
QUARTERLY OF APPLIED MATHEMATICS
VOLUME LII, NUMBER 2

JUNE 1994, PAGES 311-333

OPTIMAL LOWER BOUNDS ON THE ELASTIC ENERGY OF A COMPOSITE
MADE FROM TWO NON-WELL-ORDERED ISOTROPIC MATERIALS

By

GREGOIRE ALLAIRE (Commissariat a I'Energie Atomique—Gif sur Yvette, France)

AND

ROBERT V. KOHN (Courant Institute of Mathematical Sciences)

Abstract. This paper is a continuation of our previous work [AK] concerning op-

timal bounds on the effective behavior of a mixture of two linearly elastic materials.

While in [AK] we restricted our attention to the case of two well-ordered compo-

nents, here we focus on the case of two non-well-ordered and isotropic ones, i.e., the

case when the smaller shear and bulk moduli do not belong to the same material.

For given volume fractions and average strain, we establish an optimal lower bound

on the effective energy quadratic form. We give two proofs of this result: one based

on the Hashin-Shtrikman-Walpole variational principle, the other on the translation

method.

0. Introduction. This paper is a continuation of our previous work [AK], which

was concerned with optimal bounds on the effective behavior of a mixture of two

well-ordered elastic materials. Here, we establish an optimal lower bound on the

elastic energy of a mixture of two non-well-ordered, isotropic elastic materials.

The macroscopic properties of a linearly elastic composite material are described

by its tensor of effective moduli (Hooke's law) a*. This fourth-order tensor de-

pends on the microgeometry of the mixture as well as on the elastic properties of the

components.

Suppose that a* arises by mixing two materials ct, and a2 with prescribed volume

fractions 0X and 02 respectively, but with an unknown microstructure. For any given

strain £ (a symmetric, second-order tensor), an optimal lower (resp. upper) bound

is a function /_ — f_{ax, o2, d{, d2, £) (resp. f ) such that

£></+, (0.1)
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and such that each inequality can be saturated (for any £) by a suitable microstruc-

ture (which depends on <!;).

When the component materials are well ordered, i.e., they satisfy

{axti, t]) < {a2tj, rj) (0.2)

for every symmetric, second-order tensor t], such optimal bounds are known (see

[Av, KL, AK]). They are sometimes called Hashin-Shtrikman bounds since they de-

rive from the well-known Hashin-Shtrikman variational principle [HS]. They can be

viewed as extensions of the well-known Hashin-Shtrikman bounds on the effective

bulk modulus of an isotropic composite [HS], When er, and o2 are isotropic, condi-

tion (0.2) requires that the smaller bulk and shear moduli belong to the same material

K)-
The goal of this paper is to extend the optimal lower bound in (0.1) to the case of

non-well-ordered, isotropic component materials. We achieve this goal for any pair

of isotropic component materials cr, and a2, provided only that the bulk moduli

kj, k2 and shear moduli , /i2 are positive and satisfy, assuming with no loss

of generality that nx < n2, the condition k2 - >0, where N is the spatial

dimension.

To state our result more precisely, we first recall the form of the lower bound in

the well-ordered casecrj < a2 (see Proposition 2.1 in [AK]). It asserts that

<ct*£,£> > (cr1^,<?) + 02sup[2(^, //) - ((ct2 - (T,)"V //)-^<?(>/)] , (0.3)

with g(rj) an explicit, convex function of second-order tensors t]. (See Remark

1.2 for the definition of g(rj).) This bound is optimal, and indeed an extremal

sequentially laminated microstructure can be read olf from the optimality condition

for the maximization in t] (see Theorem 3.5 in [AK]). Since <t, < a2 , the function

F{t]) = 2(£, rj) - ((o2 - ax)~Xri, t]) - 6lg(rj) (0.4)

is strictly concave in t] for given so it has a unique critical point rj*(£) and

critical value F(tj* {£,)). We may therefore write (0.3) in the form

(o^,i)>(a^,0 + e2crittlF(r1), (0.5)

where crit^ F(rj) represents the unique critical value of the function rj —> F(t]). The

main result of this paper is that (0.5) gives the optimal lower bound even when a,

and a2 are not well ordered. More precisely, we shall prove

Theorem 0.1. Let ax and a2 be two isotropic, non-well-ordered, elastic materials

in > 2 space dimensions, with bulk moduli k{ , k2 and shear moduli , n2

respectively. Label them so that //, < fi2 and > k2, and assume that k2 - >

0. Then F , defined by (0.4), has a unique critical point ?/*(£), and (0.5) is a valid

bound. This bound is moreover optimal, in the sense that for every ^ there exists a

microstructure achieving equality in (0.5).

(It is worth noticing that, in 2D, Theorem 0.1 holds even without the assumption

>c2 - Mi > 0 ; see [AK2].)
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We give two different proofs of this theorem. The first one is based on the Hashin-

Shtrikman-Walpole variational principle [Wa]; it is a generalization of the usual

Hashin-Shtrikman variational principle involving a "mixed" reference material ct

built from the weaker bulk and shear moduli k2 and . The second one (which re-

quires slightly stronger assumptions) is based on the new "translation method", also

known as the "compensated compactness method" (introduced in [Tal, Ta2, FM,

LC], and also presented in [Mi, AK]). Both proofs involve a few tedious computa-

tions, which "miraculously" succeed: in this respect we are not entirely happy with

our analysis, since we know of no abstract reason that such complicated computa-

tions should yield a simple result. As a consequence, we do not know an analogue of

Theorem 0.1 for the upper bound on (ct*£ , £) (see Sec. 3).

The attentive reader will see that our second proof of Theorem 0.1, making use

of the translation method (Sec. 2), is more complicated than the first "variational"

one (Sec. 1). Furthermore, it yields slightly weaker results (compare Theorem 0.1 vs.

Theorem 2.5). It is natural to ask whether this second proof is worth the trouble. We

believe the answer is yes. Indeed, the main idea behind that proof, which is to extract

"extremal" translations from "old" or "classical" ones, may well have other potential

applications. Let us briefly summarize this idea. In the well-ordered case, the optimal

bound (0.3), usually obtained from the Hashin-Shtrikman variational principle [Av,

Ko, AK], can also be proved by the translation method [Mi, AK], using the particular

translation

t,(£) = <<7j{, {> £)2. (0.6)

This translation may be decomposed as

% = + </>„> (°-7)

where <f> is an explicit, convex quadratic form, and tf; is an "extremal" translation

(see Proposition 2.4 and Remark 2.9). Now suppose that rr, and a2 are not well

ordered. Then, in general, the translation is not "admissible" (in the sense of

Proposition 2.1). Nevertheless, the "extremal" translation xn turns out to be admis-

sible and thus furnishes a new translation bound. Furthermore, considering a critical

point rj* = of (0.4) (which exists by virtue of Lemma 2.7), the translation

bound obtained with f . coincides with (0.5).

