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Abstract

This paper is concerned with the existence of minimizers for functionals hav-
ing a double-well integrand with affine boundary conditions. Such function-
als are related to the so-called Kohn-Strang functional which arises in optimal
shape design problems in electrostatics or elasticity. They are known to be not
quasi-convex, and therefore existence of minimizers is, in general, guaranteed
only for their quasi-convex envelopes. We generalize previous results in [1] and
give necessary and sufficient conditions on the affine boundary conditions for
existence of minimizers. Our method relies on the computation of the quasi-
convexification of these functionals by using homogenization theory. We also
prove by a general argument that their rank-one convexifications coincide with
their quasi-convexifications.

Key words: homogenization, quasiconvexity, rank-one convexity, calculus of
variations, relaxation, optimal design.

1 Introduction

Let Ω be a bounded domain of IRn. Let ξ be a constant matrix in IRnN , which
has N lines and n columns. Let Dξ be the following space of vector-valued
functions with affine boundary data

Dξ =
{

ξ · x+H1
0 (Ω; IR

N )
}

.

The derivatives of a vector-valued function u(x) in Dξ are denoted by Du =

(∂ui/∂xj) ∈ IRnN . This paper is devoted to the question of existence of mini-
mizers in Dξ for the following functional

F (u) =

∫

Ω

f (Du) dx, (1)

where the integrand f is a function from IRnN into IR+, defined by

f(η) = min
(

λ+ α|η|2, β|η|2
)

(2)
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with 0 < α < β < +∞, 0 < λ < +∞, and |η| is the Frobenius norm of the
N × n matrix η. When β = +∞, the functional (1-2) is the so-called Kohn-
Strang functional. In dimension n = 2, it was introduced by Kohn and Strang
in [18] as a model problem in the field of shape optimization. When β < +∞,
the minimization problem associated to (1-2) can still be shown to be equivalent
to an optimal design problem in electrostatics. However, in this latter case it is
also equivalent to a double-well energy minimization problem.

It is by now well-known that the functional F is not (sequentially) weakly
lower semi-continuous on Dξ. Therefore, the direct method of the calculus of
variations does not yield the existence of minimizers for (1) in Dξ. Rather, one
needs to introduce the relaxed functional (see [7])

F (u) =

∫

Ω

Qf (Du) dx, (3)

where Qf is the quasiconvex envelope of f defined by

Qf(η) = inf
ϕ∈H1

0 (Y ;IRN )

∫

Y

f(η +Dϕ)dy,

where Y = (0, 1)n is the unit cube of IRn. Then, u0(x) = ξx is a minimizer of
the relaxed functional F on Dξ, and

Qf(ξ) = inf
u∈Dξ

1

|Ω|

∫

Ω

f (Du) dx.

When β = +∞, the function f simplifies in

f(η) =

{

λ+ α|η|2, η 6= 0,
0, η = 0,

and the quasiconvexification Qf has been explicitly computed in [1]. Further-
more, the question of finding conditions for existence or non-existence of mini-
mizers in Dξ of (1) has also been addressed in this paper (previous results were
already obtained in the two-dimensional case in [8], [18]).

The first result of [1] gives the value of the quasiconvexification Qf (which
turns out to coincides with the rank-one convexification Rf) : denoting by
η1, ..., ηn the square roots of the eigenvalues of ηtη,

Qf(η) =







α|η|2 + λ if
∑n

i=1 ηi ≥
√

λ
α
,

α|η|2 − α (
∑n

i=1 ηi)
2
+ 2

√
λα
∑n

i=1 ηi if
∑n

i=1 ηi <
√

λ
α
.

(4)

The next result of [1] is the following

Theorem 1.1 The minimization of (1) over Dξ admits the trivial minimizer
u(x) = ξx when ξ is such that f(ξ) = Qf(ξ). When f(ξ) > Qf(ξ), then there
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exists a minimizer if rank ξ = n, while there is no minimizer if rank ξ = 1, and
in the remaining case, 2 ≤ rank ξ ≤ n − 1, there is no minimizer u(x) such
that the distance between the boundary ∂Ω and the set Zu = {x ∈ Ω|∇u(x) = 0}
is strictly positive.

