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ABSTRACT. In the context of topology and shape optimization, we minimize the sum of the
elastic compliance and of the weight of a two-dimensional structure under specified loading. A
relaxed formulation of the original problem which uses composites obtained by microperfora-
tion is introduced. A new numerical algorithm is proposed ; it provides a natural link between
the previously known method of Bendsoe, Kikuchi, and Suzuki, and that of Allaire and Kohn.

1. Motivation

It is by now well established that the shape optimization problem which consists in the minimi-
zation of the sum of the compliance and of the weight for an elastic body under a given load
does not necessarily possess a solution among regular domains. A generalized solution may
however be obtained upon allowing for microperforations. The resulting relaxed problem is
obtained by homogenization of these microstructures, and is described in [1], [2] (for an intro-
duction to the use of homogenization for relaxation in variational problems, see [9], [10], [11],
and the references therein). It will be assumed that the reader is familiar with the shape optim-
ization problem described in the paper [1] in this volume (for further insight into the problem
see also the list of references in [2]).

Our goal in this study is to take full advantage of the intimate knowledge one has about
the relaxed formulation to present an efficient numerical algorithm. Specifically we will rely
on the optimal character of a certain class of microstructures, namely laminates.

The relaxed formulation described in [1], [2] reads as follows :

Mindivr:O,-,,Q Min0S951[<A_1T,'C> + l@:ldx, (11)
T.n=f OflaQ AEGG

where f is a given boundary loading, @ is the volume fraction of material in the composite, G
is the set of all possible effective elasticity tensors for a given density 0, and A is a positive
Lagrange multiplier whose effect is to modulate the relative contributions of the compliance
and of the weight.

In (2] the minimization of <A ~'7,t> over G ¢ (the theoretically delicate step) is performed
with the help of the Hashin-Shtrikman variational principle. But it is also known [3] that, for a
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where f is a given boundary loading, @ is the volume fraction of material in the composite, G g
is the set of all possible effective elasticity tensors for a given density 0, and A is a positive
Lagrange multiplier whose effect is to modulate the relative contributions of the compliance
and of the weight.

In [2] the minimization of <A ~t,t> over G g (the theoretically delicate step) is performed
with the help of the Hashin-Shtrikman variational principle. But it is also known [3] that, for a



given T, this minimum is attained by an effective tensor A corresponding to a rank-N lamina-
tion in N space dimensions. The reader is referred to [6] for a detailed presentation of multi-
ple layering in the context of elasticity, and to [3] for the optimality argument that leads to the
aforementioned result. Further, according to [8] and [3], the directions of lamination coincide
with the eigendirections of T. Note that this last feature of the optimal composite is specific to
the problem of minimization of <A™'1,t> ; it does not hold true in the case where <A £e> is
the quantity to minimize, for a given strain € (cf. [3], [7D. It is at the root of the algorithm
presented in this paper.

Thus far two numerical methods have been implemented, that proposed by Bendsoe,
Kikuchi, and Suzuki [5], [12], and that of Allaire and Kohn [2]. The former transforms the
minimization over statically admissible stresses T into a maximization over displacements, and
(1.1) becomes

Max o< 6y <1 Min 1.y { r[[%< Ax)e(u)e()> + A B(x)] dx - a’Lf.u } (1.2)
A(x)eG'am

It then specializes the minimum over G gy 10 @ minimum over rank-N laminates (at least in
the version of this method presented in [4]), and proposes a numerical scheme based on the
first order optimality conditions at the saddle point of the functional (1.2). This leads to a
rather intricate updating process for the design variables (the volume fraction of material 0, as
well as the individual volume fractions and orientations of each layer). The computation is
performed using "alternate directions" : firstly the solution u of a linear elasticity problem
where all design variables are fixed is obtained, then the design variables are updated using the
optimality criterion.

The latter approach performs analytically the minimization over 6 and G ¢ for each 1, and
thus (1.1) becomes

Min 4y ¢20 im0 in(t) dx (1.3)
Tn=f on aQ

where F is a highly non linear and non-convex function of T (see [1]). The design variable 8
is easily recovered from the minimizer T in (1.3) through algebraic optimality conditions for 0.
From a numerical standpoint, a two-dimensional non-linear elasticity problem is to be solved :
the energy F; is then minimized with an iterative conjugate gradient method. As in all compu-
tations involving complementary energies, high degree finite elements have to be used to accu-
rately compute the stress. For this reason, as well as for lack of a completely explicit expres-
sion of Fy, this approach is restricted, for all practical purpose, to the two-dimensional setting.

