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Abstract. This paper is concerned with two-dimensional, linearly elastic, compos-
ite materials made by mixing two isotropic components. For given volume fractions
and average strain, we establish explicit optimal upper and lower bounds on the effec-
tive energy quadratic form. There are two different approaches to this problem, one
based on the "Hashin-Shtrikman variational principle" and the other on the "trans-
lation method". We implement both. The Hashin-Shtrikman principle applies only
when the component materials are "well-ordered", i.e., when the smaller shear and
bulk moduli belong to the same material. The translation method, however, requires
no such hypothesis. As a consequence, our optimal bounds are valid even when the
component materials are not well-ordered. Analogous results have previously been
obtained by Gibianski and Cherkaev in the context of the plate equation.

0. Introduction. The macroscopic properties of a linearly elastic composite mate-
rial are described by its tensor of effective moduli (Hooke's law) a*. This fourth-
order tensor depends on the microgeometry of the mixture as well as on the elastic
properties of the components. There is a large body of literature concerning the esti-
mation of a* in terms of statistical information on the microstructure; see, e.g., [9,
39, 41].

Recently a related but somewhat different question has received much attention:
given a fixed collection of component materials, can one describe all composites o*
achievable by mixing these components in prescribed volume fraction? Known as
the "(7-closure problem", this question arises naturally from problems of structural
optimization; see, e.g., [24, 26, 33]. A complete answer is available only in a few spe-
cial cases; see, e.g., [13, 25, 27]. Much more is known about the analogous question
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for scalar phenomena (heat conduction, electrical resistance, etc.); see, e.g., [16, 28,
38],

While the full G-closure problem remains beyond reach in the context of elasticity,
there has been remarkable progress concerning optimal bounds on the elastic energy
quadratic form [1-6, 14, 15, 17, 21, 23, 30]. A specific consequence of that work
is the following: consider two isotropic materials with bulk modulus xr, , k2 and
shear modulus /ij, n2, which are to be mixed with volume fractions 6{ and 02
respectively. Assume moreover that the components are "well-ordered", i.e., that
either K{ < k2, < /u2 or k2 < k{ , n2 < /i, . Then one can identify the largest
and smallest possible effective energy of a* as functions of the macroscopic strain.
In other words, one can identify functions f±(n{, /i2, k1 , k2, dx, d2, £,) such that

(o.i)
and such that both inequalities can be achieved (for any £) by suitable microstruc-
tures (which depend on £). We call f± "optimal bounds on the elastic energy",
since /_ is evidently the smallest and / the largest function for which (0.1) can
hold. Clearly (0.1) improves upon the well-known harmonic and arithmetic mean
bounds, known as Paul's or the Voigt-Reuss bounds:

((V,_1 +02o-X)-Xi, O < (o*Z,Z) < <(6>1cr1 +02a2)Z, £,).

We emphasize that the symmetry of a* is not restricted in (0.1). As might be
expected, the extremal composites are isotropic only when £ is isotropic; in that
case (0.1) reduces to the well-known Hashin-Shtrikman bound on the effective bulk
modulus of an isotropic composite [19],

Energy bounds of the form (0.1) offer partial information about the G-closure
problem, since they specify the extreme values of the linear functions o* —► , £)
for every second-order tensor £. In addition, such bounds are of use in their own
right. The best developed application is to structural optimization, where (0.1) or
its analogue for complementary energy permits the solution of problems involving
compliance as a design criterion [3, 7], Other potential applications include coherent
phase transitions [22] and modelling the accumulation of damage [11], We remark
that (0.1) represents only a special case of [4]: that paper actually identifies optimal
upper and lower bounds for any sum of energies {o*E,x , £,} H + (c*£„ , £„} •

The work just summarized has, alas, two significant shortcomings. First, the opti-
mal upper and lower bounds f± are not given explicitly, rather, they are given as the
extremal values of certain finite-dimensional optimizations. Second, the restriction
that the component materials be well-ordered is unnatural: it is forced by the method
of analysis (which is based on the Hashin-Shtrikman variational principle), not by
anything intrinsic to the problem. The goal of the present work is to redress these
difficulties in the special case of two space dimensions.

We implement this as follows. First, we review briefly the optimal energy bound
from the Hashin-Shtrikman variational principle, specialized to the case of two well-
ordered isotropic components in two space dimensions. Here we follow [2, 21, 23]
rather than [4, 5], so f± is given as the extremal value of a convex but nonsmooth
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optimization problem. Then we solve this convex optimization to get an explicit
formula for f± ; in the process, we also obtain an explicit description of the asso-
ciated extremal microstructures. This makes everything explicit, but only for the
well-ordered case. To handle non-well-ordered components, we turn to the "com-
pensated compactness" or "translation" method (cf. [12, 14, 28, 29, 37, 38]). First,
we calculate the translation bound on (a*^, S) explicitly, for a translation of the
form Adet£. Then we optimize over X to get the "best" translation bound. Fi-
nally, we establish that the resulting bound is in fact optimal (i.e., is achieved by a
microstructure) even when the component materials are not well-ordered.

The optimal bounds on elastic energy have previously been made explicit for mix-
tures of two incompressible materials in both two and three dimensions [23]. They
have also been worked out for three-dimensional mixtures of an isotropic material
with a rigid or totally degenerate material [15]. Our recent work on structural opti-
mization makes use of an explicit lower bound on complementary energy [3]. Related
results have also been obtained by others working on structural optimization [7, 15,
26], The explicit lower bound /_ presented here as Proposition 1.3 was simultane-
ously and independently obtained by Francfort and Marigo [11].

Our use of the translation method is fundamentally the same as made by Gibianski
and Cherkaev in [14]. Indeed, that paper addresses the analogue for Kirchhoff plate
theory of the problem considered here. There is an isomorphism between plate
theory and two-dimensional elasticity, so our results could basically be read off from
those of [14], The bounds presented here appear explicitly in [15]. Unfortunately,
that work has not been published in any (Soviet or western) scientific journal and
therefore will be unavailable to many readers. (A summary appears in [26].) There is
one significant difference between our treatment and that of [14, 15]. They establish
the optimality of their bound by displaying an explicit (laminated or sequentially
laminated) microstructure that saturates the bound; we prove optimality instead as
an easy by-product of the Hashin-Shtrikman calculation (even in the non-well-ordered
case!).