Remark that the above theorem of [1] does not furnish a necessary and
sufficient condition for existence of minimizers, since in the case f(ξ) > Qf(ξ)
and 2 ≤ rank ξ ≤ n− 1 there is a technical condition on the minimizer for its
non-existence. Such a restrictive condition is due to technical difficulties caused
by the degeneracy of f when β = +∞. Remark that, on the other hand, the
assumption β = +∞ greatly simplifies the algebra in the computation of Qf .
It was conjectured in [1] that this technical condition is unnecessary for proving
non-existence in the case f(ξ) > Qf(ξ) and 2 ≤ rank ξ ≤ n− 1.

The goal of the present paper is to generalize the results of [1] in two direc-
tions. Firstly, we extend Theorem 1.1 to the case β < +∞ and we remove the
technical condition on Zu. In other words, we give necessary and sufficient con-
ditions for the existence of minimizers of (1) over Dξ (see Theorem 3.9). When
β < +∞, the algebra is much more involved than in [1] (for example, the explicit
expression of Qf in Theorem 3.7 is very complicated), so our proofs rely more on
general arguments rather than on explicit computations. Secondly, we also ex-
tend our results to the linearized elasticity setting. More precisely, when N = n,
we replace the gradient Du by the strain tensor e(u) = 1/2(∂ui/∂xj+∂uj/∂xi),
and, for a symmetric matrix ξ, we consider the following minimization

inf
u∈Dξ

F (u) =

∫

Ω

f(e(u))dx, (5)

where the integrand f is defined from IRn2

into IR+ by

f(η) = min (λ+Aη · η,Bη · η)

with A and B two isotropic positive definite fourth-order tensors defined by
Aη = 2µAη+(κA − 2µA/n)tr(η)I2 and Bη = 2µBη+(κB − 2µB/n)tr(η)I2. For
such a functional, we also give necessary and sufficient conditions for the exis-
tence of minimizers of (5) (see Theorem 5.6). Actually the sufficient condition of
existence for (5) was already obtained in [15], [16]. Finally, as a byproduct of our
analysis, we found a new and systematic proof of the equality between the qua-
siconvexification and the rank-one convexification for such types of functionals
(see Proposition 3.5). This latter property has also been obtained independently
by Milton [22].

Our motivation for studying such a problem is twofold. First, there are many
attempts to provide an existence theory in the calculus of variations without
lower semi-continuity of the functional (i.e. without using the direct method
of the calculus of variations). A recent article of Dacorogna and Marcellini
[8] has investigated this question for functionals similar to (1) which are not
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quasiconvex. This theory, although very general, does not provide necessary
and sufficient conditions for existence of minimizers, even with affine boundary
conditions. Our goal is therefore to furnish an explicit example with such con-
ditions, which can be used as a ”benchmark” for general theories. We hast to
add that our method is very specific to the functional considered here, and can
not be extended to other problems (nevertheless, for some non-linear problems
or dual energy problems, some generalizations may be found in [1]). Indeed,
the key argument is the link between (1-2) and the homogenization theory for
two-phase composite materials. In truth, the existence of possible minimizers
for (1) or (5) is not merely a question of purely theoretical interest. It also has
important consequences in the context of optimal design or phase transitions
(see Section 2 below for a brief exploration of these connections). Our second
motivation is therefore to provide explicit minimizers of (1) or (5) which can be
interpreted as ”classical” optimal designs, as opposed to the usual ”relaxed” or
homogenized optimal designs for this problem.

Let us conclude this introduction by an outline of our paper. Section 2 is
dedicated to the link between (1-2) and problems in optimal shape design or
phase transitions. Our main results for the minimization problem (1-2) are then
stated in Section 3, while their proof are given in Section 4. Finally, Section 5
deals with problem (5) in the linearized elasticity setting.