As should be clear from the preceding summary, our analysis depends strongly on a

proper understanding of the well-ordered case. Thus we make frequent references to

our previous work [AK], In Sec. 3 we also discuss several related issues, including so-

called "trace" bounds in the non-well-ordered case (for a definition of trace bounds,

see [MK, Mi]).

The remainder of this introduction is devoted to recalling basic notation as es-

tablished in our preceding work [AK], We shall consider only isotropic component

materials. Their Hooke's laws have the form

ai = 2^As + NKAh ' (°-8)

where As and Ah are linear maps on symmetric second-order tensors that project

respectively on "shear" (i.e., trace-free) tensors, and on "hydrostatic" (i.e., multiple
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of the identity) tensors. Namely, for any symmetric second-order tensor £, we have

A,{ = {-i(tr£)/2, A„{ = i(tr{)/2, (0.9)

where l1 is the identity second-order tensor. The constants and Kj, both positive,

are the shear and bulk moduli of the /th component, and N is the space dimension

(N > 2). We also consider only non-well-ordered materials. Thus, without loss of

generality, we may and shall assume that

/f, < n2, Ki > k2. (0.10)

The cases kx = k2 and /z, = n2 are excluded since they belong to the well-ordered

case studied in [AK],

For simplicity, we consider spatially periodic composites, thus making use of the

spatially periodic homogenization theory (see [BLP, Sp]). We emphasize that this

point of view is sufficient for proving bounds that remain valid also for other types

of composites (see [GP] and [DK] for a rigorous proof of this point).

Let Q = (0; 1)^ be the unit cube, and let e be the length scale of the microstruc-

ture (it will tend to zero presently). The microstructure is determined by Q-periodic

functions X\{y) anc* I2W > w'1'1

X\(y) = 0 or 1 almost everywhere, and ^(.V) = 1 ~ X\{y) ■

The local varying Hooke's law is

The volume fraction of material cr is thus

0, = [ Xi(y)dy for i = 1, 2.
Jo>Q

As a consequence of homogenization theory (see e.g. [BLP, Sp, Ta3, ZK]), the

effective Hooke's law a* of the composite, which describes its macroscopic behavior

as the length scale e tends to zero, is characterized by

(<7*£,f> = inf/ {a{y)[Z + emAZ + em)dy, (0.11)
Jq

where the infimum is taken over all (^-periodic "elastic displacements" 0, e(<f>) is

the strain + lV0), and the "microscopic" Hooke's law is

o{y) = X\iy)°\ +x2(y)<72-

Our goal is to establish an optimal lower bound on (a, £) , with £, d{, d2,

H{, n2, , and k2 held fixed, as the microstructure varies.

1. The Hashin-Shtrikman-Walpole variational principle. In this section we estab-

lish an optimal lower bound on the effective elastic energy (cr*g , £). The two material

components ax and a2 are assumed to be isotropic and not well ordered; namely, their

bulk and shear moduli satisfy (0.10). In a first (and easy) step, we use the Hashin-

Shtrikman variational principle, as generalized by Walpole [Wa] for non-well-ordered
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materials, in order to obtain a lower bound. In a second (and more difficult) step,

we prove that this bound is actually optimal, and that it coincides algebraically with

the optimal lower bound obtained in the well-ordered case.

For any isotropic Hooke's law a , with bulk and shear moduli k , /i, and for any

vector k, we define a degenerate Hooke's law fg{k) by

fa(k)t1 = -[(qk) ®k- (rjk, k)k®k] + 1 (r/k, k)k®k, (1.1)
// Z.JU ~r A

where A is the Lame modulus of a defined by

The notation ® stands for the symmetrized tensorial product; i.e., (k <%> k')i } —

i^k'j+_kjk'i).
Let a denote a "mixed" reference material, which is isotropic and made of the

weakest moduli of er, and a2, i.e.,

a = 2/i]Aj + NK2Ah. (1.3)

Its Lame modulus is also denoted J = k2 - .

Theorem 1.1. When the two materials are not well ordered, the effective energy

given by (0.11) satisfies

0 > (n, O + sup [0j[-2<£, Ahrf) - ((a, - Ahr,)] (1.4)
i L

+02[2(^, Asri) - ((<t2 - aiylAsti, Asrj)] - 0,02f(»/)] >

where the supremum is taken over all symmetric constant second-order tensors r),

and ~g{rf) is the homogeneous of degree two convex function given by

g(rj)= sup {f-{k)t],ti). (1.5)
l*l=»

Remark 1.2. Since the proof of (1.4) is based on the Hashin-Shtrikman variational

principle as revisited by Walpole, we call it the Hashin-Shtrikman-Walpole bound.

Clearly (1.4) has some similarities with the optimal lower bound obtained in the

well-ordered case (the so-called Hashin-Shtrikman bound), which reads

{o*Z, f} > (<7,£, £) + 02sup[2(£, rj) - ((<r2 - a,)"1?/, tj) - 6lg(t])], (1.6)
i

where g(tj) is defined by

g{rj) = sup(/ff (k)t], t]). (1.7)
l*l=i 1

(We emphasize that (1.6) is not valid when the materials are not well ordered.)

Proof of Theorem 1.1. We start as in the Hashin-Shtrikman variational principle

(see e.g. Proposition 2.1 in [AK]), but, following an idea of Walpole [Wa], we subtract

from the effective energy defined by (0.11) a "mixed" reference energy:

(<r*£,0 = inf [ ((a(y)-m + em,[^ + e(m+ [ m + em, K + em)
JQ JQ J

(1.8)
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Using the positivity of a(y) - a and convex duality, we rewrite the first term in the

right-hand side of (1.8)

/.
<(ffOO-ff)K + e(0)],K+ <?(*)])

(1.9)
= sup

ItK)

[ [2(K + - a) ' rj{y), t](y))].
Jo

Here rj(y) ranges over periodic tensor fields, and one can get an inequality by choos-

ing t](y) of the form ^2(y)A5f/ - X\(y)Akr], where rj is any constant tensor. Thus

(1.9) implies

L((<r(y)-m + em,[Z + e(<l>)])

> Akr,) + 262(Z, A,»/>

- AkV, Akt!) - e2{(o2 - cr,)-1 Asf/, Asri)

