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e.Abstra
tThis paper is devoted to the dire
t numeri
al simulation of 
ompressibletwo-phase 
ows, i.e. in
luding material interfa
es, in an Eulerian frame-work. Eulerian methods, su
h as Volume Of Fluid, are easy to handle butsu�er from numeri
al di�usion whi
h spreads out the pre
ise lo
alizationof the interfa
e. We dis
uss some remedies to this loss of a

ura
y.1. Introdu
tionModelization and simulation of bi
uid and diphasi
 
ows have be
ome ofin
reasing interest among the 
omputational 
uid dynami
 
ommunity. So-
alled dire
t simulation, on the 
ontrary of average models, involves thedes
ription of the interfa
e between 
uids whi
h is a dis
ontinuity surfa
efor the material properties. We propose a model for 
ompressible two-phase
ows. The dynami
al aspe
t of the problem is handled by the 
ompressibleEuler equations, written for the overall mixture, while the phase interfa
eis 
aptured on an Eulerian mesh. An extra equation is therefore added tothe Euler system in order to adve
t values of a 
olor fun
tion  a

ordingto the 
uids motion. This type of systems has been studied by Abgrall(Abgrall R, 1988) and Karni (Karni S, 1996). This approa
h provides keyfeatures su
h as no extra 
omplexity in dealing with \high-dimensional"problems, easy handling of drasti
 topologi
al 
hanges or 
omplex topol-
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e between the two phases. The other side of the 
oin isa la
k of a

ura
y for the interfa
e des
ription in 
ontrast to methods in-volving interfa
e re
onstru
tion su
h as Front Tra
king. In fa
t, numeri
aldi�usion tends to thi
ken the interfa
e into a transition zone whi
h is nolonger a sharp dis
ontinuity between the media. We fo
us on the numeri-
al di�usion problem near 
onta
t dis
ontinuities. Simple observations for asingle transport equation lead us to propose various pro
esses for improvingthe a

ura
y of the interfa
e des
ription while preserving the ease-of-use ofinterfa
e 
apturing methods.2. Bi
uid solver: model and numeri
al treatmentThe model used here follows the line of Abgrall in (Abgrall R, 1988). Themotion of the 
uids is here driven by the 
ompressible Euler equations(1){(3). It is supplied by the 
olor fun
tion transport equation (4) and anequation of state (EOS) that 
loses the system. For the sake of simpli
itywe expose the method in the 
ase of a perfe
t gas EOS, despite the pro
essis still valid for more general laws su
h as Sti�ened Gas. Numeri
al di�u-sion implies that some 
ells do 
ontain both spe
ies. Upon an isothermalassumption, Abgrall showed how to 
onstru
t an EOS of the form (5) inorder to deal with the mixture zone and whi
h redu
es to the usual perfe
tgas EOS in pure 
uid areas. �t�+ div(�~u) = 0; (1)�t�~u+ div(�~u
 ~u) +��!gradp = ~F ; (2)�t�e+ divh(�e + p)~ui = Q; (3)�t + ~u � ��!grad = 0; (4)p = p(�1; �2; �(e� j~uj2=2)): (5)~F = (Fx; Fy) and Q are sour
e terms su
h as gravity, vis
osity, surfa
etension, and thermal di�usion.We brie
y des
ribe the numeri
al method used to implement the model.The Euler system is solved thanks to a Roe-type s
heme (Roe P L, 1981),as done in (Abgrall R, 1988) for the variables (�; �~u; �e). As mentioned byKarni in (Karni S, 1994), 
onservative s
hemes have diÆ
ulties to des
ribea

urately the pressure near the interfa
e generating spurious os
illations.To remedy this drawba
k, Abgrall proposes in (Abgrall R, 1988) to judi-
iously 
hoose  = 1=� (� being the Gr�unsein 
onstant) as 
olor fun
tionand derives a dis
retization of (4) that preserves numeri
al 
onta
t dis
onti-nuities. Gravity is treated as a 
entered sour
e term, vis
osity and thermaldi�usion are dis
retized by standard �nite di�eren
es while we use the 
on-tinuous surfa
e tension model of (Bra
kbill J, Kothe D and Zema
h C,