When £ = I in (0.1), our bounds f± agree with the Hashin-Shtrikman bulk
modulus bounds [19], which were first extended to the non-well-ordered case by
Walpole [40]. These bulk modulus bounds have more recently been derived using
the translation method [12]. One could say that (0.1) extends the Hashin-Shtrikman-
Walpole bulk modulus bounds to an analogous result on the effective energy at any
strain £ . Even at £ = I, however, our result is in a sense stronger than that of [19]:
that paper bounds (a*^, £) under the hypothesis that a* is isotropic; we bound
it without assuming that a* is isotropic. Related bounds on the "generalized bulk
modulus" for possibly anisotropic a* are also given in [12, 17, 20, 30, 42],

This paper is exclusively devoted to two space dimensions. It is natural to ask
what the prospects are for similar results in three space dimensions. As for the
explicit evaluation of the optimal energy bounds for mixtures of two well-ordered
isotropic materials: here there is no conceptual obstacle, just a larger number of
different regimes. Extending the bounds to the non-well-ordered case, however, is a
more subtle matter. For example, in 3D there are 9 linearly independent translations
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2of the form t-.{£,) = <?.. - which are quasi-convex on strains. Moreover, evenlJ ^ lJ 11 JJ

after using the best linear combination of these there is no guarantee, it seems, that
the result will be optimal. Nevertheless, we have recently extended the optimal lower
bound to the non-well-ordered case in 3 (or more) dimensions [1], without computing
its value explicitly!

The remainder of this introduction is devoted to establishing notation and re-
viewing basic facts about composite materials. Since each component material is
isotropic, it is characterized by a bulk modulus /c(. and a shear modulus (all
moduli are positive, i = 1,2). The Hooke's law <7. is defined by

er;£ = 2/*,(£ - |(tr£)/2) + K;(tr£)/2 (0.2)

for any symmetric second-order tensor £, where I2 is the identity in the space of
all second-order tensors. (Notice that we are working in two space dimensions.) We
may and shall assume without loss of generality that

(0.3)

The well-ordered case is thus kx < k2, and the non-well-ordered case is k, > .
By a composite made from materials and a2 we mean a mixture having fine

scale structure, with perfect bonding at all material interfaces. To give a mathematical
definition one can use the theory of random composites (see, e.g., [18, 34]), the theory
of //-convergence (also known as G-convergence; see, e.g., [12, 32, 36, 37, 43]), or
the spatially periodic theory (see, e.g., [8, 35]). However, the last point of view is the
easiest to work with and is sufficient for proving bounds (for a rigorous proof of this
point, see [18] in the random case and [10] in the general case of //-convergence).
Consequently, there is no restriction in considering spatially periodic composites as
we shall do henceforth.

Let e be a small positive number (it will tend to zero in the sequel), and let
Q — (0; 1) be the unit cell. The geometry of the composite is periodic of period

2eQ = (0; e) . We define a composite material or by

*«(*) = *1 (f)CTi+*2(7)^2
where X\{.v) and are (2-periodic functions such that

Z1(y) = 0orla.e. in Q, X200 = 1 - *i00 •

The volume fraction of material a is thus

, = / xWJo
0/ = / X,(y)dy for / = 1, 2.>Q

Assume that the composite occupies some domain Q in R2, is loaded by some
body force /, and satisfies a prescribed boundary condition (e.g., zero displacement
on dQ.,—actually, the precise nature of the boundary condition is irrelevant). The
displacement ue (a vector in R ) and the strain e(ue) (a 2x2 matrix) are solutions
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of the elasticity equations

*("„) = 5(Vw£ + 'Vig,
V-[fTte[ut)] = f in Q,

ue = 0 on <9Q.
The fundamental convergence theorem of homogenization (see, e.g., [8, 35]) says
that, as £ goes to zero, the solutions ue converge to the solution u of the constant
coefficient system

e(u) = + lVu),

V • [ct*<?(m)] = / inQ,
u — 0 on d£2,

where the tensor a* is the effective Hooke's law of the mixture. It is independent of
Q, /, and the boundary condition, and, for any symmetric second-order tensor d;,
it is characterized by the formula

<a*{,£) = inf / {o(y)[Z + em, [^ + e(4>)]) dyJq
where the infimum is taken over all (2-periodic functions <f>, e((f>) = j(V0 + (V0),
and the "local" Hooke's law is a(y) = %x{y)o{ + X2^y)a2 •

Our goal is to maximize or minimize , £), with , [i2, k{, k2, 0, , d2,
and £ held fixed, as the microstructure varies.

1. Lower bounds. This section deals with the optimal lower bound (a*£ ,£)>/_.
Addressing first the well-ordered case, we recall the bound as presented by [2], in the
form of a concave maximization. Evaluation of the maximum leads to an explicit
formula, with three distinct regimes. In two of the regimes the bound is achieved
by a rank-one laminate; the third requires a rank-two laminate. We then give an
alternative proof of the bound using the translation method. This new proof has the
advantage of applying even in the non-well-ordered case.

The following result is proved in [2] using the Hashin-Shtrikman variational prin-
ciple.

Proposition 1.1. When the two materials are well-ordered, we have for any sym-
metric second-order tensor £

(<T*Z,Z) > (ffjf, {) + 02 sup[2(f, »7) — ((<t2 — a, )~V rj) - e^irj)], (1.1)
i

where the supremum is taken over all symmetric constant second-order tensors rj
and g(rj) is given by

g{l) = sup
M=i

j~(\iv\2 - {riv, v)2) + | {rju, vf
fi\ -f- /C|

(1.2)

Furthermore the bound (1.1) is optimal in the sense that there exists a sequentially
laminated composite which achieves equality in (1.1).

The first step toward making (1.1) explicit is the evaluation of g(tj). This is done
in [2], where the following result is proved.
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Lemma 1.2. If we label the eigenvalues of t] so that ?/, < t, then the function g(t])
defined by (1.2) is equal to

*i(>7i ~ ^)2 + + ^)2 ;f„ P\ +Ki

§{n)

4 if

^ if. ^1+K.if >7t > ' ' {tl2 + >?i), (L3)
/^! + f, 2k1

We now compute the explicit form of the bound (1.1). An equivalent calculation
has been done independently by Francfort and Marigo [11],

Proposition 1.3. Denoting by and £2 the eigenvalues of £ , the explicit formula
for the bound (1.1) is

a + ̂ '2+vfrl;*«' -«2
if (k2-/c1)(01/i2 + 02//1)|<^1 + £2| < (v2- V])(e\K2 + d2K\^\ -^1

,2

if (jc2 -k1){61h2 + e2fil)\^l + £2| > {^2-hx){6xk2 + d2Kx)\^{ -i2|

and (/i| + 0,/c2 + 02ki)I£i -f2| > 0,(/c2 - /c,)|£, + £2|;

[a c,g>/^,(C, C2) + ^ + 0^ + 0^, (Cl+C2)

if (/I, + 01k2 + 02k1)|£, -Z2\ < 61{k2 + {2|.
(1.4)

Proof. For simplicity, we adopt the notation S/u — /u2 - /ij and 8k = k2 - /c, .
It is well known that the maximum of (d;, v) is obtained when rj and £ are si-
multaneously diagonal (see, e.g., [31]). Furthermore {{o2 - a{)~lr], rj) and g(t])
depend only on the eigenvalues of r]. Thus, denoting by £, and £2 the eigenvalues
of £, maximizing the right-hand side of (1.1) over all tensors q is equivalent to
maximizing over all real numbers rjl and t]1 the concave function

F(rll, rj2) = 2(£,rll + <^2) - J-(^f + rfy - X- (J- - (i/, + - dlg(r]l, rt2).
(1.5)

Here g{r}{, rj2) is defined by (1.3) when r]x < r]2 and by its symmetric counterpart
obtained by interchanging ?/, and r)2 when r)x > . The function g(rjl , rj2) is
continuously differentiable on each domain r)x < rj2 and ?/, > t]2 but is merely
continuous on R2. We therefore proceed in two steps. In the first we assume that
the maximizer of (1.5) satisfies //, ^ t/.,, and we investigate the three regimes of
g{t],, rj2). In the second step we consider the case where the maximum of (1.5) is
reached on the line rjl = t]2.
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Step 1. We assume that t]x / rj2, so g(t]x, rj2) is differentiable. We first consider
the case rjx < r}2; the case t]x > ?/2 will be obtained later, by symmetry. The
maximizer of (1.5) is obtained by solving the linear system VF(r/x, rj2) = 0.