+ [ 2{{X2(y)\l - Xi(y)Akri), e{tf>)).
Jo

Together with (1.8) this yields

<**£,«> > (ot,Z)-2ei{t,Akri) + 202{t,Asri)

- (K - a2)~lAkrj,Akri) - 62{{a2 - a,)"1 , Asrj) (L1Q)

+ inf [ ^■{X2{y)rl, + f (ae((f)), e{(/)))
Jo Jo

The last term in (1.10) is the familiar "nonlocal" term, which is easily computed by

means of Fourier analysis. This computation is by now classical (see Proposition 2.1

and Lemma 7.1 in [AK], or Lemmas 3.2 and 4.2 in [Ko]); the only difference here

is that the reference material is a instead of rr, . We obtain a simple bound on this

nonlocal term:

inf 2(x2(y)l > e{<t>)) + J0^ae^'

> -dx02 sup
\k\=l

\t}k\2 - [rjk, k)2 + {rjk, k)2

ft i 2//, + A

which, combined with (1.10), is the desired result. Q.E.D.

Now, the main difficulty is to prove the optimality of the lower bound established

in Theorem 1.1. To be precise, the bound is optimal if, for any £, there exists a

microstructure that achieves equality in (1.4). To exhibit such a microstructure is

not an easy task, since checking equality in (1.4) amounts to computing explicitly the

corresponding effective tensor a* . Fortunately, there exists a special class of compos-

ites, the so-called sequential laminates, for which explicit formulae (due to Francfort,

Murat, and Tartar [FM, Ta2]) are available (for details, see also Proposition 3.2 in

[AK]). In the well-ordered case, attainability of the bound (1.6) is established by com-

bining the optimality condition for (1.6) and the layering formula. We emphasize
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that this procedure is very systematic since the optimality condition and the layering

formula are closely related (see Theorem 3.5 in [AK] for details).

In the non-well-ordered case, the layering formula still holds, but it has no clear

link with the optimality condition of the bound (1.4). Thus, there seems to be no

systematic way of proving the optimality of (1.4), and more work is needed. Let us

explain how we shall proceed. We start with the following functional:

F{vt) — 2(£, rj)-{(a-.-(TjrV t])-eig(ri), (1.11)

where g{rj) is defined by (1.7). Note that the supremum of F(rj) is involved in the

well-ordered bound (1.6). In the non-well-ordered case, F{t\) is no longer concave,

and its supremum may be equal to +00. It is not even clear that F(rj) admits a

critical point. However, as a byproduct of Theorem 3.5 in [AK], we still have

Proposition 1.3. Suppose there exists a critical point rj* of F(rj), i.e., a point rj*

satisfying

0 e 2£ - 2(o2 - ^rV - 6{dg(n), (1.12)

where dg is the subdifferential of g (see [CI] for an introduction to the subdif-

ferential calculus). This means that there exists a family of positive reals mi, with

J2"=i mj = 1 > and vectors ki, each extremal in the definition (1.7) of g{t]*), such

that
n

z = (<»2 -^rV + 6[J2mifaSkJti* ■ (L13)
i= 1

Then there exists a sequentially laminated composite (determined by the parameters

ki and mt) whose effective Hooke's law a* satisfies

= + rf) = (o£,t) + e1F{n). (i.i4)

Of course, in the strictly well-ordered case, F(tj) is strictly concave; so there exists

a unique critical point of F(rj), and Proposition 1.3 clearly establishes the optimality

of the bound (1.6). In the non-well-ordered case, we will still use Proposition 1.3,

but with a different argument. Our strategy is as follows.

The right-hand side of (1.4) involves the supremum of the following functional:

~F(l) = 0i[-2<{, \rj) - ((ffj ~(T2)~lAhT], Ahrj)]

+ <92[2(£, A stj) - ((c2 - a{)~1 Asri, Asr])) - dl 62g{r\),

which is easily seen to be strictly concave, so that it admits a unique critical point rj*

(a maximizer). Superficially, the maximizer rj* of F has no apparent connection

with the critical points rj* of F (if any), which in turn are linked to the layering

formula. However, under a mild assumption on the moduli of the materials, a change

of variables permits one to connect the optimality conditions of F and F .

Proposition 1.4. Assume that the Lame modulus of the mixed reference material

a is positive, i.e.,

X = jc2-^, >°. (1.16)
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Let rj* be the unique maximizer of F(rj). Then, there exists a tensor rf = rj* + cl2,

with c a number depending on rj*, such that

(*) t]* is the unique critical point of F(rj),

(**) {olZ,Z) + 92Ftf) = <F£,Z) + Ftf).

Then, as a direct consequence of Propositions 1.3 and 1.4, we have the following:

Theorem 1.5. Under assumption (1.16) the Hashin-Shtrikman-Walpole bound (1.4)

is optimal, i.e., for any strain £ , there exists a sequentially laminated composite that

achieves equality in (1.4). Furthermore, the value of the bound (1.4) is exactly

(<r*Z,Z) >{o^A) + e2ch\nF{r]), (1.17)

where critnF(rj) represents the unique critical value of the function F (equal to

Ftf)).
We have thus reduced the proof of the optimality of the Hashin-Shtrikman-Walpole

bound to the proof of Proposition 1.4. Unfortunately, the latter requires a blind and

brute force computation, and we have no clear understanding of its success. (We also

know another proof of Theorem 1.5, but it, too, depends on a tedious computation;

see Sec. 2.)

The proof of Proposition 1.4 starts with another lemma connecting the critical

fc's for the functions g and ~g (which are defined as suprema over the unit sphere

\k\ = 1; see (1.5) and (1.7)).

Lemma 1.6. Assume that the mixed reference material a has I positive, i.e., it

satisfies (1.16). Let rj be any symmetric second-order tensor.

(*) Among all k extremal for g(rj), the constant

c=%^lW,k)
2// j -j- A

does not depend on k . Thus, we can define rj = rj + cl2 .

(**) Any k extremal for ~g(rj) is also extremal for g{rj), and conversely.

(* * *) For any extremal k , we have fj(k)rj = f (k)rj.

Remark 1.7. The constant c introduced in Lemma 1.6 corresponds exactly to that

introduced in Proposition 1.4. Thus, in both lemmas, the correspondence between

rj and rj is the same.

