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Abstract

This paper is devoted to the direct numerical simulation of compressible
two-phase flows, i.e. including material interfaces, in an FKulerian frame-
work. Eulerian methods, such as Volume Of Fluid, are easy to handle but
suffer from numerical diffusion which spreads out the precise localization
of the interface. We discuss some remedies to this loss of accuracy.

1. Introduction

Modelization and simulation of bifluid and diphasic flows have become of
increasing interest among the computational fluid dynamic community. So-
called direct simulation, on the contrary of average models, involves the
description of the interface between fluids which is a discontinuity surface
for the material properties. We propose a model for compressible two-phase
flows. The dynamical aspect of the problem is handled by the compressible
Euler equations, written for the overall mixture, while the phase interface
is captured on an Eulerian mesh. An extra equation is therefore added to
the Euler system in order to advect values of a color function v according
to the fluids motion. This type of systems has been studied by Abgrall
(Abgrall R, 1988) and Karni (Karni S, 1996). This approach provides key
features such as no extra complexity in dealing with “high-dimensional”
problems, easy handling of drastic topological changes or complex topol-
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ogy of the interface between the two phases. The other side of the coin is
a lack of accuracy for the interface description in contrast to methods in-
volving interface reconstruction such as Front Tracking. In fact, numerical
diffusion tends to thicken the interface into a transition zone which is no
longer a sharp discontinuity between the media. We focus on the numeri-
cal diffusion problem near contact discontinuities. Simple observations for a
single transport equation lead us to propose various processes for improving
the accuracy of the interface description while preserving the ease-of-use of
interface capturing methods.

2. Bifluid solver: model and numerical treatment

The model used here follows the line of Abgrall in (Abgrall R, 1988). The
motion of the fluids is here driven by the compressible Euler equations
(1)—(3). It is supplied by the color function transport equation (4) and an
equation of state (EOS) that closes the system. For the sake of simplicity
we expose the method in the case of a perfect gas EOS, despite the process
is still valid for more general laws such as Stiffened Gas. Numerical diffu-
sion implies that some cells do contain both species. Upon an isothermal
assumption, Abgrall showed how to construct an EOS of the form (5) in
order to deal with the mixture zone and which reduces to the usual perfect
gas EOS in pure fluid areas.

Orp + div(pt) 0, (1)

Optl + div(pi ® 1) + gradp = F, (2)
drpe + div|(pe +p)i] = Q (3)
Onp+1i - gradip = 0, (4)

p = p(p1,p2, ple — |i]?/2)). (5)

F = (Fy, Fy) and Q are source terms such as gravity, viscosity, surface
tension, and thermal diffusion.

We briefly describe the numerical method used to implement the model.
The Euler system is solved thanks to a Roe-type scheme (Roe P L, 1981),
as done in (Abgrall R, 1988) for the variables (p, pil, pe). As mentioned by
Karni in (Karni S, 1994), conservative schemes have difficulties to describe
accurately the pressure near the interface generating spurious oscillations.
To remedy this drawback, Abgrall proposes in (Abgrall R, 1988) to judi-
ciously choose ¢ = 1/k (k being the Griinsein constant) as color function
and derives a discretization of (4) that preserves numerical contact disconti-
nuities. Gravity is treated as a centered source term, viscosity and thermal
diffusion are discretized by standard finite differences while we use the con-
tinuous surface tension model of (Brackbill J, Kothe D and Zemach C,
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1992) for the interfacial tension. Second order accuracy in space is reached
thanks to a MUSCL method with a minmod limiter. As for second order in
time, we use a two-point Runge-Kutta method. Unfortunately even second
order accuracy in space and time cannot help to decrease numerical diffu-
sion for long. Indeed even if the numerical scheme succeeds in picturing the
behaviour of the system, it may happen that an entire fluid component just
disappears into the mixture zone. Let us emphasize that mixture zones do
not have necessarily any real physical sense. Furthermore it may also be-
come very difficult to describe jumps of variables across the interface which
are of high interest for modeling physical process such as mass transfer due
to phase changes. In the sequel we propose various methods to maintain
the sharpness of contact discontinuities (material interfaces).

3. The transport equation model

We focus in this section on the specific problem of numerical diffusion of
finite difference schemes near contact discontinuities. To begin with, let
us underline that the structure which drives the contact discontinuity is
a linearly degenerated field. Harten in (Harten A, 1978) enlightens the
behavior of a discontinuity line advected by such field and approximated
by a classical numerical scheme. The width of the numerical diffusion will
inexorably grows as the number of time steps increases, on the contrary to
shocks driven by genuinely non-linear fields which are enclosed in a viscous
profile. The most simple equation that can mimic the critical behavior of
such fields is a simple linear transport equation at constant speed. Let
u(t, z) be the solution of

