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Abstract This paper is concerned with optimal design problems with a special assumption
on the coefficients of the state equation. Namely we assume that the variations
of these coefficients have a small amplitude. Then, making an asymptotic ex-
pansion up to second order with respect to the aspect ratio of the coefficients
allows us to greatly simplify the optimal design problem. By using the notion
of H-measures we are able to prove general existence theorems for small am-
plitude optimal design and to provide simple and efficient numerical algorithms
for their computation. A key feature of this type of problems is that the optimal
microstructures are always simple laminates.
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1. Introduction

Shape or structural optimization is a very active research topic in applied
mathematics, which has seen a burst of new ideas in the last twenty years. A
common feature of most of the recently developed methods is to try to circum-
vent the inceptive ill-posedness of shape optimization problems which man-
ifests itself, in numerical practice, by the occurrence of many local minima,
possibly far from being global. Probably the most successful approach is the
homogenization method [1], [5], [6], [15], [18]: it allows to find a global min-
imizer in most instances, at the price of introducing composite materials in
the optimal shape (a tricky penalization procedure is required for extracting a
classical shape out of it). Unfortunately, the rigorous derivation of the homoge-
nized or relaxed formulation of shape optimization is complete only for a few,
albeit important, choices of the objective function (mostly self-adjoint prob-
lems like compliances or eigenvalues optimization). This difficulty is not just
a mathematical problem, but it is also very restrictive from the point of view
of numerical applications. Indeed, there are many non-rigorous approaches to
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treat general objective functions, usually based on some partial relaxations [1],
[3], [7], or ad hoc algorithmic ideas like the SIMP method [5]: none of them is
as efficient as the original homogenization method applied to compliance min-
imization, in the sense that its convergence is neither so smooth, nor so global
(the resulting optimum may still depend on the initial guess).

Therefore, many authors have tried to extend the homogenization method to
more general objective functions, and in particular to cost functions depend-
ing on the gradient of the state (or strain or stress). Although this is a very
difficult problem, there has been some results in this direction [4], [9], [12],
[13], [17]. The objective of the present paper is also to extend the homog-
enization method to new objective functions. However, our methodology is
quite different: in order to make significant progress, we use a strong simpli-
fying assumption, namely that the two component phases involved in the op-
timal design have close coefficients or material properties. More precisely we
consider two-phase optimal design problems in the context of conductivity or
linearized elasticity and we make an asymptotic expansion of the coefficients
in terms of the small amplitude parameter that characterizes the variations be-
tween the two phases. Restricting ourselves to terms up to second order greatly
simplifies the situation. However, the small amplitude optimal design problem
is still ill-posed and requires relaxation. The nice feature of our approach is
that this relaxation is quite simple because the necessary and delicate tools of
homogenization are replaced by more basic results on so-called H-measures.
These H-measures are quadratic default measures, introduced by Gérard [8]
and Tartar [16]. They can be interpreted as two-point correlation functions of
the underlying microstructure.

We have therefore rigorously derived the relaxed formulation of very gen-
eral objective functions, including ones depending on the gradient of the state.
Furthermore, due to the special “small amplitude” structure of the optimiza-
tion problem we have devised efficient and simple numerical algorithms for
computing the optimal shapes. These algorithms are gradient methods relying
on the optimality conditions of the relaxed problem. A key ingredient is that
optimal microstructures in small amplitude optimization can always be found
in the class of simple or rank-one laminates. In other words, there are only two
relevant design parameters in our method: the local volume fraction and the
angle of lamination (which governs the anisotropy of the optimal microstruc-
ture). Another feature of our small amplitude method is that the coefficient of
the state or adjoint equations are uniform and independent of the design. In-
deed, all the geometric parameters appear as right hand sides in the equations.
This implies a drastic reduction of the CPU cost of the method because, once
the rigidity finite element matrix has been factorized by a Cholesky method,
it is stored and used throughout the optimization process for different right
hand sides at each iteration. We implemented our method only in two space
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dimensions using the FreeFem++ package for finite elements [10]. There is no
conceptual difficulty in extending the method to three space dimensions where
the gain in CPU time is even higher.

Of course, the small amplitude approximation is not really meaningful in
the context of “standard” structural optimization which amounts to optimize
the distribution of a given material with a very weak one mimicking holes (the
so-called ersatz material approach). Indeed, the small amplitude assumption
contradicts the fact that the ersatz component is much weaker than the refer-
ence one. However, it makes sense, for example, in the context of reinforced
plane structures: a typical problem is to find the region where to reinforce the
thickness of a plate by pasting some tape on top of it. Our method can be use-
ful for this plane reinforcement problem and our numerical examples can be
interpreted in this sense.