(1) Assume that ti2 > (nx + Kx)(tj2 + rjx)/2Kx > r\x . Then

+ ^ + <L

which is equivalent to

r\x[fixKxSfi + hxkx8k + 6i(fii + kx)8^8k]
+ r]2[/ixKx8fi - hxkx8k + = Ahxkx8^i8k^x ,

r]x[nxKxdn - hxkx8k -f 6x{fix - K^Sfidx]
+ rj2[filkx8[i + hxkx8k + d[(nl + kx)8[i5k] — 4hxkx8^8k^2 .

Let
2 2

A = [fixKxSfi + /uxKxSK + 6x(nx+Kx)d/uSK] - [hxkx8h ~ hxkx5k + 6x{nx -kx)8h8k] .
An easy but tedious computation shows that

A = 4hxkx8h8k{6xk2 + 92Kx)(dxfi2 + 02nx).
Thus, the solution of (1.6) is

/ t- v , <5yU £
0xk2 + 02kx^x+^)+ dxn2 + d2n^ l}'

kx8k ik k ^ nx8n /K ^ N
exK2 + e2Kx[il+i2) exii2 + e2nx(Cl C2)"

The maximum of F(t]x , rj2) is

(1.7)

Maxf''■«< ■ ">> " + ^ + 8,^'+^,({| "i2)2' (1.8)
The value of the bound in this case is

<„•{, f> > (».{. a+9,MmF(,„ ,2) = +
(1.9)

This is nothing but the harmonic mean bound. The bound (1.1) is equivalent to (1.9)
if and only if the solution (1.7) satisfies t]x < rj2 and t]2 > (nx +Kx)(2Kx)~i (t]2 + t]x) >
rjx , or in other words when

<°l<<'2' (1.10)
8k{6xh2 + 02nx)\Zx + £2| < 8h(6xk2 + d2Kx){H2 -Q.

(2) Assume rjx > (fix + Kx)(rj2 + r]x)/2Kx . Then

1 1 ( 1 1 \ / \ 0,
2r,"' + -4{rK-r,){"' + ̂  + ̂ 'l''i" (U1)



682 GREGOIRE ALLAIRE and ROBERT V. KOHN

which is equivalent to

+k1)Sh +(/ix+kx)8k + 4 6x8fi8K] + +kx)(8^-8k) = 4 (/j1+kx)8ju8k<!;i,
- 8k) + t]2{Sn + 8k) = 48iu8k£2.

Let

A = [(/^i + )S/i + {fix + kx)8k + 46x8ii8k][8h + ^K] ~ (t*\ + fi)[^ ~ $Kf .

An easy computation shows that

A = 48h8k[6x{h2 + k2) + d2(fix + /c,)] .

Thus the solution of (1.11) is

0*, + *,)<?*(£i + + K0s^i
11

^2

6^^ +K2) + d2{lUl+K[)

[(/i, + kx)Sk + 26x8k8h]{^x + £2) - [{nx + kx)8h + 26x8kS/i]^ - £2)
dx{fi2 + K2) + 62{Hx +KX)

(1.12)
The maximum of F(rjx , rj2) is

Sk{h, + KX + exSn)(ij + S2)2 + Sn(!ix + *, + eldK)(il -t2? - 2ex&KSn{t\ - &
ax '1>'r'2 ox(n2 + K2) + e2(nl + *,)

(1.13)
The value of the bound in this case is

{o*Z, £) > ,£) + d2 Max F{t]x, rj2)
= <0,0-, + 62o2)^,^) + 02[Maxf(j|,, tj2) - ({a2 - ct,)£, £)]■

An easy but tedious computation yields

(at, {) > + e^K.O - ■ <U4»

The bound (1.1) is equivalent to (1.14) if and only if the solution (1.12) satisfies
tjx<rj2 and rjx> (fix + kx)(2kx)~ (rj2 + t]x), in other words when

8k(9xh2 + 62hx)^x +£2) <8h{Qxk2 + 02kx){1;x -<f2),
(fix + dxK2 + e2Kl)(zx-Q<eI8K(zl+z2).

(3) Assume (//,+«:,){rj2+t]x)/2Kx > rj2. This case is symmetric to the previous one.
More precisely, defining rj'x = -f]2 and */-> = ~rl\ > we find that (fl[ , I2) satisfies the
hypothesis of the second case. The computations are the same via the correspondence
(£,, £2) -> (-£2, -£\) ■ Therefore the maximizer of F(r\x, rj2) is

= {Mi + + <j?2) - {nx + KjdfijZt ~ £2)
2 Sl(M2 + K2^ + e2^\ +Ki)

= [(//, + kx)8k + 29x8k8iu]^x + g2) + [{nx + Kx)d/i + 26x8k8h](£,x -£2)
^1(^2 + Ki) + ^2(^1 + *1)

(1.16)
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which yields

/•* \R„\* f) f) + & ~ S^l ~ ^ ^(o Z,i) > <(V. + e2a^ , o - • (L17)

The bound (1.1) is equivalent to (1.17) if and only if the solution (1.16) satisfies
r\x < t]2 and (//, + kx){2kx)~1 {ri2 + »/,) > >/2, i.e.,

—rfjc(0,^2 + ^2^!)^, +^2) < Siu{6]k2 + 62kx)(£x -t2),

(Hx + 0jK2 + e2Kx)^x-f2) < - 61Sk(£1 + £2).
Up to now, we have only considered the case rjx < rj2. The other case ?/2 < rjx is

obtained by symmetry, just interchanging r\x and rj2 and £x and £2. Regrouping
the results of the two cases yields that (1.1) is the harmonic mean bound (1.9) when

Sk(61h2 + e2nl)\il +£2| <Sfi(dxKj + fljjcJIfj-fJ. (1.19)
On the other hand, it is easily seen that (1.18) implies that £x + £2 is positive while
£x - £2 is negative. Similarly (1.15) implies that - £,2 and ^ + £2 are negative.
Thus the bounds (1.14) and (1.17) are equivalent to

LT*-« ̂  I fl .7 L' ^ B Q [dK1<?« +^1+^1 ~^l]2 fl2m
(O £,£} > (0,(7, + 02<x2)f,o V2()|(/i2 + Jt2)^2(/1|Hi). (L2°)

which is asserted under the condition

dK{6in2 + 62nl)\^l +£2\ > S^(6xk2 + e2Kx){Z2-Q,
6xSk\£x + %2\ < Cu, + 0,k2 + e^K^-i,).