2 Link with the double-well problem and opti-

mal design.

We begin by briefly exploring the connection between the energy (2) and optimal
design (see Section 4 in [18] for more details). Let us consider two materials
of isotropic conductivity α and β, with 0 < α < β, which fill up the domain
Ω. We denote by χ(x) the characteristic function of the subdomain occupied
by the conductor α. For such an arrangement of the two phases, we compute
the solutions (ui)1≤i≤N of N independent conductivity problems with affine
boundary conditions ξi ·x, where (ξi)1≤i≤N are the lines of a matrix ξ. Denoting
by u the vector-valued function of components ui, it is the unique minimizer of

E(χ) = min
u∈Dξ

∫

Ω

(αχ(x) + β(1 − χ(x))) |∇u(x)|2dx, (6)

where Dξ is the subset of H1(Ω; IRN ) made of functions with boundary data
ξx. The energy E(χ) is a global measure of the overall conductivity of the
mixture of α and β in Ω. Assuming that α is more expensive than β, we denote
by λ > 0 the increment of price to pay for α by unit volume. Seeking the
best distribution of materials which is of minimal price and lowest conductivity
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yields the following optimal design problem

inf
χ(x)∈L∞(Ω;{0,1})

{

E(χ) + λ

∫

Ω

χ(x)dx

}

. (7)

In fact, the true problem of physical interest is to find the mixture of α and β
with highest overall conductivity when β is more expensive than α. However,
this latter problem fits in our framework only when using a dual formulation
of (6), which slightly complicates the exposition (see [18]). Therefore, here we
only consider problem (7), although our arguments could easily be generalized
to a more realistic optimal design problem (see [1]).

Lemma 2.1 The minimization problem

inf
u∈Dξ

{

F (u) =

∫

Ω

min
(

β|∇u(x)|2, α|∇u(x)|2 + λ
)

dx

}

(8)

is equivalent to the optimal design problem (7) in the sense that, if there exists
a minimizer u of (8), then the characteristic function χ(x) of the set where
α|∇u(x)|2 + λ < β|∇u(x)|2 is a minimizer of (7), and reciprocally, if there
exists a minimizer χ of (7), then the associated minimizer u of (6) is also a
minimizer of (8).

Remark 2.2 Without further constraints on the geometry of the mixture of the
two phases, the optimal design problem (7) is known to have no solutions in
general (cf. the seminal counter-examples of Murat [24] and Tartar [26]). To
obtain a well-posed problem, the original problem (7) must be relaxed through
the introduction, as admissible designs, of composite materials that mimic the
behavior of minimizing sequences of characteristic functions. Nevertheless, there
could exist boundary conditions, corresponding to a special choice of ξ, for which
a ”classical” optimal design (i.e. a true characteristic function) is attainable.
Theorem 3.9 provide conditions on ξ that permit to assert or to rule out the
existence of such an optimal design.

Proof. We rewrite the optimal design problem as a double minimization

inf
χ(x)∈L∞(Ω;{0,1})

min
u∈Dξ

∫

Ω

[

(αχ(x) + β(1 − χ(x))) |∇u(x)|2 + λχ(x)
]

dx.

The order of minimization is irrelevant. Minimizing in χ first yields exactly (8).
The equivalence between (8) and (7) is therefore obvious.

We now explain the connection with a so-called double-well problem. Min-
imization of a double-well energy arises in the context of phase transitions in
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material science (see e.g. [4], [17]). Although the true context is that of non-
linear elasticity, one may consider as a primitive model problem the following
minimization

inf
v∈H1

0 (Ω;IRN )

{

G(v) =

∫

Ω

min
(

β|∇v(x) − ξβ |2, α|∇v(x) − ξα|2
)

dx

}

(9)

where ξα, ξβ are two different matrices in IRNn. Remark that the quadratic
wells do not have the same shape since we still assume that 0 < α < β. The
following result is well-known among experts (see e.g. section 6 in [16], or [10],
[17]) and we reproduce it for the sake of completeness.