2. A model problem in conductivity

2.1 Small amplitude asymptotic

Let us consider mixtures of two conducting phases characterized by two
symmetric positive definite tensors A0 and A1. We denote by η the amplitude
or contrast or aspect ratio between the two materials. In other words, we as-
sume that A1 = A0(1 + η). The range of η is restricted to (−1;+∞), but in
the sequel we shall assume that η is a small parameter, i.e. |η| << 1. Denoting
by χ the characteristic function of the region occupied by phase A1, we define
a conductivity tensor

A(x) = (1 − χ(x))A0 + χ(x)A1 = A0(1 + ηχ(x)).

For a smooth bounded open set Ω ⊂ R
N , with boundary ∂Ω = ΓD ∪ ΓN ,

and for given source terms f ∈ H−1(Ω) and g ∈ L2(∂Ω), we consider the
following boundary value problem

−div (A ∇u ) = f in Ω
u = 0 on ΓD

A ∇u · n = g on ΓN ,







(1)

which admits a unique solution in H1(Ω). Typically we want to minimize an
objective function of the type

J(χ) =

∫

Ω
j1(u) dx +

∫

ΓN

j2(u) ds,

where the boundary integral is defined only on ΓN since u = 0 is fixed on
ΓD. We assume that the integrands ji are of class C3 with adequate growth
conditions.
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Assuming that the two phases have prescribed volume fractions, Θ for A1

and 1 − Θ for A0, with Θ ∈ (0, 1), we define a set of admissible designs

Uad =

{

χ ∈ L∞(Ω; {0, 1}), such that
∫

Ω
χ(x) dx = Θ|Ω|

}

. (2)

We are ready to define the starting point of our study.

Definition 1 We call “large amplitude” optimal design problem the follow-
ing optimization problem

inf
χ∈Uad

J(χ). (3)

Assuming that the amplitude or contrast η is small, we perform a second-
order expansion in the state equation and in the objective function. Since the
coefficient matrix A in (1) is an affine function of η, the solution u ∈ H1(Ω)
is analytic with respect to η, and we can write

u = u0 + η u1 + η2u2 + O(η3). (4)

Plugging this ansatz in (1) yields three equations for (u0, u1, u2)

−div (A0 ∇u0 ) = f,
u0 = 0 on ΓD

A0 ∇u0 · n = g on ΓN ,







(5)

−div (A0 ∇u1 ) = div (χ A0∇u0 ),
u1 = 0 on ΓD

A0 ∇u1 · n = −χA0∇u0 · n on ΓN ,







(6)

−div (A0 ∇u2 ) = div (χ A0∇u1 )
u2 = 0 on ΓD

A0 ∇u2 · n = −χA0 ∇u1 · n on ΓN .







(7)

Remark that u0 does not depend on χ and thus only u1, u2 depends on χ. Simi-
larly, we make a Taylor expansion in the objective function, and, neglecting the
remainder term, we introduce a function Jsa which only depends on u0, u1, u2

Jsa(u
0, u1, u2) =

∫

Ω
j1(u

0) dx + η

∫

Ω
j′1(u

0)u1 dx

+η2
∫

Ω

(

j′1(u
0)u2 +

1

2
j′′1 (u0)(u1)2

)

dx

+

∫

ΓN

j2(u
0) ds + η

∫

ΓN

j′2(u
0)u1 ds

+η2
∫

ΓN

(

j′2(u
0)u2 +

1

2
j′′2 (u0)(u1)2

)

ds.

(8)
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Definition 2 We call “small amplitude” optimal design problem the second-
order asymptotic of problem (3), namely

inf
χ∈Uad

{

Jsa(χ) = Jsa(u
0, u1, u2)

}

(9)

where Jsa is defined by (8) and u0, u1, u2 are solutions of the state equations
(5), (6), (7) respectively.

2.2 Relaxation by H-measures

As most optimal design problems, the small amplitude problem (9) is ill-
posed in the sense that it does not admit a minimizer in general. Therefore we
relax it by using H-measure, a tool which was introduced by Gérard [8] and
Tartar [16]. It is a default measure which allows to pass to the limit in quadratic
functions of weakly converging sequences in L2(RN ).