The preceding applies when t]x < rj2. Taking into account also the case tj2 < rjx , we
see that (1.1) is equivalent to (1.20) whenever

dK{dxn2 + 62nx)\Zx +£2I - + ^2ki)I^2 — I» n 21)
0,<5K|fl + £2| < {Hx +dxK2 + 62Kx)\Z2-Zx |.

Step 2. If the eigenvalues £x and £2 satisfy neither of the "compatibility" condi-
tions (1.19) and (1.21), then the maximum of F(t]x , rj2) is attained where g{rjx , t]2)
is not dilferentiable, i.e., where t]x = rj2 . In this case the maximum is reached for

and the corresponding value of the bound is

(o*£, £> > {o£, £) + 62Ma.xF(tjx , rj2)

, B tv /> (^1 + Kl)^'c /k , r x2

2 nx + dxK2 + e2Kx^l^2) '

An easy computation yields

0.B)

The bounds (1.9)—(1.19) and (1.20)—(1.21), combined with (1.23) in all the other
cases, are the desired result. □
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It is worthy of note that the first regime of the optimal bound is precisely the
harmonic mean bound. Thus the well-known and elementary fact that

(o*z,z)>((d{a;l + o2cj;l)-lz,z)

is actually optimal for many choices of £—a set with interior in the space of sym-
metric tensors.

The general theory assures us that the bound (1.1) is optimal and indeed that it
is saturated by a sequentially laminated microstructure. Our next goal is to describe
the optimal microstructures explicitly.

We begin with a review of the theory. (See [2, Sec. 3] for a complete account.)
The optimality condition for (1.1) is

2£ - 2(ct2 - al)~Xr] e eidg{rj), (1.24)

where dg(rj) is the subdifferential of g at rj. According to (1.2),

g{rj) = sup(f(v)ri, rj),
M=i

where f{v) is the "degenerate Hooke's law"

= — [{t]v) Q v — (t]u , v)v © v] +   (tju , v)v © v . (1-25)
j"i H i + Ki

The subdifferential of g is simply the convex hull of the tensors 2 f{v)rj as v ranges
over extremals for (1.2). Hence (1.24) can be rewritten as

Z-{o2-°\)~ln = d\ (L26)
/=i

in which mj> 0, ^2mj = 1 , and each uj is extremal for (1.2). If g is differentiable
at the optimal t] then (1.26) becomes

£,-(a2-ox)~Xr] = dx

where u is any extremal for (1.2), and the bound is achieved by a rank-one laminate
with layer direction v. If g is not differentiable at the optimal rj then p > 1 in
(1.26), and the bound is achieved by a rank-p laminate which is determined in a
systematic way by the parameters {m(} and {za} .

The character of the optimal microstructures is now clear. The first two regimes of
(1.4) correspond to rank-one laminates, since the optimal rj has t]l ^ tj2. The third
regime corresponds to a higher-rank laminate (rank 2, as we shall show presently),
since the optimal is a multiple of the identity.

To specify the microstructures completely for the first two regimes we need to
know, for given tj, which vectors v are extremal in (1.2). This information was
obtained in the course of calculating g(t]), in Proposition 7.4 of [2], The answer is
as follows: Let ex, e1 be the eigenvectors of rj, with associated eigenvalues t] t, rj2,
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ordered so that rjl < rj2. Then:
(i) In the first regime of (1.3) the extremal u are axex + a2e2 with

2 = (Kl+nl)rjl -(*,
2ki(!7i - n2)

2 = (*1 +1*1 )t]2 - (*i

°2 2/c,(j/2 - r\x)
(ii) In the second regime of (1.3) the extremal u are ±ex .

(iii) In the third regime of (1.3) the extremal v are ±e2 .
(iv) If = t]1 then the second and third regimes of (1.3) agree and every unit

vector is extremal.
Of course, if v is extremal then so is —v. If we identify v and —v , then there

are two extremal directions in case (i) but only one extremal direction in cases (ii)
and (iii).

The first regime of (1.4), when the optimal bound is the harmonic mean, corre-
sponds to case (i). Hence it is achieved by two different rank-one laminates. The
associated layering directions are determined by (1.7) and (1.27); they vary with ^
and £2.

The second regime of (1.4) corresponds to cases (ii) or (iii). It is achieved by a
unique rank-one laminate, whose layering direction is an eigenvector of £ .

The analysis of the third regime of (1.4) is different, because we must deal with
the nondifferentiability of g at multiplies of the identity. If rj = yl2 then any unit
vector v is extremal for (1.2), so there is no restriction on in (1.26). From (1.25)
we have

yf{v)rj = v © v
Hl+Kl

when rj = yl2. Therefore,

dg(ti) = convex hull of {———uQu\
101 J|H=i

This is precisely the class of positive (if y > 0) or negative (if y < 0) semidefinite
second-order tensors with trace 2+ k,) .

To determine the optimal microstructure in this third regime, we must solve the
optimality condition (1.26). From (1.22), the relevant value of rj is t] = yl with

(fil + k{)Sk

One verifies that
0i + ®\k2 + ®2ki

2

LM/ —v n < -i (=1V 0 £, J 28k V0 y) 2 nl+Klj^ ' ' •
when ^ = (1,0), e2 = (0, 1), and

m _ £|(/^ + + 28x8k) - + kx)
2»,fc«,+« 1 (128)

= ^(01 + *1 + 20tSK) - £,(//, + k,)
2QXS K($l+Z2)



686 GREGOIRE ALLAIRE and ROBERT V. KOHN

It is clear that mx + m2 = 1 ; one verifies that > 0, m, > 0 as a consequence of
the relation which defines the third regime,

(Hl + 6xk2 + SjJCjJIij -{2| < 0,<5k|£, + {2|.

Thus the optimality condition (1.26) holds with p = 2: v{ and i>2 are the eigen-
vectors of and m, , m, are given by (1.28). According to the construction in
[2, 12, 23], the bound is achieved by a second rank laminate. Specifically, we first
layer a2 with cr, in volume fractions p = 1 - 6xmx and 1 - p respectively, using
layers orthogonal to vx , to get a composite C. Then we layer C with o{ in volume
fractions p = 02/(l - 6xmx) and 1 - p respectively, using layers orthogonal to v2 .
The resulting composite a* achieves equality in the bound.

We turn now to the translation method. Section 4 of [2] gives a general corre-
spondence between the Hashin-Shtrikman variational principle and the translation
method. Here, however, we proceed differently. Following [14], we use only mul-
tiples of the determinant as translations. When cr, and <7, are well-ordered, we
recover the optimal bound (1.4). But this approach gives a valid bound even in the
non-well-ordered case. We shall show that the resulting bound is optimal, i.e., is
attainable by a microstructure. Thus the translation method gives an extension of
Proposition 1.3 to the non-well-ordered case.