Lemma 2.3 Given matrices ξα, ξβ, we define a matrix ξ by

ξ =
βξβ − αξα
β − α

,

and a positive constant λ by

λ =
αβ

β − α
|ξα − ξβ |2.

Then, the double-well problem (9) is equivalent to the minimization problem

inf
u∈Dξ

{

F (u) =

∫

Ω

min
(

β|∇u(x)|2, α|∇u(x)|2 + λ
)

dx

}

(10)

in the sense that, if there exists a minimizer u of (10), then v(x) = u(x) − ξx
is a minimizer of (9), and reciprocally, if there exists a minimizer v(x) of (9),
then u(x) = v(x) + ξx is also a minimizer of (10).

Similarly, given a matrix ξ and a positive constant λ, there exist two matrices
ξα, ξβ (non-unique) such that (9) and (10) are equivalent.

Proof. Given ξα, ξβ , we define ξ and λ as required. For any v ∈ H1
0 (Ω; IR

N ),
u(x) = v(x) + ξx belongs to Dξ. We compute G(v) in terms of u

G(v) =

∫

Ω

min
(

β|∇u|2 + 2β∇u · (ξβ − ξ) + β|ξβ − ξ|2,

α|∇u|2 + 2α∇u · (ξα − ξ) + α|ξα − ξ|2
)

dx.

The definition of ξ implies that

ξ = ξα +
β

β − α
(ξβ − ξα) = ξβ +

α

β − α
(ξβ − ξα),

and since
∫

Ω
(ξβ−ξα)·∇u dx is a null-lagrangian (i.e. is constant for any u ∈ Dξ),

we obtain
G(v) = F (u) + β

(

|ξ|2 − |ξβ |2
)

|Ω|.
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This proves the desired equivalence of the minimization problems (10) and (9).
Similarly, for given ξ and λ, and for any unit matrix ξ′ such that ξ · ξ′ = 0

and |ξ′| = 1, one can find two constants a and b such that

ξα = ξ + aξ′, ξβ = ξ + a
α

β
ξ′,

and F (u) = G(v) + b.

3 Main results.

The starting point of our analysis is a well-known lemma concerning the quasi-
convexification of f . Since its proof is elementary and enlightening, we briefly
sketch it.

Lemma 3.1 The quasiconvexification of f , defined by (2), is

Qf(η) = inf
0≤θ≤1

inf
A∈Gθ

{

Aηt · η + λθ
}

, (11)

where Gθ is the set of all symmetric n × n matrices which are obtained by the
periodic homogenization of a mixture of α and β in proportions θ and 1− θ.

Proof. The quasiconvexification of f is defined by

Qf(η) = inf
ϕ∈H1

#
(Y ;IRN )

∫

Y

f(η +Dϕ)dy. (12)

In (12) Y = (0, 1)n is a unit cube in IRn and H1
#(Y ; IRN ) denotes the subspace

of H1(Y ; IRN ) of periodic functions. Note that the usual definition of the qua-
siconvexification involves Dirichlet rather than periodic boundary condition for
the trial fields (see e.g. [5], [7]). Nevertheless both definitions are easily shown
to be equivalent, at least when f is non negative, continuous and grows at most
quadratically.

Since f is defined as a minimum, a simple switch in the minimizations leads
to

Qf(η) = inf
χ∈L∞(Y ;{0,1})

{

Aχη
t · η + λ

∫

Y

χdy

}

, (13)

where, denoting by (ei)1≤i≤n the canonical basis of IRn, Aχ is a n×n symmetric
matrix defined by its entries

Aχei · ej = min
ϕ∈H1

#
(Y ;IR)

∫

Y

(χα+ (1− χ)β)(ei +Dϕ) · (ej +Dϕ)dy.
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This is precisely the definition of an homogenized matrix obtained by periodic
homogenization of a mixture of α and β distributed according to the charac-
teristic function χ (see e.g. [6]). Denoting by θ the average of χ in Y , we
have

Qf(η) = inf
0≤θ≤1











inf
χ∈L∞(Y ;{0,1})
∫

Y
χ(y)dy=θ

Aχη
t · η + λθ











. (14)

For a given θ ∈ [0, 1], we denote by Gθ the set of all possible homogenized
conductivity tensors Aχ. Therefore, (14) is the desired result.