The general procedure for computing the relaxation of (9) is to consider a
sequence (minimizing or not) of characteristic functions χn and to pass to the
limit in (9) and its associated state equations. Up to a subsequence there exists
a limit density θ such that χn converges weakly-* to θ in L∞(Ω; [0, 1]). We
denote by u0, u1

n, u2
n the solutions of (5), (6), and (7) respectively, associated

to χn (recall that (5) does not depend on χn). In a first step, it is easy to pass
to the limit in the variational formulation of (6) to obtain that u1

n converges
weakly to u1 in H1(Ω) which is the solution of

−div (A0 ∇u1 ) = div (θ A0∇u0 ) in Ω
u1 = 0 on ΓD

A0 ∇u1 · n = −θ A0∇u0 · n on ΓN .











(10)

The main difficulty comes from (7) where we need to pass to the limit in the
product χn∇u1

n. Since this term is quadratic, we can use H-measures. More
precisely, for a given test function φ ∈ H1(Ω) which vanishes on ΓD, the
variational formulation of (7) is

∫

Ω
A0∇u2

n · ∇φdx = −

∫

Ω
χnA0∇u1

n · ∇φdx. (11)

The sequence u2
n is obviously bounded in H1(Ω) and, up to a subsequence,

it converges weakly to a limit u2 in H1(Ω). The question is to find which
limit equation is satisfied by u2. By using the theory of H-measures [16]), we
deduce that

lim
n→+∞

∫

Ω
χnA0∇u1

n · ∇φdx =

∫

Ω
θA0∇u1 · ∇φdx

−

∫

Ω

∫

SN−1

θ(1 − θ)
A0∇u0 · ξ

A0ξ · ξ
ξ · A0∇φ ν(dx, dξ),
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where ν is a probability measure with respect to ξ (see [2] for details). Intro-
ducing a matrix M(x) defined by

M =

∫

SN−1

ξ ⊗ ξ

A0ξ · ξ
ν(x, dξ) (12)

we obtain that the limit of (11) is
∫

Ω
A0∇u2 ·∇φdx = −

∫

Ω
θA0∇u1 ·∇φdx+

∫

Ω
θ(1−θ)A0MA0∇u0 ·∇φdx

for any smooth test function φ which vanishes on ΓD. Thus u2 is the unique
solution in H1(Ω) of

−div (A0 ∇u2 ) = div (θ A0∇u1 ) − div (θ(1 − θ) A0MA0∇u0 ) in Ω
u2 = 0 on ΓD

A0 ∇u2 · n = −θ A0∇u1 · n + θ(1 − θ) A0MA0∇u0 · n on ΓN .











(13)
We now can pass to the limit in the objective function Jsa(χn) to obtain

lim
n→+∞

Jsa(χn) = J∗
sa(θ, ν) = Jsa(u

0, u1, u2)

where u0, u1, u2 are now solutions of the relaxed state equations (5), (10), (13),
respectively. It is then a standard matter to prove the following result.

Proposition 3 The relaxation of (9) is thus

min
(θ,ν)∈U∗

ad

{

J∗
sa(θ, ν) = Jsa(u

0, u1, u2)
}

(14)

where Jsa(u
0, u1, u2) is defined by (8), u0, u1, u2 are solutions of (5), (10),

(13), respectively, and U ∗
ad is defined by

U∗
ad =

{

(θ, ν) ∈ L∞(Ω; [0, 1]) ×P(Ω,SN−1) s.t.
∫

Ω
θ dx = Θ|Ω|

}

, (15)

where P(Ω,SN−1) is the set of probability measures on Ω×SN−1. More pre-
cisely, there exists at least one minimizer (θ, ν) of (14), any minimizer (θ, ν)
of (14) is attained by a minimizing sequence χn of (9) in the sense that χn

converges weakly-* to θ in L∞(Ω), ν is the H-measure of (χn − θ), and
limn→+∞ Jsa(χn) = J∗

sa(θ, ν), any minimizing sequence χn of (9) converges
in the previous sense to a minimizer (θ, ν) of (14).

Remark 4 A simpler, albeit formal, method for computing the limits of u1
n

and u2
n is to assume that the sequence χn of characteristic functions is peri-

odically oscillating, i.e. χn(x) = χ(x, nx) where y → χ(x, y) is Y -periodic.
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Then, using formal two-scale asymptotic expansions it is possible to compute
the limits of u1

n and u2
n, as well as the first-order corrector term for u1

n, i.e.

u1
n(x) = u1(x) +

1

n
u11(x, nx) + O

(

1

n2

)

.