The essence of the translation method is the following result, proved, for example,
in [29]:

Proposition 1.4. Let r be a constant fourth-order tensor. Assume that r is quasi-
convex on strains; i.e. for any 0-periodic function <f>

/(t(Vc/> + 'v</>), (V</> + V</>)) > 0. (1.29)Jq
Assume further that <j(y) - t is positive on Q , i.e.,

cr, - t > 0 and a2 - x > 0. (1.30)

Then we have

a* > {^j {a - t) +t. (1-31)

We call t a "translation". The crucial issue, of course, is how to choose r so
that (1.31) becomes an interesting (and preferably optimal) bound. A fundamental
understanding of this issue is at present lacking. However, for the problem at hand
it will suffice to take r = A • det, with the notation

<det£,£) = det(£) = £n£22-4- (1-32)

Following Milton [29], we define two fourth-order tensors As and Ah which
project respectively to the subspace of tracefree tensors ("shears") and to the subspace
of scalar tensors ("hydrostatic" tensors), i.e.,

A,£ = f-iTr{/,,
A,£ = *Tr£/2.

2 25 (1.33)
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Being projection operators, A and Ah satisfy

A' = A,' AA = A/i ' and As + Ah = I4" (L34)
The translation 2 det and the Hooke's law c7; can be written in terms of A^ and Ah
as

2det = A/!-Ai and cr = 2fLjAs + 2KjAh. (1.35)
Lemma 1.5. Let cr, and a2 be two isotropic materials such that nx < n2 (the
ordering of k:, and k2 is arbitrary). Then the assumptions of Proposition 1.4 are
satisfied for the translation t = 2Adet precisely when k € [-2nx] 0].

Proof. Using Fourier analysis, it is easy to see that the definition (1.29) of the
quasi-convexity on strains is equivalent to

(t(u ®v-\-v®u),(u®v + v®u))> 0 for any vectors u, v .

We observe that
2

(det(u <8> f + i' ®u), (u®v + v®u)) = det(« + u) = ~(uxu2 - V\U2) .

Thus the translation 2Adet is quasi-convex on strains when k is negative. On the
other hand, we have

cr - 2k det = (2+ A)A5 + (2k. - k)Ah .
Because As and Ah are nonnegative operators, (cr - 2/1 det) is nonnegative for
i = 1,2 precisely when k e [—2//j ; 0]. □

Applying Proposition 1.4 with the translation 2Adet and evaluating the resulting
bound (1.31) at £ , we obtain

-i \
{°£,0 > [ (a - 2Adet) 1

Jo
+ 2Adet(£). (1.36)

The right-hand side of (1.36) is a differentiable function of k in the interval
[-2/ij; 0]. Thus, for a given tensor £, we can optimize the choice of k in or-
der to obtain the best possible bound from (1.36). We call the result the "translation
bound".

Proposition 1.6. Denoting by £x and £2 the eigenvalues of £, the translation bound
is

if \k2 -Kx\(6xn2 + d2nx)\£>x + f2| < \n2- nx\{6{K2 + d2Kx)\^ -f2|;

(,-f, a > +w. o -
if |k2-k,\{oxn2 + e2nx)|{i +^2| > \n2-nx\{dlK2 + o2Kl)\zl -$2|

and (/i, + 0j>c2 + 62kx)\Zx -f2| > 6x\k2 - /c,| |£, + f2|;

W(, 0 > /■,«, - + *'y<S% + «'+^)'
if (/ij + 01/c2 + 02k1)|£1 -£2| < 0,|*2 -Kjllfj +<f2|.

(1-37)
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Proof. Let us compute the right-hand side of (1.36). We have

(a, - 2Adet)~" = (2/zf + A)-1 As + (2k. - X)~lAh ,

so

a — la. aei j 1
Q

" ' 6< +J^Y'a. + (^ + J^Y\(a 2Adet) [2m, + A ' 2n2 + X) ' \2k,-X ' 2K2

Thus (1.36) becomes

h •

(2[i\ + A) (2 n2 + A) -A
0, (2h2 + A) + ^2 (2//j + A)

+ A
(2k, - A)(2k2 - A)

0,(2/c, - A) + 02(2/c, - A)

<v.f>
(KZ.Z)-

Note that in two dimensions 2(Ah£, £) = (f, + f2)2 and 2(As£, £) = (£, -f2)2.
After some simplification, we find that (1.36) is equivalent to

(omZ,Z)>((6iol + 02a2)Z,Z)-0l02fW
with

f(l\ = (^2 ~ tl) (^1 ~ *»2) , (K2 ~ Kl) (*°1 + ^2) /1 ->o\
J{> exn2 + 020, + A/2 0,/c2 + 02/c,-A/2 " 1 ' ;

Differentiating /(A), we easily find two possible roots of f (A):

+ 2(0,ic2 + 02/c1)|/z2-ju1||£1 -<S2|-2(0^2+ (92/i1)|ic2-ic1||«E1 + {2|
-«2I +1^2-^11^+^1

2(0, tc2 + 02/c,)|//2 - /x, | |f, - f2| + 2(0,/^ + 62hx)\k2 - k,| If, + {2|
\H2-hMZx-Z2\-\k2-kx\\Zx+Z2\

The second root A~ is always outside the interval [-2//,; 0], and / is convex on
[—2/ij ; 0]. So there are three different cases:

(1) if A+ < -2/1, , then the minimum of /(A) is attained for A = -2yU, ;
(2) if -2/^, < A+ < 0, then the minimum of /(A) is attained for A = A+ ;
(3) if A+ > 0, then the minimum of /(A) is attained for A = 0.

In the second case we easily compute the value of /(A+):

m+) = (|/;211^-^1 + 1*2-*, I |£,+£2d2 _
0,(//2 + IC2) + 02 (/^ 1 + *, )

The condition A+ < 0 is equivalent to

(0,/c2 + 02/Cj)\n2 - /z,| |£, - f2| < (0,^2 + 02^i)Ik2 - Ki I I'm + ^1 >

while the condition -2/z, < A+ is equivalent to

(ft, +6,K2 + d2Kx) If, -{2| > 0,|K2-K1||f, +{2|.

At this point very simple computations lead to the explicit formula (1.37) for the
translation bound. □
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This calculation highlights an error in [29]. There Milton asserts (p. 87) that
among the translation bounds associated to t = At0 with tq fixed, the optimal
result is obtained by taking X at an end point of the interval of admissibility. This is
clearly not correct, since one regime of the optimal bound corresponds to the interior
value X = X+ .

In the well-ordered case (i.e., k^-k{ >0 and fi2- nl> 0) the translation bound
and the Hashin-Shtrikman bound (1.4) are clearly identical. In the non-well-ordered
case, Proposition 1.6 yields a new bound which is algebraically almost identical to
the Hashin-Shtrikman bound (up to absolute values for k2- kx) . Let us check that
this new bound is optimal.

Proposition 1.7. The translation bound (1.37) is also optimal in the non-well-
ordered case. Specifically, there exists a sequentially laminated composite which
achieves equality in the bound.