TWO-PHASE FLOWS WITH INTERFACE 31992) for the interfa
ial tension. Se
ond order a

ura
y in spa
e is rea
hedthanks to a MUSCL method with a minmod limiter. As for se
ond order intime, we use a two-point Runge-Kutta method. Unfortunately even se
ondorder a

ura
y in spa
e and time 
annot help to de
rease numeri
al di�u-sion for long. Indeed even if the numeri
al s
heme su

eeds in pi
turing thebehaviour of the system, it may happen that an entire 
uid 
omponent justdisappears into the mixture zone. Let us emphasize that mixture zones donot have ne
essarily any real physi
al sense. Furthermore it may also be-
ome very diÆ
ult to des
ribe jumps of variables a
ross the interfa
e whi
hare of high interest for modeling physi
al pro
ess su
h as mass transfer dueto phase 
hanges. In the sequel we propose various methods to maintainthe sharpness of 
onta
t dis
ontinuities (material interfa
es).3. The transport equation modelWe fo
us in this se
tion on the spe
i�
 problem of numeri
al di�usion of�nite di�eren
e s
hemes near 
onta
t dis
ontinuities. To begin with, letus underline that the stru
ture whi
h drives the 
onta
t dis
ontinuity isa linearly degenerated �eld. Harten in (Harten A, 1978) enlightens thebehavior of a dis
ontinuity line adve
ted by su
h �eld and approximatedby a 
lassi
al numeri
al s
heme. The width of the numeri
al di�usion willinexorably grows as the number of time steps in
reases, on the 
ontrary tosho
ks driven by genuinely non-linear �elds whi
h are en
losed in a vis
ouspro�le. The most simple equation that 
an mimi
 the 
riti
al behavior ofsu
h �elds is a simple linear transport equation at 
onstant speed. Letu(t; x) be the solution of�tu+ 
�xu = 0; 8x 2 IR; 8t > 0 (6)with the initial 
ondition u(0; x) = u0(x), 
 being a 
onstant velo
ity. Theexa
t solution is u(t; x) = u0(x�
t). We are interested in the 
ase where u0is a step fun
tion, and study the numeri
al di�usion asso
iated to a givennumeri
al s
heme. We �rst re
all the in
uen
e of order a

ura
y upon nu-meri
al di�usion. All 
omputations are done with an upwind s
heme for
 = 1 on a segment I = [0; 1℄, meshed by 1000 regular 
ells, with periodi
boundary 
onditions and u0 = 1l[1=4;3=4℄. Se
ond order in spa
e and time arerespe
tively implemented via a MUSCL method with minmod limiter anda two-points Runge-Kutta method. As expe
ted, for the �rst order s
hemethe L1-norm of the error grows like pn, where n is the number of timesteps. When swit
hing to se
ond order in spa
e, the error L1-norm stopsin
reasing after a few time steps. However, for both time and spa
e se
ondorder, the numeri
al di�usion of the s
heme grows again unbounded. Thus,se
ond order in spa
e with �rst order in time would be quite satisfa
tory,
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ases se
ond order in time is ne
essary to stabilize numer-i
al os
illations. For example, the simple 
omputation of the hydrostati
pressure establishment upon the in
uen
e of gravity in a single 
uid turnsout to be impossible due to instabilities. Su
h simple examples motivate ourstudy of pro
edures to bound this extra di�usion. The level set method pro-vides a way to exa
tly 
ontrol the thi
kness of the interfa
e. It uses insteadof the dis
ontinuous 
olor fun
tion a 
ontinuous fun
tion initialized as thesigned distan
e to the interfa
e as exposed in (Sethian J, 1996) or (MulderS, Osher S and Sethian J, 1992). This fun
tion is frequently reinitializedduring the 
omputation by solving a suitable Hamilton-Ja
obi equation asmentioned in (Sethian J, 1996) and (Sussman M, Smereka P and Osher S,1994). Here, staying in the framework of the VOF method, we propose toadd sour
e terms in order to straighten up the front.4. Sharpening sour
e termsTo begin with, we introdu
e in (6) a sour
e term P (u) = �u(1�u)(u�1=2)where � is a real parameter. This sour
e term does not modify the exa
tsolution of this equation sin
e it 
an only take the values 0 or 1. However,in the dis
rete problem it will a
t as a \repelling for
e" on the approximatesolution. Values above 1=2 will be pushed towards 1, while those belowwill get 
loser to 0. Two numeri
al implementations of this sour
e term arepossible. First of all, it 
an simply be added into the dis
retized equationas a 
entered sour
e term. Alternatively, a splitting-like method 
an be
hosen: the 
lassi
al upwind s
heme resolution is stopped after N time stepsthen the approximated solution uN at instant N is sharpened by solving�sv = P (v) with initial 
ondition v(0; x) = uN until it rea
hes a steady state(s is an arti�
ial time variable). Fortunately, there exists expli
it solutionsof this ODE, thus no new extra 
omputational work is required. A se
ondtype of sour
e term 
an be obtained by 
hanging the 
onstant � into avariable quantity ��xu, whi
h yields Q(u; �xu) = �u(1�u)(u�1=2)�xu. Inthis 
ase, equation (6) 
an also be rewritten�tu+ �x[
u+ (�=4)u2(1� u)2℄ = 0A
tually, this appears to be a 
ux modi�
ation of (6) whi
h �ts into theframework of the arti�
ial 
ompression method developed by Harten in(Harten A, 1978). Figure 1 displays a 
omparison of the growth for the L1-error between the di�erent methods. A