Remark 3.2 In the present setting of conductivity with two isotropic phases,
the set Gθ is known ([19], [20], [27]). This will allow us to perform an explicit
minimization with respect to Aχ (see Proposition 3.3 below). In the context of
elasticity (see Section 5), the equivalent of Gθ is unknown. However, it is still
possible to compute the minimum of Aχη

t · η over Gθ. The minimal value is
called a Hashin-Shtrikman bound on the energy (see Section 5).

Our first result is a simpler formula for the quasiconvex envelope Qf . This
formula is not yet completely explicit, but rather givesQf as the minimum value
of a convex function of θ. Although this last minimization can be achieved (at
the price of a tedious computation), it turns out that the formula of Proposition
3.3 is simpler to use in the sequel.

Proposition 3.3 Let 0 ≤ η1 ≤ · · · ≤ ηn be the singular values of the matrix η.
The quasiconvexification of f , defined by (2), is

Qf(η) = min
0≤θ≤1

{f(θ, η) + λθ}, (15)

where f(θ, η) is a strictly convex function of θ given by

f(θ, η) = α|η|2 + (a+(θ)− α)







(

∑n
i=q ηi

)2

a+(θ)−α

a−(θ)−α
+ n− q

+

q−1
∑

i=1

η2i






, (16)

where a+(θ) = θα+(1−θ)β, a−(θ) =
(

θα−1 + (1 − θ)β−1
)−1

, and q ∈ {1, . . . , n}
is the smallest integer such that

ηq > η∗q :=

∑n
i=q ηi

a+(θ)−α

a−(θ)−α
+ n− q

. (17)

Remark 3.4 The function f(θ, η) is called a Hashin-Shtrikman bound : it is
precisely equal to the minimal value of Aηt ·η, when A runs in the set Gθ. When
η 6= 0 and θ 6= 0, 1, there always exists a smallest integer q since inequality
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(17) is satisfied for q = n. When θ = 1, the choice of q is irrelevant and
f(1, η) = α|η|2. When θ = 0, the smallest integer q to satisfy (17) is q = n+ 1
and f(0, η) = β|η|2. When η = 0, then q = n+ 1 and f(θ, 0) = 0.

When β = +∞, the smallest integer q is easily seen to be such that n+1− q
is the rank of η (or its number of non-zero singular values). When β < +∞, the
integer q can be thought of as a measure of the deviation of η from an orthogonal
matrix : the smallest q, the more the singular values of η are clustered (in the
limit when β − α goes to 0, ηtη is proportional to the identity if q = 1).

For two anisotropic well-ordered phases, a formula for f(θ, η) has been de-
rived in [15] for the case q = 1.

The rank-one convex envelope Rf of a function f is defined as the largest
rank-one convex function which stays below f . Recall that a function g, defined
from IRN×n into IR, is said to be rank-one convex if, for any t ∈ [0, 1] and any
matrices η, ζ such that the rank of (η − ζ) is 1, it satisfies

g(tη + (1 − t)ζ) ≤ tg(η) + (1− t)g(ζ).

Rank-one convexity is a weaker property than quasiconvexity, since a quasi-
convex function is always rank-one convex (see e.g. [7]). Consequently, Qf ≤
Rf ≤ f for all functions f . Actually, rank-one convexity does not imply any
kind of lower semicontinuity, but rather that the associated Euler equations are
elliptic (see e.g. [7]). Usually, a rank-one convex envelope is much simpler to
compute than a quasiconvex envelope. Then, the question arises whether the
two coincide. It turns out to be the case in the present setting.

Proposition 3.5 The rank-one convex and quasiconvex envelopes of f , defined
by (2), are equal, i.e. Qf = Rf .