Making a Fourier expansion of χ(x, y) =
∑

k∈ZN χ̂(x, k)e2iπk·y , we can com-
pute explicitly u11 and u2, and the H-measure is given by

ν(x, ξ) =
1

θ(1 − θ)

∑

k 6=0∈ZN

|χ̂(x, k)|2δ

(

ξ −
k

|k|

)

.

2.3 Optimality conditions

The goal of this section is to simplify the relaxed small amplitude optimiza-
tion problem (14) by using information coming from its optimality conditions.
The main result is that optimal microstructures for (14) can always be found in
the class of simple laminates (i.e. rank-one laminates).

Proposition 5 The relaxed small amplitude problem (14) can be solved by
restricting the set of probability measures P(Ω,SN−1) to its subset of Dirac
masses. In other words, there exists an optimal design solution of (14) which is
a simple laminate. Furthermore, the corresponding optimal H-measure, which
is a Dirac mass, does not depend on the density θ.

Remark 6 The main consequence of Proposition 5 is that not all possible
composite materials have to be considered in the relaxed small amplitude prob-
lem (14) but just the simple laminates of rank one. It turns out that this property
holds true for all generalizations of (14) [2]. Another interesting consequence
of Proposition 5 is that the optimization with respect to ν can be done once
and for all at the beginning of the optimization process since it is independent
of the exact values of θ.

Proof. To simplify the formula for J ∗
sa(θ, ν) which is implicit in ν, we

introduce an adjoint state p0 solution in H1(Ω) of

−div (A0 ∇p0 ) = j′1(u
0) in Ω

p0 = 0 on ΓD

A0∇p0 · n = j′2(u
0) on ΓN .











(16)

Remark that, like u0, the adjoint state p0 does not depend on (θ, ν). The goal
of this adjoint state is to eliminate u2 in J∗

sa(θ, ν). Indeed multiplying (16) by
u2 and integrating by parts, and doing the same for (13) multiplied by p0, we
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obtain

J∗
sa(θ, ν) =

∫

Ω
j1(u

0) dx + η

∫

Ω
j′1(u

0)u1 dx + η2
∫

Ω

1

2
j′′1 (u0)(u1)2 dx

+

∫

ΓN

j2(u
0) ds + η

∫

ΓN

j′2(u
0)u1 ds + η2

∫

ΓN

1

2
j′′2 (u0)(u1)2 ds

−η2
∫

Ω
θA0∇u1 · ∇p0 dx + η2

∫

Ω
θ(1 − θ)A0MA0∇u0 · ∇p0 dx

(17)
which is now explicitly affine in M , defined by (12), and thus in ν since u0

and p0 are independent of ν and θ. Minimizing J ∗
sa(θ, ν) with respect to ν

amounts to minimize a scalar affine function on the convex set of probability
measures P(Ω,SN−1). Therefore any minimizer ν∗ can be replaced by an-
other minimizer which is a Dirac mass concentrated at a direction ξ∗ which
minimizes the integrand of the last term in (17). Remark that ξ∗ does not
depend on θ. Furthermore, replacing a minimizer ν∗ by the Dirac mass con-
centrated at ξ∗ does not change θ, u0, u1 and p0. Thus one can restrict the
minimization in ν to the subset of P(Ω,SN−1) made of Dirac masses of the
type ν(x, ξ) = δ(ξ − ξ0(x)). •

After elimination of the measure ν, i.e. incorporating the optimal Dirac
mass concentrated on ξ∗(x), we can further simplify the objective function by
using again the adjoint p0

J∗
sa(θ) =

∫

Ω
j1(u

0) dx +

∫

ΓN

j2(u
0) ds − η

∫

Ω
θA0∇u0 · ∇p0 dx

+
1

2
η2

∫

Ω
j′′1 (u0)(u1)2 dx +

1

2
η2

∫

ΓN

j′′2 (u0)(u1)2 ds

−η2
∫

Ω
θA0∇u1 · ∇p0 dx + η2

∫

Ω
θ(1 − θ)A0M∗A0∇u0 · ∇p0 dx

with M∗ = (ξ∗ ⊗ ξ∗)/(A0ξ∗ · ξ∗). It is then a simple matter [2] to compute
the derivative of J∗

sa with respect to θ.

