,e = L,

and, for all subset w satisfying @ C (2,

i f[vell () = 0.

N
If there exists a (N — 1)-dimensional open subset o;, compactly embedded in []]0; L,],

=1
FE
a positive length 0 < I; < L;, a positive constant ¢ > 0, and another subsequence (still
denoted by €) such that
(91) B |[oel| 22 oixjoiip 2 ¢ or  lim flvellz2 e L.y 2 €

then, by application of Theorem 7.13, the limit eigenvalue belongs to osq as desired.
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If (91) does not hold true for any such o;,l;, ¢ and subsequence ¢, it implies that the
L?-norm of v, concentrates near the lower-dimensional edges of the rectangle ). In this
case, we repeat the above argument with a (N — 2)-dimensional open set included in one
of the set ¥ _» -, and so on up to the 0-dimensional set made of one of the vertex of €.
A tedious but simple induction argument on the dimension . shows that there exists at
least a dimension 0 < m < N — 1, a permutation 7, positive lengths (/,(;))n+1<j<n, @
positive constant ¢, and a subsequence ¢ such that

lir% lvell L2y = ¢ >0,

with w C 2 of the type

N

w=ox [[ (0.Lglorlg Lepnl) and 7 []10: Lol
j=m+1 j=1

Then, applying an adequate generalization of Theorem 7.13, this proves that the limit
eigenvalue belongs to osq.

Proof of Theorem 7.13. — Let 95 and ¢’ be two smooth cut-off functions satisfying

Yn(rn) >0 Vry €R,
¢N($N)El $N<L/3,
Yn(zn) =0 zy >2L/3,
and
¢ (2') 20 in RN™!
P(@)=1 in o,
P (2') =0 outside X.

Let us define a sequence u., supported away from all boundaries of 2 except X, by

_ PN (@) (z)
(e n ) (@ Jve(2)] 20y

It is not difficult to check that the sequence u. is a sequence of quasi eigenvectors in
RY = RN~ x R* in the sense that it satisfies

(92) e

u, =0 on ry =0,
where 7. is a remainder term which satisfies

(7.E7wE>H71,H3(Riv) -0

lim
=0 [[well 2y + €l Ve|l g2y

7

for all non-zero sequences w. € Hj(RY).
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Remark that this definition of quasi eigenvectors in RY is slightly different from that
in RV (¢f Definition 5.4) since it features a Dirichlet boundary condition on zy = 0.
Let 3. be a sequence of intermediate scales such that ¢ < 5. < 1 and [, is an entire
multiple of €, ie.

. . € Be

(11_1}1(1)&-0, !%Z{_O, and ?—pFEN.
The doynain £2 is covered by a mesh of non-overlapping cubes (P;)i<;<n(g,) Of the type
[0, 3. The number of such cubes is n(f3.), which is of the order of L—QN—' We denote

by x{ the center of each cube Pf, and by i(¢) the index such that the L%-norm of u,
is maximum on the cube P,

94 € € = € p €Y.

(94) luellzzcpy,) = | max luellzacer

Since 321 cicna.) luellig( pey = 1, we deduce that there exists a positive constant C' > 0
such that 1

(95) lellzei ) > OB,

Since xg(e) runs in the compact set Q, there exists a subsequence, still denoted by €, and
a limit point z, € Q, such that :cg(e) converges to xo. Moreover, due to the estimate (89),

xg must belong to ¢ C X. If it were not true, one would obtain a contradiction in (89)
for n > N/2.

In order to localize u. around o, we define a smooth function ¢ € D(RY) such that

¢>0 in RV,
d=1 in [-1/2,+1/2]",
$#=0 outside [—1;+1]".

Introducing the cut-off function

(o) = o~
€ - ﬁe )

we define a function @. in Hg(RY) by

Delle

(96) P L a—
| pereell L2 mry

As in the proof of Proposition 5.9, an adequate choice of the intermediate scale 3. allows
to prove that #. is also a sequence of quasi eigenvectors in Rﬂf for the matrix A(zo, 2),
i.e. it satisfies

(97) —e?div [A(z0, 2)Vit] + e = L +71?  in RY,
e =0 on zy =0,
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0

where 7,

i1s a remainder term which satisfies

<7'?>'IUE>H‘*1,HO‘(H$') 0

lim
e—0 ||w€||L2(Rir) + GHV'IUF”L:(Ri')N

for all non-zero sequences w, € Hg(RY).

At this point we could apply the spectral and Bloch decompositions to the sequence .
(specialized for the case of the half-space domain Rf ), and mimic the proof of Theorem 5.2.
However, we would run into serious troubles since the spectral decomposition is not
discrete: the operators Bg/’wé have both discrete and essential spectrum. Therefore, one
must use integration with respect to the spectral family rather than summation over discrete
frequencies. This leads to intricate problems when some eigenvalues change type (discrete
or essential) as ' varies. To avoid these difficulties, we use a different strategy based on
a rescaling or blow-up argument.