Remark 3.6 When β = +∞, Proposition 3.5 was proved in [1] by using the
explicit formula obtained for Qf . Here, we generalize this result thanks to a
more general argument which does not require a complete knowledge of Qf .
Actually, the proof of Proposition 3.5 relies only on Lemma 3.1 and not on
Proposition 3.3. This will allow its generalization to the elasticity case. The
key ingredient of Proposition 3.5 is the fact that the Hashin-Shtrikman bound
f(θ, η) is achieved by sequential laminates. Then, we establish a connection
between the lamination formula and the so-called Kohn-Strang algorithm for
computing Rf . This is indeed a very general connection which has also been
remarked independently by Milton (see the last chapter in [22]).

From Proposition 3.3 we can compute an explicit formula for the quasicon-
vexification Qf . This formula is not very useful since it is quite cumbersome.
In particular, the proof of the next Theorem 3.9 on necessary and sufficient
conditions of existence of minimizers does not use this formula, but rather relies
merely on Proposition 3.3.
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Theorem 3.7 Let 0 ≤ η1 ≤ · · · ≤ ηn be the singular values of the matrix η.
Let q ∈ {1, . . . , n} be the smallest integer such that

ηq >

∑n
i=q ηi

β
α
+ n− q

. (18)

Define ordered real numbers cn ≥ · · · ≥ cq ≥ cq−1 by

cp =

p−1
∑

i=1

η2i +

(

n− p+
β

α

)

η2p for p ∈ {q, ..., n},

and

cq−1 =

q−1
∑

i=1

η2i +

(

∑n
i=q ηi

)2

n− q + β
α

.

The quasiconvexification of f , defined by (2), is given by

1. if λ
β−α

≥ cn, then

Qf(η) = β|η|2,

2. if, for p ∈ {q, ..., n}, cp ≥ λ
β−α

≥ cp−1, then

Qf(η) = α|η|2 + (β − α)

p−1
∑

i=1

η2i − α





n
∑

i=p

ηi





2

−α(n−p+1)

(

λ

β − α
−

p−1
∑

i=1

η2i

)

+2α

√

n− p+
β

α

√

√

√

√

λ

β − α
−

p−1
∑

i=1

η2i





n
∑

i=p

ηi



 ,

3. if cq−1 ≥ λ
β−α

, then

Qf(η) = α|η|2 + λ.

Remark 3.8 When η 6= 0, there always exists a smallest integer q since in-
equality (18) is satisfied for q = n. When η = 0, the value of q is irrelevant and
Qf(0) = 0.

Finally, we state the main result of this paper which gives a necessary and
sufficient condition for the existence of minimizers for the double-well problem.

Theorem 3.9 Let 0 ≤ ξ1 ≤ · · · ≤ ξn be the singular values of the matrix ξ. Let
q ∈ {1, . . . , n} be the smallest integer such that

ξq >

∑n
i=q ξi

β
α
+ n− q

. (19)

The minimization problem (1) admits a minimizer over Dξ if and only if one
of the following conditions holds
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1.
λ

β − α
≥ |ξ|2 + β − α

α
ξ2n,

2.

λ

β − α
≤

q−1
∑

i=1

ξ2i +

(

∑n
i=q ξi

)2

n− q + β
α

,

3. q = 1 and

(
∑n

i=1 ξi)
2

n− 1 + β
α

≤ λ

β − α
≤
(

n− 1 +
β

α

)

ξ21 .

Remark 3.10 Of course, when β = +∞ the existence condition of Theorem
3.9 reduces to that of Theorem 1.1, proved in [1]. However, the technical condi-
tion involved in Theorem 1.1 can now be removed by using the method of proof
of Theorem 5.6 in section 5 (this method relies on the Hashin-Shtrikman vari-
ational principle rather than on the knowledge of the G-closure as in the proof
of Theorem 3.9). For more details when β = +∞, we refer to Remarks 5.8 and
5.9.