Lemma 7 The objective function J ∗
sa(θ) is Fréchet differentiable and its deriva-

tive in the direction s ∈ L∞(Ω) is given by

∂J∗
sa

∂θ
(s) = −η

∫

Ω
sA0∇u0 · ∇p0 dx − η2

∫

Ω
sA0∇u1 · ∇p0 dx

−η2
∫

Ω
sA0∇u0 · ∇p1 dx + η2

∫

Ω
s(1 − 2θ)A0M∗A0∇u0 · ∇p0 dx,
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where p1 is another adjoint state, defined as the solution in H 1(Ω) of

−div (A0 ∇p1 ) = j′′1 (u0)u1 + div (θA0 ∇p0 ) in Ω
p1 = 0 on ΓD

A0∇p1 · n = j′′2 (u0)u1 − θA0∇p0 · n on ΓN .











(18)

2.4 Generalizations

The same method and the same results can be obtained for various other
problems. For example, it is possible to derive the same results for an objec-
tive function that depends on the gradient of the state. We can also generalize
our approach to the system of linearized elasticity by considering mixtures of
two linear isotropic phases [2]. Furthermore, we can consider so-called multi-
ple loads problems, i.e. several state equations associated to a single objective
function. It is even possible to consider the case of a multi-physics problem,
i.e. the coefficients of the different state equations can be different although
they share the same geometry or microstructure (a typical example would be
thermo-elasticity where a conductivity problem is coupled to an elasticity sys-
tem). In all such cases, once again, simple laminates are optimal microstruc-
tures.

3. Algorithm and numerical examples

3.1 The optimization algorithm

We describe the optimization algorithm that we implemented to solve nu-
merically the relaxed problems obtained in the previous sections. All the ex-
amples will be in dimension two. Recall that there are two design parameters:
the lamination angle and the local proportion θ. We have proved that the lam-
ination direction of the optimal microstructure does not depend on θ, and that
it is explicitly given in terms of u0 and p0 which do not vary during the opti-
mization process. Therefore, the optimal lamination angle is computed once
and for all before we start a gradient-based steepest descend method for the
local proportion θ.

The boundary value problems are solved using FreeFem++ [10] and we
take advantage of the fact that all the problems we need to solve have the same
elliptic differential operator, namely div (A0∇ ). Therefore the factorization
of the stiffness matrix is performed only once during the initialization and is
saved for all subsequent finite elements resolutions during the iterations. This
of course speeds up considerably the code. The computational domain Ω is
discretized by triangles. For all states ui and adjoint states pi we use P2 Finite
Elements, while the local proportion θ is discretized with P0 Finite Elements
(as well as the lamination direction ξ∗). As is well known (see [1], [5] and
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Figure 1. Gradient minimization. η = −0.5, Volume=40%.

references therein) we prefer the P2 − P0 combination to the simpler P1 − P0

in order to avoid the so-called checkerboard numerical instability.
The subsequent figures show the local proportion of the material with higher

conductivity or with higher stiffness, meaning higher values of both Lamé pa-
rameters. In other words, if η is negative (which is always the case below), we
display (1 − θ). The volume, when mentioned in the caption, always refers
to the percentage of volume occupied by the better conductor or the stiffer
material.

3.2 Diffusion Problem

Since the inception of the homogenization method a classical test case is the
so-called torsion problem (see [1] for further references). It amounts to solve
(1) in the unit square Ω = (0, 1) × (0, 1) with Dirichlet boundary conditions
and a source term f ≡ 1. We minimize J2(χ) =

∫

Ω |∇u|2dx. In Figure 1 we
plot the resulting optimal shape for the relaxed small amplitude problem. The
phase conductivities are 0.5 and 1, and the proportion of the best conductor is
40%. This resut is slightly different than that obtained by Lipton and Velo (see
Figure 1:a in [11]) using a partial relaxation of the problem. Different values
of η and different refinement of the mesh yield similar results.

3.3 Elasticity Problem

In all the following examples we take the reference material A0 with Lamé
coefficients λ = 0.73 and µ = 0.376. As we said in the introduction, one
should interpret the following results in the context of reinforcing a plane struc-
ture by adding to it a layer at a location that is optimal.

Let us first consider the so-called short cantilever problem subject to com-
pliance minimization. We choose Ω = (0, 1) × (0, 2) (discretized by 8765
triangles) clamped on its left side and with a unit vertical load at the middle of
the right side. After 50 iterations the resulting optimal designs for η = −0.1
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Figure 2. Compliance minimization for the short cantilever: η = −0.1 (left), η = −0.99

(right), volume=25%.