Proof of Lemma 1.6. In Propositions 7.2 and 7.4 of [AK], we proved that, assuming

J is positive and labelling the eigenvalues of rj so that 7;, < rj2 < ■ ■ ■ < rjN, there

are three regimes for (rjk, k), with k any extremal in g(rj):

—2 2/i + X
8(*f) = . 1,1 T and (yk,k) = rjl if> j"1 {rjN + tjl)\

Zfij + A
—^ 2 _i_ ^

g(Jl) = , T,N T and {rjk,k) = rjN if ~(rjN + rj^ > rjN\
A 1 T a)

(rj,~rjN)2 (rj]+JjN)2

g(ri> 4/1, + 4(n]+J)
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and

_ 2fi. + A _ _
(rjk, k) = + '/at) *n remaining cases.

Thus, the first point of the lemma is proved, and the definition of // is meaning-

ful. The second and third points are straightforward computations. The optimality

condition for k in the definition (1.5) of ~g(fj) is

— rj2k + [ —-—= —— ] 2(rjk, k)rjk = Lk,
Hx \2^+X nj

2  
where L is a Lagrange multiplier for the constraint |/t| = 1 , and fw{k)rj is defined

by

fw(k)rj = — [{rjk) <g> k - (rjk, k)k <8> /c] H ^® ^ •
ft i 2^x + A

Let us replace rj by rj-cl2. Remarking that c = (k{- K2){rjk, k)/(2/z, + A) is also

equal to (k, - K2){rjk, k)/(2nx + A,), it is easily seen that k is a critical point in the

definition of g{rj) and f-{k)rj = f^(k)r\. Q.E.D.

Proof of Proposition 1.4. Let rj* be the unique maximizer of F(rj). It satisfies

0e62[2AsZ-2(a2-airlAsrj*]-ei\2AhZ + 2(al-a2rlAhrj*]-dld2dg(f)- (1.18)

Equivalently, there exists a family of positive reals mj, with J2"=i rnj = 1, and

vectors kl, extremal for the definition of ~g{rj*), such that

02[A^ — (cr2 —o-j)-' A,**] - 0X+ (ff, - o2)~' Ahrj*] = 0,02 ^ mj-ik^rj*. (1.19)

i=i

Multiplying (1.19) successively by Ah and As leads to

Ah£, + (a, - a2)~x Ahrj* = -02Ah £ mj-ik^f ,
1=1

A/ - («72 - a, )-1 A sf = 0, AsJ2 .
(=i

Replacing rj* by rj* - cl2, with c = (/c, - K2)(r]*k, k)/(2/il + A), and using Lemma

1.6 gives

V - (a2 - a,)"1 Ahri* = - 62Ah £ ^ ^ } ,

„ (=1 * 2 (1-20)

V - (a2 - °l) 'AX = 0 A £ m/a,
^ 'M =yi

i'=l

Since Ahfa {k^rf — {r]*kt, ki)/N(2fil + A,), the first equation in (1.20) becomes

Ah{-{t72-Oi) {Ahrj* = dlAhJ2mif0i(ki)r1\
i=i



320 GREGOIRE ALLAIRE and ROBERT V. KOHN

Together with the second equation in (1.20) this implies that rf is a critical point

of F(tj) . Moreover, rj* is unique, since the above calculation is reversible and rj*

is unique too. It remains to check the equality

((TlZ,Z) + 02Ftf) = pZ,Z) + Ftf).

We leave this easy calculation to the reader. Q.E.D.

2. The translation method. In this section we re-derive the optimal lower bound

(1.17) by means of the translation method. The translation method was first intro-

duced by Murat and Tartar [Ta2], and by Lurie and Cherkaev [LC], Its link with the

Hashin-Shtrikman method was found by Milton [Mi], who also introduced the name

"translation method". For an introduction to that method and more references, see

Sec. 4 of our paper [AK], We begin by recalling two basic results.

Proposition 2.1. Let t be a constant fourth-order tensor (called a translation). By

definition, a translation x is said to be admissible if it satisfies

(i) <Tj - x > 0 and a2 - x > 0,

(ii) x is quasiconvex on strains, that is, for any 0-periodic function (f>(y),

So[xe{(/){y)), e{<t>(y))) dy > 0.
'Q

Then, to each admissible translation t is associated the following translation bound:

o* > ^(<t-t)-1^ + x. (2.1)

Furthermore, for any symmetric second-order tensor £, the bound (2.1) admits the

equivalent variational formulation

(<r*{, <f> > inf f [(<r(y)(£ + u), (( + „)) - (xv, v)] dy, (2.2)" Jq

where the infimum is taken over all (2-periodic tensor fields u with average value 0

on Q.

Proposition 2.2. In the case of well-ordered components (i.e., a, < a2), the partic-

ular translation

xn = a\ -s{n)~xn®n, (2.3)

where g(t]) is defined by (1.7), is admissible and yields the following bound:

2

- - - 7;"'° -7 7- (2.4)
0ig{n) + ({o2~a\) n,vi)

Remark 2.3. It is easily seen that by taking the envelope of the bounds (2.4) (i.e.,

maximizing over rj) we recover the Hashin-Shtrikman bound (1.6) (for details see

Proposition 4.9 in [AK]).

In the non-well-ordered case, the translation xt] is not admissible in general, and

the translation bound (2.4) does not hold, since there is no reason that a2 -x should
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be positive. Our strategy for generalizing Proposition 2.2 is to decompose the "old"

translation into a new admissible translation f and a positive (convex) part (j)^:

= * i - ^r11 f „+"V (2-5)

More precisely, we shall prove the following.

Proposition 2.4. Assume that both materials have positive Lame moduli, i.e.,

= tct - > 0, for i = 1, 2. (2.6)

Then, for any tensor rj, there exists an admissible (in the sense of Proposition 2.1)

translation fn such that the difference is positive.

We postpone for a moment the proof of Proposition 2.4 in order to state the

optimal translation bound. As in the first section, our starting point is the functional

F(tj) = 2(f, rj) — {{a2 — t], rj)-6lg{rj), (2.7)

where g(t]) is defined by (1.7). Recall that the supremum of F(rj) is involved in

the well-ordered Hashin-Shtrikman bound (1.6).

Theorem 2.5. Assume the materials satisfy (2.6). Then

(*) there exists a critical point rf of F(rj) and a unique critical value F(rj*),

(**) the translation bound furnished by i . is optimal and is given by

>inf J [(ff(y)(£ + «/), (f + f)>v)]dy = (a,£, {) + ^crit, F(i/).
G (2.8)

Remark 2.6. Of course (2.8) coincides with the previous bound (1.17) obtained

with the Hashin-Shtrikman-Walpole variational principle. However, the assumptions

of Theorem 2.5 are stronger than those of Theorem 1.5 (both Lame moduli and

X2 being positive implies that the "mixed" Lame modulus A is positive too). The

critical point r\ of F is actually unique (see Theorem 1.5). We make only the

weaker assertion that the critical value is unique in Theorem 2.5, because this is all

that seems to follow from the methods of the present section.