Proof. We review briefly how the argument goes in the well-ordered case. If ri
is optimal for the Hashin-Shtrikman variational principle (1.1), then it satisfies the
first-order optimality condition (1.24). One shows that if £ and rj are related by
(1.24), then there exists a sequentially laminated composite whose effective tensor a*
satisfies

(<J*Z, 0 = <*,£> 0 + > n) - <K - )~V »?> - exgm.
This a* evidently achieves equality in the bound (1.1).

In the non-well-ordered case (1.1) is no longer a valid bound. However, the state-
ment in italics remains valid (with the same proof). In other words, any critical value
with respect to r] of

(c71{,<f> + ®2[2(«f, ri) - {{o2 - ri)-9lg{ri)] (1.39)

is equal to (a*£, £) for some sequentially laminated microstructure.
We claim that (1.37) gives the unique critical value of (1.39) in the non-well-

ordered case. Indeed, the proof of Proposition 1.3 applies equally in this setting,
with one minor change. When k2- /c, > 0, the result of the symmetry between the
cases t]{ < t]2 and rjx > rj2 was the introduction in all formulae of absolute values
for the terms <!;, + £2 and ^ - £,2. In the present case, when k2- k, < 0, we must
also introduce absolute values for k2- jc, . Therefore, the critical value of (1.39) is
given by (1.37) rather than (1.4). □

2. Upper bounds. We turn now to the optimal bound (o*£, £) < f . Our treat-
ment is parallel to that of Sec. 1. Addressing first the well-ordered case, we recall
the optimal bound as presented in [2], We then derive an explicit formula, which
again has three different regimes. One of the regimes is achieved by a rank-one
laminate, while the other two require rank-two laminates. We then turn to the trans-
lation method. It gives an alternative proof of the bound, which applies even in the
non-well-ordered case.

The following result is proved in [2] using the Hashin-Shtrikman variational prin-
ciple.
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Proposition 2.1. When the two materials are well-ordered, we have for any sym-
metric second-order tensor £

{o*Z, {) < (tr2{, 0 - 0, sup[2<£, v> - <(ff2 - + e2A(»/)], (2.1)
n

where the supremum is taken over all symmetric constant second-order tensors
and h(rj) is given by

l) = inf
M=i

-J-(|?/i/|2 - (t]iy,u)2) + 1 {t]u, u)2 (2.2)

Furthermore the bound (2.1) is optimal in the sense that there exists a sequentially
laminated composite which achieves equality in (2.1).

The first step toward making (2.1) explicit is the evaluation of h(rj). This is done
in [2], where the following result is proved.

Lemma 2.2. The function h(tj), defined by (2.2), is equal to
2

h{rj) = inf —^— (2.3)
i=l ,2 H2 + K2

where the (>/,, f/2) are the eigenvalues of t].
We now compute the explicit form of the bound (2.1).

Proposition 2.3. Denoting by £,x and the eigenvalues of £ , the explicit formula
for the bound (2.1) is

/ ^ /(O „ | a „ ~ ) 1^1 + ^21 ~ (^2 _ ^l)l^l _ ^2^
<»{,{>< <(»,», + o el(ft + Kj) + e^l+Kl) 

if e2{K2 - «,)!<*, + £2| < (6lK2 + e2Kl +/i2)\Zl -<S2|

and 02(/z2-/z,)|£, -{2| < (0,//2 + 02//, + /c2)|f, +<f2|;

if d2(K2-Kl)\Zl +£2\ > {dlK2 + d2Kl +fi2)\Zl -Z2\;

if 02(/z2 -^,)|{1 -<f2| > {exn2 + e2nx + k2)|£, + <s2|.

Proof. For simplicity, we adopt the notation dfi = n2 - n{ and Sk = k2 - kx .
The maximum of (£, r\) is attained when rj and £ are simultaneously diagonal (see,
e.g., [31]), and ((a2 - o{)~xr], r}) and h(tj) depend only on the eigenvalues of t].
Therefore, maximizing the right-hand side of (2.1) over all tensors rj is equivalent
to maximizing over all real numbers ?/, and tthe concave function

F(ril, n2) = 2({, V, + i2rj2) - + rfy - I ^ J- _ (Tjl + r,2)2 + 62h(r]] , rj2).

(2.5)
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Here h{rjx, r]2) is defined by

,, , 1 f if llil < \ri2\,
h(tl,,t17) = { 7 (2.6)

2 02+ *2 I nl if I ̂21 — 1^11 •
We depart slightly from the approach used for Proposition 1.3, in that we do not
assume that < rj1 . Clearly the function h(rjl, ?/,) is continuously differentiable
everywhere except on the lines = //2 and t]{ = -rj2.

(1) Assume |f/,| < \tj2\. Then the maximizer of F satisfies the Euler equation
VFfi/, ,12) = 0, i.e.,

1 1 ( 1 1 A / \ ^2

1 1/1 1 \

which is equivalent to

r]l[(n2 + k2)5h + (ju2 + k2)3k - 4625h5k]

+rj2[{/J.2 + k2)Sh - (n2 + k2)8k] = 4(fi2 + K2)dfidK^l,
t]{[dn - (5k] + ti2[dju 4- 5k] — 4S/j.Sk^2 .

Let A = [(n2 + K2)dju. + (fi2 + k2)5k - 462S/iSK][dfi + 8k] - (/i2 + k2)[8[i - (5k]2 . We
compute that

A = 4ShSk[61 {h2 + k2) + 02(fit + Kj)].

Thus the solution of (2.7) is

, 8k({1+(2) + 8m({1 -Z2)

1 2 2 0](02 + + ^(0i + ^l)' (2 8)
_ [(n2 + k2)8k - 262dndK]{£,{ + i2) - [(n2 + k2)5h - 292dfidK](^ - <*2)

ni~ el{n2 + K2) + d2(nl +/c,)

The maximum of F(t]l, rj2), therefore, is

n(n2 + fl,k2 + 62Kl)(Zi - z2)2 + 2026/iSK{tf
+ k2) + e2(/j., + kx)

(2.9)

^ , 8K(K2 + exn1 + e2ni)(i{+i1)2+ Sn(n2 + eiK2 + e2Kx){^-^2)2+ 2e2SndK^]-^22)
MaXf(""'?2)" ~ 6l(M2 + K2) + 02(fil +K,)

The value of the bound in this case is

(cJ^,^<(a2^,i)-dlMaxF(r,l,rl2)

- 1 1 22 dl(n2 + K2) + 62{iul +k{)

This bound is asserted only if the solution (2.8) satisfies |f/,| < \rj2\, in other words
if

(H2 + k2)\Sk{Z1 + f2) 4- Sn{^ - £2)|
< I[(02 + ki)Sk - IO^uSk]^ + £2) - [(n2 + K2)dfi - 2028h8k]{£x - £2)|.