Figure 3. Strain minimization of a square clamped at the bottom and vertically loaded at the
top: η = −0.1 , volume=50%.

and η = −0.99 are shown on Figure 2 (recall that dark colors correspond to
the stiffer material). The latter design is quite similar to the usual short can-
tilever with two bars making a 90 degree angle at the position where the load
is applied, giving then the impression that the approach developed here for the
small amplitude case, might very well be used at least in some cases when the
amplitude is not necessarily so small.

Next we minimize the norm of the strain tensor, i.e. J(χ) =
∫

Ω |e(u)|2dx.
The domain is the unit square Ω = (0, 1)2 , which is discretized with 8654
triangles, clamped at the bottom and vertically loaded at the top. The resulting
optimal design, shown in Figure 3, looks like a bridge with two pillars.

Acknowledgments. This work has partially been supported by the ECOS
project C04E07 of cooperation between Chile and France, and by the ACI
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12

References
[1] G. Allaire, Shape Optimization by the Homogenization Method. Springer-Verlag

(2002).

[2] G. Allaire, S. Gutierrez, Optimal Design in Small Amplitude Homogenization,
submitted. CMAP preprint 576 (2005).

[3] G. Allaire, F. Jouve, H. Maillot, Topology Optimization for Minimum Stress
Design with the Homogenization Method. Struct. Multidiscip. Optim. 28, no. 2-3, 87–98
(2004).

[4] J.C. Bellido, P. Pedregal, Explicit quasiconvexification for some cost functionals
depending on derivatives of the state in optimal designing, Discr. Contin. Dyn. Syst. 8,
no. 4, 967–982 (2002).

[5] M. Bendsoe, O. Sigmund, Topology Optimization. Theory, Methods, and Applica-
tions. Springer-Verlag, New York (2003).

[6] A. Cherkaev, Variational Methods for Structural Optimization, Springer Verlag, New
York (2000).

[7] P. Duysinx, M. Bendsoe, Topology Optimization of Continuum Structures with
Local Stress Constraints, Int. J. Num. Meth. Engng., 43, pp.1453-1478 (1998).

[8] P. Gerard, Microlocal defect measures, Comm. Partial Diff. Equations 16, pp.1761-
1794 (1991).

[9] Y. Grabovsky, Optimal design problems for two-phase conducting composites with
weakly discontinuous objective functionals, Adv. in Appl. Math., 27, pp.683-704 (2001).

[10] F. Hecht, O. Pironneau, K. Ohtsuka, FreeFem++ Manual, downloadable at
http://www.freefem.org

[11] R. Lipton, A. Velo, Optimal design of gradient fields with applications to electro-
statics. Nonlinear partial differential equations and their applications. College de France
Seminar, Vol. XIV 509-532. Stud. Math. Appl., 31 (2002).

[12] R. Lipton, Relaxation through homogenization for optimal design problems with gra-
dient constraints. J. Optim. Theory Appl. 114, no. 1, 27–53 (2002).

[13] R. Lipton, Stress constrained G closure and relaxation of structural design problems.
Quart. Appl. Math. 62, no. 2, 295–321 (2004).

[14] G. Milton, The theory of composites, Cambridge University Press (2001).

[15] F. Murat, L. Tartar, Calcul des Variations et Homogénéisation, Les Méthodes de
l’Homogénéisation Théorie et Applications en Physique, Coll. Dir. Etudes et Recherches
EDF, 57, Eyrolles, Paris, pp.319-369 (1985). English translation in Topics in the mathe-
matical modelling of composite materials, A. Cherkaev and R. Kohn editors, Progress in
Nonlinear Differential Equations and their Applications, 31, Birkhäuser, Boston (1997).

[16] L. Tartar, H-measures, a new approach for studying homogenization, oscillations and
concentration effects in partial differential equations, Proc. of the Royal Soc. Edinburgh,
115A, pp. 193–230 (1990).

[17] L. Tartar, Remarks on optimal design problems. Calculus of variations, homogeniza-
tion and continuum mechanics (Marseille, 1993), 279–296, Ser. Adv. Math. Appl. Sci.,
18, World Sci. Publishing, River Edge, NJ (1994).

[18] L. Tartar, An introduction to the homogenization method in optimal design, in Optimal
shape design (Tróia, 1998), A. Cellina and A. Ornelas eds., Lecture Notes in Mathematics
1740, pp.47-156, Springer, Berlin (2000).