The proof of Theorem 2.5 is based on several lemmas.

Lemma 2.7. There exists at least one critical point t]* of F(rj).

Proof. This is clearly a consequence of Proposition 1.4, but we sketch here a more

direct argument. Recall that Hooke's law for material / = 1,2 is given by

a,. = 2ntKs + NKt Ah .

Fixing a symmetric second-order tensor £, and any t e R, consider the function of

11 defined by

F(rj, t) = 2(£ + tl2, r,) - |A^|2 - (2^2 - 2^)~l |A^|2 - dlg(r,). (2.9)

Recall that g(rj) is convex since it is the supremum of a family of quadratic func-

tions. Therefore, there exists a unique maximizer r\{t) (which is easily seen to be a

continuous function of t). It satisfies

Oe (2^ + 2tI2-2Ahr1(t)-2(2^2-2^ylAsr1(t)-eidg(r,(t))), (2.10)
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where dg{t]{t)) is the subdifferential of g(tj) at the point t](t). On the other hand,

a critical point t]* of (2.7), if any, would satisfy

0 e (2£ - 2(Nk2 - - 2(2/z2 - 2^1)"1AJf7* - . (2.11)

Comparing (2.10) and (2.11), we can choose rj* = rj{t) if

t - T7 tr[^(0] = —2~  -K[r]{t)]. (2.12)
/v N (kj - k2)

Now, it is a relatively easy matter to show that there always exists a root of Eq. (2.12).

This gives a critical point of F(rj). Q.E.D.

Lemma 2.8. Let be the translation defined by a1 - g(r/)~'r/ ® t]. Consider any

decomposition = f + 4>n, with f n admissible and 0^ positive (by virtue of

Proposition 2.4 there is at least one such decomposition). Then

v e dg(tj) => <t>vv = 0, (2.13)

where dg(r]) is the subdifferential of g(rj).

Proof. Recalling the definition (1.7), we have

g(r]) = sup{f (k)ri, tj), (2.14)
1*1=1 '

where the degenerate Hooke's law fa (k) is defined in (1.1). For any tensor v be-

longing to dg(tj), there exist an integer n > 1 , unit vectors (kj)l<i<n achieving the

maximum in (2.14), and positive numbers (w;)1<|<n with J2"=\ mi = 1 such that

v=ibmifoSki^-
i=i

By definition, each term fa (k^rj is a Fourier component of a periodic strain e(<f>)

(see the proof of Theorem 1.1 and the corresponding parts of [AK, Ko]). By quasi-

convexity of the translations and (see Proposition 2.1), one has

<T,tfai(ki)n], [fai(ki)>7]) > 0, [f^m > 0. (2.15)

Furthermore, an easy calculation shows that the first term in (2.15) is actually equal to

zero since ki is extremal for g(rj). On the other hand </> is positive; thus each term

(*„[/»,(*,■)>/]. \fa^ki)n\) and <^„[/ffi(fcf)»/], [fo^kjr]]) are equal to zero. Positivity

of (f)^ implies that

^[/ffl(^)'7] = °> fori </<«. (2.16)

Summing the equalities (2.16) gives the desired result. Q.E.D.

Proof of Theorem 2.5. Fix the tensor d;. By Lemma 2.7, there exists a critical

point rj* of F. So we have two tasks: (i) to verify that the resulting translation

bound has the form (2.8), and (ii) to verify that this bound is optimal.

The proof of (i) is a bit circuitous. To motivate it, recall that in the well-ordered

case the optimal bound is (cr,^, 4) + 02F(tf), and this is the translation bound

associated to . Now, it is a general fact about translations that if i = f + </>,
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with r, f admissible and 4> convex, then the translation bound associated to f is

stricter than that associated to r (see Sec. 8 in [Mi]). Taking r = xn> , f = f. , and

remembering that no bound can be better than the optimal one, we deduce that in the

well-ordered case t . and f yield the same bound on (a*£, £). In other words,

(2.8) holds in the well-ordered case. Our task is to find an alternative argument that

proves (2.8) even when ax and a2 are not well ordered.

Preparing to prove (i), let us explore the consequence of rj* being a critical point

of F . It is easily seen that any such t]* is also a critical point of

G^)= a 7 7 !r'i)2 n 7' (2'17)
+ i~°\) i>i)

and we have the equalities

Gtf) = F{t1*) = (Z,tim). (2.18)

When the materials are well ordered, we proved in Proposition 4.9 of [AK] that the

translation bound (2.2) obtained with is exactly

inf^[(ff0>)(f + v), ({ + v)) - <v , i/>] # = {<?£, {) + 62G(rj). (2.19)

In the non-well-ordered case, the infimum over v in (2.19) may be infinite. Nev-

ertheless, a careful examination of the proof of Proposition 4.9 in [AK] shows that

there always exists a critical point v(r\) of the left-hand side of (2.19). Moreover,

v(rf) is constant within each component material. Now consider the left-hand side

of (2.19), evaluated at v(rj):

Hin) = [ [(<r{y)(Z + Hi)), (£ + "(i))) - (oif(i), Hi)) + g(i)~l(i, v(i)f]dy-
JQ

(2.20)
By virtue of Proposition 4.9 in [AK], (2.19) still holds when replacing the infimum

by the critical value, i.e.,

H(t1) = (olz,z) + e2G{n).