(2.10)
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Squaring both sides yields

628k[(h2 + k2) - d2Sn](£, + £2)2 + S2Sn[{n2 + k2) - 628k](£x - Q2

+ [(fi2 + k2)2 - d2(n2 + k2)(Sk + Sfi) + 2djs^dK]^2 -^) <0,

which factors as

[02SK{Zl+Z2)+(6[K2+62Ki+n2){Zl-Z2)][62dn(Zl-Z2)+(0if*2+02Hl+K2)(Zl+Z2)] < 0.
(2.11)

It is easy to check that
2

62SKdn < (0xn2 + 02nx + k2)(61k2 + 92k} + n2).

Thus (2.11) is equivalent to either

92Sk(^ + f2) < ~{61k2 + 62k1 +//2)({, -{2),

-d2dn{z, - £2) < (d]fi2 + + k2)({, + £2), (2.12)
l(«,+«2)>0 and ({t-{2)<0

or
' 02<Jjc(£, + f2) > -(0,ie2 + e2Kl + /i2)({j - £2),

-djSn&i -f2) > (0,^2 + 02^, +k2)({, + £2), (2.13)
l(£,+£2)<0 and (f,-f2)>0.

(2) Assume |^2| < |/7(|. This case is symmetric to the first one. It suffices to
interchange the roles of £,x and £,2.

Regrouping the "compatibility" conditions (2.12), (2.13), and their symmetric
counterparts, we see that the value of the bound is

when £ satisfies

92Sk|£, + f2| < (0jK2 + 0^ + //2)l^i - <S2|,
02<5/^1-f2|<(01/i2 + 02/z1+K2)|£1+£2|.

(3) Assume that condition (2.15) is not satisfied. Then the maximum of F{rjx , rj2)
is reached on one of the lines = r}2 and //, = -r\2. The maximum of F(rj, t]) is
reached at

(H2 + k2)Sk(^ +Z2)
0,/c2 + 82k1 + n2

and the corresponding value of the bound is

(2-,7>

The maximum of F(t], -rj) is reached at

in2 + K2)Sn^i-i2) n]R)
0XH2 + 62nl + k2 '
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and the corresponding value of the bound is

<*,4> <M<, + «2)2 + ^■ {2A9)

It is easily seen that the bound (2.17) is better than (2.19) when 62Sk\^1 + cjf2|
> (0,k2 + 02kx + n2) I<m ~ <^21 • Conversely, (2.19) is better than (2.17) when
d2S/x\^x -£2| > (difi2 + 02/i, + /c2)|^j +£2|. Together with (2.14)—(2.15) this yields
the desired result. □

It is interesting to compare the optimal upper bound with the more standard
arithmetic-mean bound. One verifies that (2.4) is strictly below the arithmetic mean
((fljCTj + 62a2)^ , £) unless \k2 — k, 1|£, +<^2| = \nx — n2\|^, -£2|. Thus the arithmetic
mean bound is optimal only for very special £—a set of codimension one in the
space of symmetric tensors.

We turn now to a discussion of the optimal microstructures. The optimality con-
dition for (2.1) is

-2^ + 2{a1-ax)'xr1 e d2dh(rj). (2.20)
According to (2.2),

h(l) = inf {/{")*!, V),
M=i

where / is the "degenerate Hooke's law"

f(v)r\ = — [(rjv) Qv - (rju , v)v © v] -4   (r]v , v)v © v . (2.21)
H2 H 2 + K2

The generalized gradient dh(rj) is the convex hull of the tensors 2 f{v)rj as v ranges
over extremals for (2.2). Hence (2.20) can be rewritten as

+ {a2-al)~\ = 02Y^mif{vi)ri, (2.22)
i=i

in which mi> 0, J2 ml — 1 > and each vi is extremal for (2.2). If h is differentiable
at the optimal t] then (2.22) becomes

-Z + {<J2-ol)~lri = d2f{v)rJ

where u is any extremal for (2.2), and the bound is achieved by a rank-one laminate
with layer direction v . If h is not differentiable at the optimal t] then p > 1 in
(2.22), and the bound is achieved by a rank-p laminate.

To proceed, we need to know which vectors v are extremal for (2.2), as a function
of t]. This information was obtained in the course of calculating h(t]), in Proposi-
tion 7.3 of [2], The answer is as follows. Let ex , e2 be the eigenvectors of rj, with
associated eigenvalues , rj2, ordered so that \rj{\ < \rj2\. Then:

(i) for \t]x\ < \ti2\ the extremal v are ±et ;
(ii) for t]x = -t]2 the extremal v are ±ex , ±e2;

(iii) for f/j = t]2 any u is extremal.
The first regime of (2.4) is easy. In this case h is differentiable at the optimal

t]. The optimal microstructure is a rank-one laminate, using layers orthogonal to the
eigenvector associated to the eigenvalue of smaller absolute value.
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The third regime of (2.4) corresponds to case (ii) above. From (2.21) we have

= n (l"> V)V®V
• 2 2

when = y(o _°i) and v e {±e,, ±e2}. From (2.18), the relevant value of y is

(fi2 + K2)S^i -^2)_ (2 23)
0\fU.2 ^2^1 ^2

It we take v{ = e{ , v2 = e2 , then the optimality condition (2.22) becomes

o\ 7 (1 o \ _ fl2y /X o
0 -<^2/ 2<5// V 0 -1/ h2 + k2 m,

This determines and m7:

/"2 + K2 , 1
y 2<5^y

™2 = ( ̂  + V (2-24)IJ-2 + K2 (€2
e2 v y 2(5//

One verifies that m{ + m2= 1 as a consequence of (2.23), and m{ > 0, m-, > 0 as
a consequence of the inequality which defines this regime,

025h|£, -£2| > [6{n2 + 02//, + k2)|£, + f2|.

According to the construction in [2], the bound is achieved by a second-rank laminate.
Specifically, we first layer o{ with a1 in volume fractions p — \ - 62m{ and 1 - p
respectively, using layers orthogonal to ex , to get a composite C. Then we layer C
with tr2 in volume fractions p = 0,/(l —d2ml) and 1— p respectively, using layers
orthogonal to e2 . The resulting composite a* achieves equality in the bound.

The analysis of the middle regime of (2.4) is similar. It corresponds to case (iii)
above. From (2.16) we have

»-"• <2-25»
12 ^2 1 ' ^2

From (2.21) we have
f{u) = —-—v © v

P2 + k2

for any unit vector u . If we once again choose = el, v2 = e2 , then the optimality
condition (2.22) becomes

0 \ y (1 0\ d2y /w1 0
0 —£2/ 2<5k \0 1/ p2 + k2 \ 0 m2

This determines m{ and m2

P2 + k2 /-£, 1
m. — —- —- + —

1 02 \ y ' 25k

P2 + K2 f-Z2 1 <2-26)
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One verifies that m, + m2 — 1 as a consequence of (2.25), and m, >0, m2>0 as
a consequence of the inequality that defines this regime,

92Sk\£1 + f2| > (0,/c2 + 92kx + /i2)|<^, - £2|.

The construction of the optimal second-rank laminate is the same as before, except
for using (2.26) in place of (2.24) to determine the values of ml and m2.

We turn now to the translation method. Our goal is to recover the optimal bound
(2.4) by the translation method, using only multiples of the determinant as transla-
tions. As before, this approach actually gives the optimal upper bound even in the
non-well-ordered setting.