By the change of variables y = z/¢ we define
Ue(y) = i (ey)

which is easily seen to be normalized, ||U.|| z2ryy = 1, and solution of

U, =0 on yy =0,

where R, is a remainder term which converges strongly to 0 in H~'(RY). Since U. is
bounded in Hj(RY), there exists a limit function U such that, up to a subsequence, U,
converges weakly to U. Multiplying equation (98) by a test function and passing to the
limit yields that UU is a solution of

(99) { —div,[A(zo,y)V, U]+ U = LU in RY,

U=0 on yy = 0.
Let us introduce an operator B> defined by
B> : L*(RY) — L*(RY)

Fly) = V(y)

where V(y) is the unique solution in Hj(RY) of

{—divy[Amo,y)vyV(y)] +V(y)=F(y) in RY
V(y)=0 on yny = 0.

Loosely speaking B is the limit, as K goes to infinity, of B¥X defined in Theorem 7.2.
It is easily checked that 6. = B=U, — pU, converges strongly to 0 in H}(RY). If the
solution U of (99) satisfies U # 0, we have found an eigenvector of B> for the eigenvalue
. On the other hand, if U = 0, this implies that U, is a Weyl sequence of B> for the
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eigenvalue p which therefore belongs to its essential spectrum. In both cases, a simple
Bloch decomposition of (99) shows that ;1 must belong to the spectrum oy.

REMARK 7.14. — Let us remark that Theorem 7.13 is valid for any choice of the sequence
¢ and not only for the particular sequence ¢, defined in (84). The interested reader will not
fail to notice that the present proof of the completeness result is different from that of section
5 where we used the concept of Bloch measures in order to prove a similar completeness
result by means of an energetic method. Here, we propose a new proof, based on a rescaling
or blow-up argument, which is simpler, although less precise, and which could equally be
applied in section 5. We use this new argument (already introduced in our work [7]) because
the spectral decomposition of v. and the global continuity of the discrete eigenvalues (with
respect to the Bloch parameter 0') are not obvious.

7.3. Analysis of the corner spectrum in 2-D

In the previous subsection the boundary layer spectrum oy was defined as the union
of ail spectra of the type os where X is any lower dimensional manifold composing the
boundary 9. When ¥ is a (N — 1)-dimensional hyperplane, a complete characterization of
ox has been given in details. However, for lower dimensional manifolds we have not been
very precise in the generalization of the limit spectrum o, to the case of edges, corners, and
so on. The purpose of this subsection is to give a brief account of this generalization when
analyzing the corner spectrum in two dimensions. Restricting ourselves to plane square
domain 2 has the advantage of simplifying the exposition without loosing much generality.

The domain € is from now on a rectangle with integer dimensions, i.e.
Q2 =]0; Ly[x]0; Lo|.

We describe the limit spectrum associated to the corner located at the origin. We define
the upper right quarter of space Q* = Rt x R*. We extend the operator S, defined by
(72), to the space L?(Q"). Remark that it is a space of “corner boundary layers” without
any periodic oscillations. The extented operator C. € L{L?(Q")) is defined by

(100) C. = E.S.P.,

where P. is a projection from L*(Q™) onto L*(Q), defined, for any ¢(y) € L?(Q™), by
(Ped)(z) = € 2¢(%) restricted to €2, and F, is an extension from L?*(Q) into L*(Q™),
defined, for any f(z) € L2(2), by (E.f)(y) = €2 f(ey) extended by 0 in QT \ e~ 1{2. One
can easily check that P, and E, are adjoint one from another and satisfy

P.E. = IdL'Z(Q)v (Pe)* = E..
Furthermore, the sequence E. P, converges strongly to the identity in £(L%(Q™)).

THEOREM 7.15. — The sequence C. converges strongly in L(L*(Q%)) to a self-adjoint
and non-compact operator C defined, for any ¢ € L*(Q%), by C¢ = u the unique solution

in HY(Q*) of

{ — divy[4(0,)Vyu(y)] + u(y) = ¢(y) in QT

(101) w(y) =0 on yy =0 and yo = 0.
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The spectrum of C satisfies
o(C) C lir% a(S,).

Problem (101) can not be simplified by using Bloch waves since Q% is not a periodic
domain. The operator C' is non-compact since the quarter space Q" is unbounded. Therefore
its spectrum can be decomposed into its discrete and essential parts

O(C) = Udisc(c) U (TESS(C).
PROPOSITION 7.16. — The essential spectrum of C is given by

Tess(C) = U o(Tior000) |J o(Bao) |U o(Bao),

0<6: <1, 0<6:<1 0<6,<1 0<62<1

where 1y .. is the operator defined in Proposition 4.12, By, . and By, , are the operators
defined in Proposition 1.5 respectively for the boundaries y, = 0 and y; = 0. Furthermore,
any eigenvector for a discrete eigenvalue in 04;,.(C) is exponentially decreasing when y,
or Yo goes to infinity.

Remark that the essential spectrum of C has again a band structure. However, there may
be discrete eigenvalues too in o(C). Therefore, the boundary layer spectrum g defined
by (85) may contain isolated discrete eigenvalues.

The proofs of Theorem 7.15 and Proposition 7.16 are very similar to that of Theorem 7.2
and Proposition 7.5 and are left to the reader. Remark that the matrix A(z,y) and the
operator Ty, are both evaluated at the origin x = 0 in the above results. Of course,
there may be eigenvalues in the discrete spectrum of C which are not in any of the
previous limit spectra.
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