Thus, rf being a critical point of G{rf), it is also a critical point of H(rf). Let us

compute the subdifferential of H(tj). Suppose briefly that "everything is smooth":

then, if we differentiate H(rj), the chain-rule lemma allows us not to differentiate

v(r\), because it is itself a critical point. This can be made rigorous in the framework

of the subdifferential calculus by the "chain-rule" Theorem 2.3.9 of [CI]. Thus

0 G dH{rf) 8(1 f (i* ,"(i*)YJo
(2.21)1 , "{1 J>2

IQ

The critical point u(rj*) takes a constant value vi in material er (/ = 1,2), and

it has average zero on Q, i.e., 6{vx + d2u2 — 0. Therefore fQ(l*, v(rj*))2 =

0X/62{rj*, vx)2. The Leibniz rule for subdifferentials implies

d[g(fl*)~l {tl* , vf] C [g(tl*rl2(rj*, - g(rj*)~2(ri*, vx)2 dg(rj*)]. (2.22)
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From Eq. (4.28) in [AK] we know that

(ri\ i/ > = ^  j . (2.23)
1 f\ i / * \ — 1 / / \ — 1* * \

0, + *(»/ ) ((ff2_(Ti) n ,n)

Together with (2.18), (2.23) yields {rf, u{) = d2g{rf). Therefore, we deduce from

(2.21) and (2.23)

vxe^dg{n). (2.24)

Applying Lemma 2.8, (2.24) implies that = 0; thus fy^virf) = 0. Using the

decomposition r . = f^. + <f> - , we obtain

H(n) = J my){Z + Hi)), (£ + Hi))) - (%-Hi), Hi*))] dy. (2.25)

We are ready now to prove assertion (i), i.e., that (2.8) holds. The first inequality

(o*Z,€) > inf [ [{°{y){£ + v), (^ H- ̂)> — <t .^ , u)]dy (2.26)" Jq n

is just the variational form of the translation bound associated to f^. . We assert that

L

v = v(t] ) (defined as a critical point for (2.19)) achieves the minimum in (2.26).

Since a(y) - f^. is nonnegative, it suffices to check that v = v{rf) is a critical point

for (2.26). By definition it satisfies

[{o(y)[£, + v{rj*)], v) - (t *v{tf), v')] dy = 0 for any zero-average tensor v .
Q

(2.27)
We know from (2.24) and Lemma 2.8 that

(v ~ ^n-Xl*) = <t>fHl*) = °- (2-28)

It follows easily that u{rf) achieves the minimum in (2.26). The value of the bound

(2.26) is thus

H{rf) = (tr,£, £,) + 62G{rf) = <a,£ , 0 + 62F(rf),

using (2.25) and (2.18). This proves (2.8).

The optimality of this bound—our assertion (ii)—is an immediate consequence

of Proposition 1.3. Our argument does not show that the critical point if is unique.

But it does show that the critical value F(rf) is unique. Indeed, the preceding

applies for any critical point ij*, whereas the optimal bound is by definition unique.

(In truth t]* is unique too; see Sec. 1.) Q.E.D.

The remainder of this section is devoted to the decomposition of .

Proof of Proposition 2.4. We shall make essential use of the assumption that both

materials have positive Lame moduli A. = k-2hJN . The main idea is to decompose

the "old" translation = <7, - g(rj)~l ij <g> i] into a positive part 4>n and a "new"

translation f , which is a linear combination of the "elementary" translations tik

defined by

(2-29)
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(Here £ is any symmetric second-order tensor, with entries denoted by 4lk .) The

translations rik are easily seen to be quasiconvex on strains (e.g., by Fourier analysis):

for any Q-periodic function 0

{Tike(<t>),e(4>))>0, with e{<t>) = V<t>+ V(^ .
> z

In Proposition 7.4 of [AK], we proved that, when A, > 0, the nonlocal term g(rj) is

defined by

4^("> - "")! + 55^)("' + '")2 'f 1" S + £ *>•

Jo

g(*l) =

2
h

2^1+Xl -■'i'-2{ny+Xx)

ri\ -c ^ 2fI\+K , \
- lf^ 5777hrr-^N + h)*

*1N ^1 + ^1I57T1; if2(J7T^)(
(2.30)

where < t]2 < ■ ■ ■ < rjN are the eigenvalues of r/.

Corresponding to the different regimes of g(ri) in (2.30), we consider different

cases in decomposing . With no loss of generality, we always work in a basis

where t] is diagonal.

Consider first the case

= when a""• <2-31>

For any symmetric second-order tensor £, replacing g(tj) by its value yields

i,k= 1 *1n i, k= 1 V *1n )

(2.32)
Obviously all terms in the second sum in the right-hand side of (2.32) are positive.

If the coefficients of the first sum were positive, the decomposition of would

be straightforward: the first sum would be quasiconvex on strains, and the second

positive. Unfortunately this is not the case. We therefore define the new translation

f, by

<V.o= £
i,k=l

(2^+A,)^-A,
*In

A,(2^i + A,) / r)k\ ( Hi

2^ \ rjN) \ %

Then the difference = t - is given by

»,{,{> = (2nl+i,) £ (i-»)4

(2.33)

«?*-«/&*)•

(2.34)

;,fc=i
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Let us check that <f> is positive. Equation (2.34) can be rewritten

<*,f.« =

2
AT

+ (2+A.) £ a(t4,
i,/c=l

where the coefficient aik is defined by

a = i _ TMi Hl] (i-Hl
,k nl 2^i V nN) V *iN

It is enough to prove that aik is positive. With no loss of generality we can assume

that t]k > t]i. Remarking that (2.31) implies that rjN is positive, we infer

1N V nN
1 + A_ii_^i

nN 2//, V rjN

> 1 - -UL
rik\ (2//, +Xl)rii + (2fil-kl)ri N

In J ^V-x^n

> [ 1 _ Ojl) > o
riN) 2 nxr]N

as a consequence of (2.31).

To prove that is qu;

coefficients in (2.33) are positive. The coefficient of Tjk is

To prove that is quasiconvex on strains, it is also enough to check that all

= [(2/x, +Al)tjl - AIrjlv][(2fi1 + A1)tjk -A,^]

2^|

In view of (2.31), for any index i one has (2/zt + A,)?/;. — > 0. Thus is

positive.

Finally, to prove that is admissible in the sense of Proposition 2.1, it remains

to show that

cTj - > 0, and <r2 — f^ > 0. (2.35)

The first inequality in (2.35) is obvious since i = tr, - <g> ?/ - <pn and (j)^ is

positive. The second one is true if the quadratic form

P(() = ((a2 - <7,)$, 0 + ^(/7)_l<^7, c?)2 + (</>„£, 0

= 2(^2 - n{m2+^(tr£)2 + o - vtr^)2+swV £>2

is positive. The two first terms are positive because /u2 > n{ and > 0. The last
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two terms yield

-A,(trZ)2 + g{ri)-l(v,Z)2= £ (-^ + (2^+1,)^]^
i,k=1 V nN J

+ (a, -(2„, +A,)i) (a, - (2/i, +l,)i)] {„{„

1

2^,

Recalling that <j> is

2 iV

+ (2//, +A,) ^ aik£i
2
ik

i,k= I

where the coefficients aik are positive, we deduce that P(£) is positive; thus a2—x >

0.

The case g(rj) = r]1J{2/il + A,), when 2(/il + Al)r]l > (2//, +A,)(^ + »/1) is

completely symmetric to the first case (2.31). Thus, the second and last case is

g(D = + + ""en > i^±ily(,t, + ,1) > ,,.