ura
y gain is obvious for the �rstorder method as the L1-error stops growing after a few time steps. Whilefor se
ond order in spa
e only the pro
ess doesn't show real improvement,it su

eeds in slowing down the error growth se
ond order is applied to bothspa
e and time. The eÆ
ien
y of su
h sharpening pro
ess 
an be quanti�ed



TWO-PHASE FLOWS WITH INTERFACE 5by studying the equivalent equation of the numeri
al s
heme. Indeed, forthe 
ase of an upwind �rst order s
heme, a vis
osity pro�le (having theshape of a tanh fun
tion) 
an be expli
itly 
omputed for the initial valueproblem (6).5. Appli
ation to the bi
uid modelThe sharpening pro
ess des
ribed earlier is applied to the adve
tion equa-tion for  = 1=� in system (1){(5) introdu
ing the sour
e termQ( ) = ��( �  1)( �  2)( � ( 1 +  2)=2)in the s
heme as a 
entered sour
e term. Figure 2 shows the e�e
t of sharp-ening (� = 0:2) on the 
omputing of a sho
k into an helium bubble sur-rounded by air (Abgrall R, 1996) on a 1m�1m mesh dis
retized in 100�100regular 
ells. Noti
e that the other variables seem to be una�e
ted by thesharpening sour
e term.
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Figure 1. L1-error for an impulse adve
tion after 2000 time steps, (a): order one,(b):order 2 s
heme in both time and spa
e, (
) order 2 s
heme in both time andspa
e with 
entered sour
e term 
orre
tion for � = 5� 10�3, (d): order one with
entered sour
e term 
orre
tion for � = 0:1.6. Con
lusion and perspe
tivesWe have developed a simple method for sharpening the adve
tion of dis
on-tinuities in �nite di�eren
es numeri
al s
hemes. This method is easy to useand adds no extra 
omplexity when dealing with 2-D and 3-D problems. Theprimary goal is to improve the lo
alization of material interfa
es in 
om-pressible two-phase 
ow simulation. Important variables, su
h as pressure,
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Figure 2. pro�le for �, without sharpening on the left, with sharpening on theright, at instant t = 0:35sdensity and velo
ity, do not seem to be noti
eably a�e
ted by this sharp-ening. We hope to be able to derive new further estimates for se
ond orders
hemes in both time and spa
e. Con
erning appli
ations to two-phase 
owswith phase 
hange at the interfa
e, we have obtained preliminary results byadding a kineti
 relation to determine the interfa
e velo
ity as des
ribed in(Truskinowsky L, 1991). Alternate adve
tion s
hemes for the 
olor fun
tionsu
h as level set and 
hara
teristi
 methods have been implemented, whilethe extension of the model to sti�ened gas is in progress. This will be thetopi
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