Ou+copu=0, VrelR, Vi>0 (6)

with the initial condition u(0,z) = ug(z), ¢ being a constant velocity. The
exact solution is u(t, z) = ug(z — ct). We are interested in the case where u
is a step function, and study the numerical diffusion associated to a given
numerical scheme. We first recall the influence of order accuracy upon nu-
merical diffusion. All computations are done with an upwind scheme for
¢ =1 on a segment I = [0, 1], meshed by 1000 regular cells, with periodic
boundary conditions and ug = 1y 4 3/4). Second order in space and time are
respectively implemented via a MUSCL method with minmod limiter and
a two-points Runge-Kutta method. As expected, for the first order scheme
the L'-norm of the error grows like \/n, where n is the number of time
steps. When switching to second order in space, the error L'-norm stops
increasing after a few time steps. However, for both time and space second
order, the numerical diffusion of the scheme grows again unbounded. Thus,
second order in space with first order in time would be quite satisfactory,
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but in many cases second order in time is necessary to stabilize numer-
ical oscillations. For example, the simple computation of the hydrostatic
pressure establishment upon the influence of gravity in a single fluid turns
out to be impossible due to instabilities. Such simple examples motivate our
study of procedures to bound this extra diffusion. The level set method pro-
vides a way to exactly control the thickness of the interface. It uses instead
of the discontinuous color function a continuous function initialized as the
signed distance to the interface as exposed in (Sethian J, 1996) or (Mulder
S, Osher S and Sethian J, 1992). This function is frequently reinitialized
during the computation by solving a suitable Hamilton-Jacobi equation as
mentioned in (Sethian J, 1996) and (Sussman M, Smereka P and Osher S,
1994). Here, staying in the framework of the VOF method, we propose to
add source terms in order to straighten up the front.

4. Sharpening source terms

To begin with, we introduce in (6) a source term P(u) = nu(l—u)(u—1/2)
where 7 is a real parameter. This source term does not modify the exact
solution of this equation since it can only take the values 0 or 1. However,
in the discrete problem it will act as a “repelling force” on the approximate
solution. Values above 1/2 will be pushed towards 1, while those below
will get closer to 0. Two numerical implementations of this source term are
possible. First of all, it can simply be added into the discretized equation
as a centered source term. Alternatively, a splitting-like method can be
chosen: the classical upwind scheme resolution is stopped after NV time steps
then the approximated solution u" at instant N is sharpened by solving
dsv = P(v) with initial condition (0, z) = «”" until it reaches a steady state
(s is an artificial time variable). Fortunately, there exists explicit solutions
of this ODE, thus no new extra computational work is required. A second
type of source term can be obtained by changing the constant 7 into a
variable quantity nd,u, which yields Q(u, dyu) = nu(l —u)(u —1/2)0,u. In
this case, equation (6) can also be rewritten

Opu + Oyfcu + (n/4)u*(1 —u)!] =0

Actually, this appears to be a flux modification of (6) which fits into the
framework of the artificial compression method developed by Harten in
(Harten A, 1978). Figure 1 displays a comparison of the growth for the L!-
error between the different methods. Accuracy gain is obvious for the first
order method as the L'-error stops growing after a few time steps. While
for second order in space only the process doesn’t show real improvement,
it succeeds in slowing down the error growth second order is applied to both
space and time. The efficiency of such sharpening process can be quantified
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by studying the equivalent equation of the numerical scheme. Indeed, for
the case of an upwind first order scheme, a viscosity profile (having the
shape of a tanh function) can be explicitly computed for the initial value
problem (6).

5. Application to the bifluid model

The sharpening process described earlier is applied to the advection equa-
tion for ¢ = 1/k in system (1)-(5) introducing the source term

Q) = —n( — 1) (b — ¥2) (¢ — (Y1 +12)/2)

in the scheme as a centered source term. Figure 2 shows the effect of sharp-
ening (n = 0.2) on the computing of a shock into an helium bubble sur-
rounded by air (Abgrall R, 1996) on a 1m x 1m mesh discretized in 100 x 100
regular cells. Notice that the other variables seem to be unaffected by the
sharpening source term.

0.04

error
o
Q
N
T

0.015

0.008 [/ .o C) ]

0

| | | | | | | | |
0] 200 400 600 800 1000 1200 1400 1600 1800 2000
number of time steps

Figure 1. L'-error for an impulse advection after 2000 time steps, (a): order one,
(b):order 2 scheme in both time and space, (c) order 2 scheme in both time and

space with centered source term correction for n = 5 x 1073, (d): order one with
centered source term correction for n = 0.1.

6. Conclusion and perspectives

We have developed a simple method for sharpening the advection of discon-
tinuities in finite differences numerical schemes. This method is easy to use
and adds no extra complexity when dealing with 2-D and 3-D problems. The
primary goal is to improve the localization of material interfaces in com-
pressible two-phase flow simulation. Important variables, such as pressure,
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Figure 2. profile for x, without sharpening on the left, with sharpening on the
right, at instant ¢t = 0.35s

density and velocity, do not seem to be noticeably affected by this sharp-
ening. We hope to be able to derive new further estimates for second order
schemes in both time and space. Concerning applications to two-phase flows
with phase change at the interface, we have obtained preliminary results by
adding a kinetic relation to determine the interface velocity as described in
(Truskinowsky L, 1991). Alternate advection schemes for the color function
such as level set and characteristic methods have been implemented, while
the extension of the model to stiffened gas is in progress. This will be the
topic of future reports.
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