(2.36)
Remark that the condition on rjl, r]N in (2.36) is equivalent to

<2-37>

We introduce an integer p (1 < p < N - 1) such that the following ordering of the

eigenvalues holds:

r}x<-<rip< 2(^l+^(In + *h) < *Ip+i < "■ < 1n- (2-38)

Then, the new translation f is defined by

It F - 7U V* ±In) ~ 2^i + Wl!!l+ ^ ~ 2(^i +

«,fe=i (2^,+W

+ 2 y-> [Aj(>?i + >?y)-2(/f, +A1)^P,(>?1 + >?jy) - 2{fil + A,)fy]

i,k=p+1 [(2^1 + Aj)^ —

(2.39)
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As before we denote by 4t> the difference - f . A tedious (but easy) calculation

shows that 4\ can be written as

<^{,0 = 4^,(1*,+^)^) * y* Ai 1

v - wk
ZC?.H.

p

+ 4Aj /z, (//, + A,)

k=P+1 (2^i+*1)^--Mi***

Ik ~ *?i *

,t=1 — (2^! + A,)*?!

AT
, *?JV 7 Vk K

(2nl+Xl)riN-XlT]l kk
k=p+l

2

+ 4 , +A ) V 2(^1 + ~ ^ + A'(>?' + ^)(??' + Ik ~ 2^'} *2
1 1 1 [A.^-^+A,);,,]2 '*

+ 4 ( +A) y> 2(/i, + A,)(ifo - rifa) + A,(^ + >/jy)(i?|. + y- 2^) 2

' ' ' i,tP+l ViflH-Vh+XM2 ik

p N

+4*E E 4-
i='l <c=/>+l

(2.40)
The quadratic form <f> is positive if the coefficients of E,lk in the third and fourth

lines of (2.40) are positive. For i, k e [1 ; p], their sign is the same as that of cjk

defined by

cik = 2(^i + Aj)(iff - Vtfb) + A,(f|1 + »fJV)(»|f + r]k-2r]l).

With no loss of generality we can assume that rj[ > rjk ; thus

_A M \ (?i + >?fc)
% = 4(^i +A,)(^ - I/,)

+ 2(/ij + A,)(?/,• - t]k)

2(^l+Al)(^' + "")- 2

jy)(»71 + 1N) - nk

(2.41)

.2(^i + "•(;

In view of the ordering condition (2.38) each term of (2.41) is positive since i,

k € [1; p] ■ A similar computation holds for i, k e[p+\; N]-, thus cf> is a positive

quadratic form.

The new translation is easily seen to be quasiconvex on strains, since the
7

ordering condition (2.38) implies that all the coefficients of £jk - £u£kk are positive.

To prove that is an admissible translation in the sense of Proposition 2.1, it

remains to show that

CTj — > 0, and a2 - f > 0. (2.42)
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The first inequality in (2.42) is obvious since f = a{ - g{ri)~lri® rj - <f> and <f> is

positive. The second one is true if the quadratic form

P(<f) = {(a2 -<r,){,«?) + g(^)"1 <»/, £>2 +

= 2(/i2 - //j)|^|2 + A2(tr£)2 + , {> - A,(tr£)2 + g^)"1 {r,,

is positive. The two first terms are positive because fi2> and A2 > 0. Another

tedious computation yields

~ Aj(tr^)2 + g{tl)~l(l, £)2

= -4nx(n{ + A,)g(i/)"
V- K g(n)-nNnk ,

fc=1 ̂ \*In ~ (^1 + ^\)^\ kk

N

-4A1/x1(/i, + A,)

fc=/,+1 (2|*j + A,)?^ — Ajfy i/c

£ai^-(2/i,+A1)/7l^fc (2'43)

+ -N~^—

k=p+1
(2/*1+A,)^-A1ij1 fcfc

+ 2//,

+ 2^j

Y> jjCgi + >?jy) - 2(/f, +A;)^
Ai'/jv - (2^, + A,)»/. fcfc

y> + *?jy)-2(jUi +Ai)>/fc

k=/)+i (2//| + A,

2

Thus (<^£, £) - A,(tr£)2 + g(ti)~l(ri, £)2 is positive, and so is cr2 - . Q.E.D.

Remark 2.9. One can easily show that is "extremal", in the sense that no

further convex quadratic form can be removed while maintaining quasiconvexity. In

other words, if f = f + 4>, with t quasiconvex and <fi nonnegative, then f = f

and (j> = 0.

3. Related issues. In this section we discuss some potential generalizations of our

previous result. By considering the 2-D case, where explicit bounds are known for

any ordering of the materials, we explain why we are unable to obtain an optimal

upper bound for non-well-ordered materials with our methods. For sums of energies,

we establish optimal trace bounds (as introduced in [MK, Mi]) for non-well-ordered

materials.

Explicit bounds in two space dimensions. In two space dimensions, we know ex-

plicit optimal upper and lower bounds on the elastic energy of a composite made of

two isotropic components [GC, AK2]. Of course, the optimal lower bound in the

non-well-ordered case coincides with that obtained here. Furthermore, it is valid

without any assumption on the moduli of the materials.
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Concerning the lower bound, we have seen that, whatever the ordering of the

materials, it is always the material with the lower shear modulus that is the reference

material, or equivalently the matrix material in the matrix-inclusion microstructure

achieving equality in the bound. Thus, a naive guess would be that, for the upper

bound too, it is always the material with stronger shear modulus that is the reference

or matrix material. This is true if the materials are well ordered, but it can readily be

checked in the explicit formulae of [AK2] that this is wrong in the non-well-ordered

case. Rather, either material may be the reference material, depending on the value

of £ (see Remark 2.8 in [AK2]).

Optimal upper bounds and complementary energy. Although the form of the opti-

mal lower bound was simple and concise

(**{,{> ><<7i£,«) + 02crit^) (3.1)

(remark that material one is always the matrix material), it was obtained by two

different, but equally complicated, methods involving a lot of tedious computations.

For the optimal upper bound, we already know in the 2-D case that the correct

formula for the bound is more complicated (it can involve either cr, or er, as the

matrix material). Thus our method evidently cannot work for upper bounds on

elastic energy.