We outline in the next section an algorithm which sits right in between the above
described methods. It does not use the strain formulation which would lead, as in [5], [12], to
a min-max problem, but it remains at the stress formulation level for which it is a double
minimization problem. At the same time, it avoids the solving of a non-linear non-convex
minimization problem in T as in [2). It is based on an alternate direction method which con-
sists, as in [5], [12], in solving, for a given set of design variables, the associated linear elasti-
city problem (and to that extent could be performed in a strain as well as in a stress based set-
ting), then in an update of the design variables. In contrast with [5], [12], that update is how-
ever straightforward because the available information about the optimal character of multiple
layers is put to full use. Specifically, for a given stress T, we use explicit formulae available
for all design variables of the associated optimal layered microstructure.



The advantages of this algorithm are manyfold. It is a full minimization problem ; no
non-linear problems are solved ; the update of the design variables is explicit and optimal at
the same time ; its extension to three space dimensions is practically feasible. Our so far brief
numerical experience with this algorithm shows fast speed of convergence, although admittedly
at the expense of a penalization of extremely low volume fractions. Note that both previous
methods have to resort to some kind of penalization of the very low volume fraction range.

2. The Design Variables Update

From now onward the setting is two-dimensional. Let us assume that the stress field T at a
given iteration is known. It is then a direct consequence of the results of [2] that an optimal
microstructure consists in a rank-two layering of the material with void (physically, it looks
like very thin and long holes in a matrix of material). The directions of lamination coincide
with the eigendirections e, e, of T, corresponding to its eigenvalues T,, T,. For each succes-
sive lamination, the volume fraction of material is m10, m,0 respectively, where 0 is the
overall volume fraction of material and m , + my =1

The material under consideration is assumed to be isotropic with bulk and shear moduli x
and W. In other words, for any 2x2 symmetric matrix g, its elasticity tensor A is defined by

Ape = x@rel + Zu[e— ”25 1}, 2.1)

where 7 is the identity matrix.

We consider a rank-two layering of the material Ap with void, in the directions e, e,,
and with volume fractions m 0, m,0. For any stress T, whose principal axes (or eigendirec-

tions) coincide with the layering directions, the associated effective elasticity tensor A is such
that

2 2
<AMT> = <Aglrrs + HNA0) T T ) (2.2)
41q.LB m, my

The above formula will not be established in detail here. It immediately results from a more
general formula which yields the effective tensor A (or rather its inverse) of a rank-N layering
of two isotropic materials (see formula (6.11) in [3] or proposition 4.2 in [6]).

It thus remains to minimize (2.2) with respect to m;, m,, with the constraint
mip+m,=1. We obtain

myo= =l ul 2.3)
! |T1|+f’52| ' 2 |'51[+[Tz| .
Thus, we have
- 2
Min . s A0 = cdfltrs + (K:é% 9) [[’tll + |1, |] ; (2.4)

The computation of the optimal 6 becomes obvious. It must minimize, over the interval [0;1],
the quantity

(HL)(1-0) 2
_}Lrue) ﬂr, |+ |7, |] + 6. (2.5)



This yields

4xpA
if this quantity is less than 1, and 0 = 1 otherwise.

We now have at our disposal all the theoretical ingredients for the optimization algorithm.
We fix a domain €2, a boundary loading f, and a Lagrange multiplier A ; the algorithm reads
as :

%
0 = [(—"ﬂﬁ] [ul+ o) 2.6)

initialization : set ® =1 everywhere, i.e. start from the design coinciding with the
domain Q full of material.

iterations : until convergence, compute the linear elasticity problem with the Hooke’s
law A corresponding to the previous design, then, from the solution stress T, deduce the
new design variables 0, m;, ¢;, and Hooke’s law A.

In practice, the finite element code used to solve the elasticity problem is that of [1].
Thus, the stress field is computed as the second derivatives of the Airy potential. The stopping
criterion in the above algorithm is the L-norm of the difference between the two last vectors
of degrees of freedom for the discretized Airy potential. The design variables 6, m;, and e; are
computed at the Gauss points that are used for integrating the Airy potential.

There is a subtle point in using rank-two layered microstructures in two dimensions : they
do not support stresses whose eigendirections do not coincide with the layering directions.
This fact is peculiar to 2-D ; it does not happen in 3-D for rank-three layerings. However, this
is not a major difficulty, since at the optimum (i.e. when the above algorithm converges) the
stress and the layered microstructure have the same eigendirections. Before convergence it
suffices to add to the elastic energy < Ag,e > a term of the form (ge.e,)>.