4 Proofs of Theorems 3.7 and 3.9.

This section is devoted to the computation of the quasiconvexification Qf and
to establishing a necessary and sufficient condition of existence for minimizers
of (1-2).
Proof of Proposition 3.3. In view of Lemma 3.1, we merely have to compute

f(θ, η) = inf
A∈Gθ

Aηt · η.

For a mixture of two isotropic conductors α and β, the set Gθ has been explicitly
computed by Tartar [27] (see also [20], [27]). It is the set of all n×n symmetric
matrices with eigenvalues λ1, ..., λn satisfying































a−(θ) = ( θ
α
+ 1−θ

β
)−1 ≤ λi ≤ a+(θ) = θα+ (1 − θ)β, for all 1 ≤ i ≤ n,

n
∑

j=1

1

λj − α
≤ Sα =

1

a−(θ)− α
+

n− 1

a+(θ)− α
,

n
∑

j=1

1

β − λj
≤ Sβ =

1

β − a−(θ)
+

n− 1

β − a+(θ)
.

(20)
We rewrite Aηt · η = Tr(AH), where H = ηtη is a n × n symmetric matrix
having eigenvalues 0 ≤ η21 ≤ ... ≤ η2n, with 0 ≤ η1 ≤ ... ≤ ηn the singular values
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of η. By a result of von Neumann (see e.g. [23]), the minimum is attained when
A and H are diagonal in the same basis. Therefore,

f(θ, η) = min

{

n
∑

i=1

λiη
2
n+1−i

}

, (21)

where the minimum is taken on λ1 ≤ λ2... ≤ λn, and the eigenvalues λi belong
to the convex set defined by (20). Therefore, existence of a minimizer is obvious.
To compute the minimum in (21), we write its associated Euler equation. To
simplify the problem, we forget the ordering of the (λi)i=1,..,n and we make the
following remarks. Let (λi)i=1,..,n be a set of eigenvalue belonging to (20). If
one of the eigenvalues λi is equal to a

−(θ), then all the other ones are equal to
a+(θ). If the two last inequalities in (20) are saturated, i.e.

n
∑

j=1

1

λj − α
= Sα, and

n
∑

j=1

1

β − λj
= Sβ ,

then there exists an index i0 ∈ {1, ..., n} such that λi0 = a−(θ) and λi = a+(θ)
for all i 6= i0 (this can be checked easily by a simple computation). Therefore,
if the minimizer of (21) is not such a set of eigenvalues, the only constraints in
(20) that can be saturated are λi ≤ a+(θ) and

∑n
j=1

1
λj−α

≤ Sα. In this case,

the Euler equations are

η2n+1−i =
C

(λi − α)2
−Di,

for all 1 ≤ i ≤ n, with C and Di positive constants such that

C = 0 if
n
∑

j=1

1

λj − α
< Sα, and Di = 0 if λi < a+(θ).

Let us define two subsets I and J , such that I ∪ J = {1, .., n}, by
I = {i ∈ {1, .., n}, λi < a+(θ)}, J = {i ∈ {1, .., n}, λi = a+(θ)}.

Thus

η2n+1−i =
C

(λi − α)2
−Di

Since Di = 0 for i ∈ I, it implies that ηn+1−j < ηn+1−i for all j ∈ J , i ∈ I.
Consequently, there exists q ∈ {1, .., n} such that

I = {1, .., n+ 1− q}, J = {n+ 2− q, .., n}.

From the equality Sα =

n
∑

j=1

1

λj − α
, we obtain

√
C =

∑n
i=q ηi

n− q

a+(θ) − α
+

1

a−(θ) − α

,

12



and, for all i ∈ I,

λi = α+

√
C

ηn+1−i

.

This yields the following value of f(θ, η)

f(θ, η) = α|η|2 + (a+(θ)− α)







(

∑n
i=q ηi

)2

a+(θ)−α

a−(θ)−α
+ n− q

+

q−1
∑

i=1

η2i






.