Our starting point is the analogue of Proposition 1.4 for complementary energy.

Proposition 2.4. Let t be a constant fourth-order tensor. Assume that r is quasi-
convex on stresses, i.e., for any (^-periodic, divergence-free, second-order tensor ^
with mean value equal to zero

/.<
(W,v)>0. (2.27)

Assume further that a 1 (>-) — r is positive on Q, i.e.,

Then we have

a. 1 - t > 0 and o2 1 - r > 0. (2.28)

•'£((/a('"'-r)T+t)'■ <2-29)
The proof of Proposition 2.4 is very similar to that of Proposition 1.4; it can be
found, for example, in [2, 29]. We shall apply this proposition with r a multiple of
the translation det (defined in (1.32)).

Lemma 2.5. Let cr, and a, be two materials such that

A, </V (2-3°)
Whatever the ordering of /c, and k2 , we set

k = sup(/Cj, k2) . (2.31)

Then the assumptions of Proposition 2.4 are satisfied for all translations x — k- det
with k € [—1 ; k"1] .

Proof. Using Fourier analysis, it is easy to see that the definition (2.27) of quasi-
convexity on stresses is equivalent to

(tM, M) > 0 for any symmetric matrix M such that det(AZ) = 0.

Thus for any k e jR the translation A det is quasi-convex on stresses. On the other
hand we have

-l . . 1/1 A . 1/1a,. - X det = x ( b k A_ +   k Avh '2 \ni J s 2 \Kl
Because As and Ah are nonnegative operators (see their definitions (1.33)),
(a~l - k det) is positive for / = 1, 2 as long as Is [~H2X; k"1] . □
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Proposition 2.6. Denoting by £, and £2 the eigenvalues of £, the translation
method yields the bound

if <92|k:2 — iCj 11^, + £2| < (01k2 + 02/c, + ^2)|£, -£2|

and d+\fi2 -/i,||£, -{2| < (dlfi2 + d2nl + k+)|£, + {2|;

if 62\k2 - k11|£, + £2| > (0,/c2 + 02k, + //2)|^! - £2|;

if 0+|^2 - //J |<f, -{2| > (0,//2 + 02^, + ie_)|f, + f2|,
(2.32)

where jc+ = sup(/c1, k2) and 0+ is the volume fraction of the material corresponding
to k+ .

Proof. Replacing r by Adet in (2.29) leads after some elementary algebra to

Ij* 2\X (^l^l (^1^1 @2^2^ ~ (2 33)
A~" + (0,^2 + 02^1) 5 A-1 - (0,/c2 + 02k,) h

Specializing (2.33) at energy £ and recalling that in two dimensions 2(Ahg, £) =
(f, + f2)2 and 2{Ast;, £) = ({, - £2)2 , we obtain

(<r*{, {) < ((0,(7, + 02(J2)i, 0 - 0,02g(A) (2.34)

with

tW .(ft-W' +(2.35)
0,/^ + 02/W, + ^ 0,^2 + 02^,-/1

Notice that this function g(A) is very similar to the function /(A) introduced in
Proposition 1.6 (see (1.38)). Differentiating g(A), we easily find two possible roots
of g'(A):

A+ = \jh~ /'iMc, - Z2\L+ \k2 ~ *il Ifi + f2l
(0,K2 + 02K,)|^2 - i"i I If, - f2| - (<V2 + ^1)1*2 ~ Kll l<M +^l

r = z ^1 - \K2 ~ K\ I If i + f2l
(0,/C2 + 02/C,)l/"2 — I 1^, — ̂2I + (^1^2 + ^2/"l )I'C2 ~ I 1^1 +^1 '

The first root A+ is always outside the interval [-ju2 1; k+ '], and g is convex on
[—n2 1 So there are three different cases:

(1) if A" < -fi2 1 , then the minimum of g(A) is attained for A = ~H2l ;
(2) if ~n2 < A~ < k~ , then the minimum of g(A) is attained for A = A~ ;
(3) if A~ > k:"1 , then the minimum of g(X) is attained for X-k~x.
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In the second case we easily compute the value of g(A~):

/,-x = W^i ~ ̂ il Ki ~^2I ~ 1*2 ~ *il I'm +£21]2
9{(fi2 + K2^ + ^2(^1 + Ki)

A little algebra leads directly to the desired result (2.32). □
In the well-ordered case the translation bound (2.32) and the Hashin-Shtrikman

bound (2.4) are clearly identical. In the non-well-ordered case, Proposition 2.6 yields
a new bound which is algebraically very similar to the Hashin-Shtrikman bound. Let
us check that this new bound is optimal.

Proposition 2.7. The translation bound (2.32) is also optimal in the non-well-
ordered case. Specifically, there exists a sequentially laminated composite which
achieves equality in the bound.

Proof. The argument is similar to that of Proposition 1.7. The proof that the
Hashin-Shtrikman bound is optimal actually shows the following: if £ and q are
related by the "optimality condition" (2.20), then there exists a sequentially laminated
composite whose effective tensors a* satisfies

, £} = (<t2£ , {) - 0,[2(£, rj) - ({a2 - ct,)-1 rj, rj) + 02h(ri)\.

This applies even in the non-well-ordered case. In other words, any critical value
with respect to t/ of

, {> - 0,[2<£, n) - <(tx2 - axrXn, rj) + 02h(r,)] (2.36)
is equal to (cr*£,, £) for some sequentially laminated mixture of a] and o2 in volume
fractions 6>, and d2, respectively. The associated microstructure consists of platelike
inclusions of material 1 in a matrix of material 2.

Consider now the translation bound (2.32). We are in the non-well-ordered case,
so k+ = kx . By inspection, the first two regimes are identical to the corresponding
regimes of (2.4) except for replacing fc2-/c, with |tc2 —kJ. The proof of Proposition
2.4 shows that these are critical values of (2.36). So the first two regimes of (2.32) are
achieved, even in the non-well-ordered case, by a suitable microstructure of platelike
inclusions of material 1 in a matrix of material 2.

The third regime is different: it corresponds to the third regime of (2.4) with the
roles of o{ and a2 reversed. So it is a critical value of the analogue of (2.36) with
cr, and a2 reversed. Hence this regime is optimal as well, but its microstructure
consists of platelike inclusions of material 2 in a matrix of material 1. □

Remark 2.8. We emphasize that there is a major difference between the non-
well-ordered lower bound (1.37) and the non-well-ordered upper bound (2.32). The
former is always achieved by a matrix-inclusion microstructure, in which the material
with smaller shear modulus is the matrix, regardless of the value of £. The latter
is also achieved by a matrix-inclusion microstructure. For the upper bound,
however, the matrix must be the material with the larger shear modulus when
0J/*2 - jU,| !£[ - £2| < (0^2 + ^2<"i + ki)Ki + £21' while it must be the material
with the smaller shear modulus when this inequality is reversed. Thus for the upper
bound in the non-well-ordered case the choice of "reference material" must depend
on £.
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