However, as a consequence of Theorem 8.2 in [AK], we easily obtain an optimal

upper bound for complementary energy ((a*)_1£, <!;) by simply taking the Fenchel

(or Legendre) transform of the optimal lower bound (3.1) on primal energy. For

details, we refer the interested reader to Sec. 8 of [AK],

Optimal trace bounds. Another possible generalization of the lower bound (3.1)

would be a similar bound for a sum of energies rather than a single one. Unfortu-

nately, our methods are very specific to the case of a single energy, since they rely

strongly on the explicit formulae for g(t]) or ~g(rj) defined in (1.5), (1.7). There is

however one type of bound on sums of energies, so-called trace bounds, which can

be established in the non-well-ordered case by using the mixed reference material in-

troduced in Sec. 1. In the case of two well-ordered (possibly nonisotropic) materials,

trace bounds have been introduced by Milton and Kohn [MK, Mi], Let us recall

the lower trace bound, as presented in Sec. 5 of [AK]. For a collection (f/()KKj) of

symmetric second-order tensors, writing M = Y%=i 1t ® */, > and assuming cx, < o2,

the lower trace bound is

e2((a* - cr,)-' , M) < (((T2 - cr,)-1 , M) + 6,g{M), (3.2)

where the nonlocal term is

g(M) = sup (f (k), M). (3.3)
l*l=i 1

A similar upper trace bound holds for {(a2 - cr*)- , M). An interesting feature of

such trace bounds is that equality is achieved in (3.2) for a single layering of materials

(recall that the Hashin-Shtrikman bound (1.6) is usually attained by a multi-layered

microstructure, not by a single-layered microstructure; see Theorem 3.5 in [AK]). We

now generalize these trace bounds to the case of two isotropic and non-well-ordered

materials.
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Theorem 3.1. Consider two isotropic materials with Hooke's law

cr. = 2Hj\ + NtCjAh for /' = 1, 2

that are not well ordered, i.e.,

fi{<n 2, kx>k2. (3.4)

Denote by a the weak "mixed" reference material a = 2/i,A^ + NK2Ah . For any

collection (?/i)1<!<;, of symmetric second-order tensors, we write M = Y?i=i */, ® Ij»

Ms = Y?i= i t ® Asrjj, and Mh = Y?i=\ ® A/, 1i ■ Then, the following lower
trace bound holds:

{(a* -o)~x,M) < -a)~\ Mh) + j-((o2-a)~l, Ms) + 0x0{g - ^0 .

(3.5)
Here, as usual, g is defined by g(P) = sup^lifjik), P) • Furthermore, the trace

bound (3.5) is optimal, i.e., for any M there is a single-layered microstructure that

achieves equality in (3.5).

Similarly, we establish an upper trace bound.

Theorem 3.2. Let cr1 and a2 be two isotropic, non-well-ordered materials, with

/ij < n2 and /c, > k2. Denote by £ the strong "mixed" reference material a =

2[i2As + NklAh . For any collection (t]l)l<i<p of symmetric second-order tensors,

writing M = Yfi= i >/, ® » the upper trace bound is

{{a-a *)~l ,M) < Ms) + a2)~\ Mh)-6ld2g(^- - ,

(3.6)
where Ms and Mh are defined as in Theorem 3.1, and g is given by

g(P)=mf(fa(k),P). (3.7)
\k\ — 1

Furthermore, the trace bound (3.6) is optimal, i.e., for any M there is a single-layered

microstructure that achieves equality in (3.6).

Proof of Theorem 3.1. To simplify the exposition we shall establish the trace bound

(3.5) for a single energy, i.e., M = // ® r\. Since a* - a is positive, by Fenchel

transform we have

((er* - ff)~V rj) = sup2(£, rj) - {{a* -o)£,£). (3.8)
f

By definition (0.11) of o*, (3.8) becomes

((<r* -ct)~V rj) = sup2(£, rj) + (a£, {)
{

- inf [ [<(a00 - o)lt + em, K + e(<f>)]) (3"9)
<P JQ

+ (a[Z + e(ct>)],[i + e(m]dy-
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Since a(y) - a is positive, by Fenchel transform we have

<(cr {y)-o)[^ + e {<!))], [£ + e(0)]> = sup 2([£ + e{<j>)\, e{y)) - {(a{y)-a)~le(y), e(y)).
e(y)

(3.10)
Plugging (3.10) in (3.9) and commuting the supremum in e and the infimum in <f>

(this is licit by a standard min-max principle since the right-hand side of (3.11) is

concave in e and convex in <fr) yield

((a* - a) V »7> = sup inf 2{£, t]) - 2 [ (e, d;) + [ ((a(y) -a) le, e)
{ £ JQ JQ

-inf [ [2(e, e(<f>)) + (oe(<f>),e(<f>))]dy.
<t> Jn

(3.11)

Applying again a standard min-max principle, we commute the supremum in d; and

the infimum in e . Since (3.11) is linear in d;, the supremum in d; is replaced by a

constraint on e . We obtain

{{a* - a) = inf
e

[ ((o(y) -o) 'e, e) - inf [ (2(e, e{4>)) + (ae{<f>), e{<t>)))
Jo <p Jo

(3.12)
with the constraint

e{y)dy = tj. (3.13)I
Since a(y)-a is a multiple of Ah in material one, and a multiple of As in material

two, this further restricts e(j>) to be a multiple of /2 in material one, and trace-free

in material two. Furthermore, one can get an inequality in (3.12) by choosing e{y)

constant in each material: this, added to the constraint (3.13), uniquely determines

e(y) as

e(y) = (^) + (y) •

Consequently, from (3.12) we deduce

((a* - rj) < -a)~lAhrj,Ahri) + j-{(o2-a)~lAsr],Asri)

dy.~ ';f/c [2 ((^7_ *'•eW)+^ •eim

(3.14)
As in Theorem 1.1, the last term in (3.14) (the so-called nonlocal term) can be com-

puted by Fourier analysis and is bounded above by 6xd2g{6~{ Ahr]-8^xAsr]), with ~g

defined by (1.5). Thus, (3.14) gives the desired trace bound. To assert its optimality,

we shall show that (3.14) is actually an equality for a single-layered microstructure.

Indeed, take any k extremal in the definition (1.5) of g(6^lAhr] - 6^Astj), and

consider a microstructure made of layers of material one and two, in proportions

and 62 respectively, orthogonal to direction k . For such a microstructure, the

nonlocal term in (3.14) is exactly equal to 8l92g(6~lAht] - 6^Astj), and it is well

known that the strain e{<f>) is constant in each material. Thus, the field e(j;) is
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also constant in each material, and there was no restriction in passing from (3.12)

to (3.14). This proves equality in (3.14) for that single-layered (in direction k) mi-

crostructure. Q.E.D.

The proof of Theorem 3.2 is similar and can safely be left to the reader.
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