3. Numerical Results

We present two computations, and we briefly describe the accompanying results. For both
cases, the Lamé moduli are set to x = 1.0 and | = 0.5, and the Lagrange multiplier A is equal
to 1. To avoid very low volume fraction (i.e. degeneracy of the effective elasticity tensor A),
the lowest possible values of 0, m,, and m, are fixed at 107>,

Firstly, the fillet problem is investigated on a square domain meshed with 128 triangles
(with 3 degrees of freedom per triangle). It is submitted to a uniformly distributed traction
along one side, and to a uniformly distributed traction along the middle half of the opposite
side. The net forces are balanced so as to ensure equilibrium. We have run 50 iterations, and
figures 1 and 2 shows the convergence of the total energy (the sum of the compliance and of
the weight) and of the renormalized weight (i.e. divided by the weight at the first iteration).
The density of the resulting design is shown on figure 3 (white is void and black is pure
material) : almost 53 % of material has been removed from the original square domain.

Secondly, the beam problem is investigated on a rectangular domain with length fourth
times its width. By symmetry, only half of the beam is meshed with 256 triangles (with 3
degrees of freedom per triangle). It is submitted to a uniformly distributed traction along the
middle 1/16 of its upper face, and it is clamped symmetrically on the left and right 1/32 of its
lower side. We have run 100 iterations, and figures 4 and 5 shows the convergence of the



total energy and of the renormalized weight. The density of the resulting design is shown on
figure 6 : almost 60 % of material has been removed from the original rectangular domain.

Remark that the results of both cases are very similar to those of [1], [2]. In particular
they include large regions of composite material, in contrast with the results obtained in [5],
[12]. Nevertheless, we can "penalize", as in [1], the use of composites by changing slightly
formula (2.6) to force 0 to be close to 0 or 1. We have tried this penalization procedure on the
beam problem. Starting from the solution shown on figure 6, we obtained figure 7 which is
closer to the type of results obtained in [5], [12].

Acknowledgements. We are grateful to M. Levy for her kind and expert assistance in produc-
ing the figures of this paper.

References.

[1] Allaire, G. and Kohn, R.V. (1992) Topology optimization and optimal shape design using
homogenization, this volume.

[2] Allaire, G. and Kohn, R.V. (1992) Optimal design for minimum weight and compliance in
plane stress using extremal microstructures, preprint.

[3] Allaire, G. and Kohn, R.V. (1992) Optimal bounds on the effective behavior of a mixture
of two well-ordered elastic materials, to appear in Q. Appl. Math..

[4] Bendsoe, M. (1989) Optimal shape design as a material distribution problem, Struct.
Optim. 1, pp.193-202.

[S] Bendsoe, M. and Kikuchi, N. (1988) Generating optimal topologies in structural design
using a homogenization method, Comp. Meth. Appl. Mech. Engrg. 71, pp.197-224.

[6] Francfort, G. and Murat, F. (1986) Homogenization and optimal bounds in linear elasticity,
Arch. Rat. Mech. Anal. 94, pp.307-334.

[7] Francfort, G. and Marigo, J.-J. (1992) Stable damage evolution in a brittle continuous
medium, to appear in European J. Mech..

[8] Gibiansky, L. and Cherkaev, A. (1987) Microstructures of composites of extremal rigidity
and exact estimates of the associated energy density, Toffe Physicotechnical Institute pre-
print 1115 (in Russian).

[9] Kohn, R.V. and Strang, G. (1986) Optimal design and relaxation of variational problems
I-111, Comm. Pure Appl. Math. 39, pp.113-137, 139-182, 353-377.

[10] Lurie, K. and Cherkaev, A. and Fedorov, A. (1982) Regularization of optimal design
problems for bars and plates IIl, J. Optim. Th. Appl. 37, pp.499-521, 523-543.

[11] Murat, F. and Tartar, L. (1985) Calcul des variations et homogénéisation, in Les

Méthodes de 1'Homogénéisation: Théorie et Applications en Physique, Eyrolles, pp.319-
369.

[12] Suzuki, K. and Kikuchi, N. (1991) A homogenization method for shape and topology
optimization, Comp. Meth. Appl. Mech. Engrg. 93, pp.291-318.



energy

weight

5.966E+01

5.855E+01

5.944E+01

5.932E+01

5.921E+01

5.809E+01

5.808E+01

5.886E+01

5.875E+01

5.864E+01

4.888E-01

4.87E-01

4.853E-01

4.836E-01

4,818E-01

4.801E-01

4.783E-01

4.766E-01

4.749E-01

4.731E-01

\
\
\
N
iy
0 5 10 15 20 25 30 35 40 45 50
tteration number
Figure 1
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fillet : convergence history for the renormalized weight
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Figure 3
fillet : density of the optimal design
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Figure 7
beam : density of the design where composite is penalized