It is easily checked that λ1 ≤ ... ≤ λn, Sβ >

n
∑

j=1

1

β − λj
, and that λi ≤ λn+1−q <

a+(θ) for all i ∈ I if and only if

ηq > η∗q :=

∑n
i=q ηi

a+(θ)−α

a−(θ)−α
+ n− q

. (22)

Equivalently, q is the smallest integer to satisfy this property. When q < n, we
check that a−(θ) < λ1. When q = n, we obtain λ1 = a−(θ) and λi = a+(θ) for
i ≥ 2.

To finish the proof it remains to check that f(θ, η) is strictly convex in θ.
For a fixed integer p ∈ {1, ..., n}, we define a function fp(θ, η) by

fp(θ, η) = α|η|2 + (a+(θ)− α)







(

∑n
i=p ηi

)2

a+(θ)−α

a−(θ)−α
+ n− p

+

p−1
∑

i=1

η2i






. (23)

For ηp 6= 0, we also define a number θp such that ηp = η∗p(θp), i.e.

θp =
α

β − α

(

∑n
i=p ηi

ηp
− (n− p+ 1)

)

.

Remark that θn = 0 and θp+1 ≤ θp. With the convention θp = +∞ if ηp = 0,
and θ0 = +∞, there exists a smallest integer q̃ ∈ {1, ..., n} such that

θq̃ < 1 ≤ θq̃−1.

Remark that q̃ is precisely the smallest integer satisfying (18). Since the condi-
tion ηp > η∗p is equivalent to θ > θp, the function θ → f(θ, η) is defined on [0, 1]
by

{

f(θ, η) = fp(θ, η) if θ ∈ [θp, θp−1] for n ≥ p ≥ q̃ + 1
f(θ, η) = fq̃(θ, η) if θ ∈ [θq̃, 1].

(24)

Clearly, each function fp(θ, η) is strictly convex in θ. Furthermore, it is contin-
uously differentiable with respect to θ, in the sense that fp(θp, η) = fp+1(θp, η),
and f ′

p(θp, η) = f ′
p+1(θp, η). Therefore, f(θ, η) is strictly convex in θ over [0, 1].
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Remark 4.1 In the course of the proof of Proposition 3.3, we have seen that the
minimizer (λi)1≤i≤n is unique. Furthermore, the integer q, defined by (22), is
such that, the minimizer (λi)1≤i≤n has its last q− 1 components (λi)n+2−q≤i≤n

equal to a+(θ). To prove Proposition 3.3 we have chosen to minimize Aηt · η
over the G-closure set Gθ. Alternatively, we could have computed f(θ, η) by
using the well-known Hashin-Shtrikman variational principle.

Proof of Theorem 3.7. We use formulae (23-24) to compute Qf(η) given
by min0≤θ≤1 f(θ, η) + λθ. Since f(θ, η) is strictly convex in θ, there exists a
unique minimizer θ∗. Let q be the smallest integer satisfying (18) (remark that
it was called q̃ in the preceding proof of Proposition 3.3). For each fixed integer
p ∈ {q, ..., n}, we compute a possible minimizer θ∗p of fp(θ, η) as the unique root
of f ′

p(θ, η) = 0. If such a root θ∗p exists, then we check whether it belongs or
not to the interval [θp, θp−1] if p > q, and to [θq, 1] if p = q. If there are no
minimizers θ∗p in these intervals, then the minimizer is θ∗ = 0, or 1.

Defining gp(θ) = fp(θ, η) + λθ, a simple computation shows that, if λ
β−α

−
∑p−1

i=1 η
2
i ≤ 0, then g′p(θ) < 0 for any θ, while, if λ

β−α
−∑p−1

i=1 η
2
i > 0, then θ∗p

defined by

β − α

α
θ∗p + (n− p+ 1) =

n
∑

i=p

ηi

√

√

√

√

n− p+ β
α

λ
β−α

−
∑p−1

i=1 η
2
i

is the unique real number such that g′p(θ
∗
p) = 0. Another easy computation

shows that, for p ∈ {q + 1, ..., n}, the condition θp ≤ θ∗p ≤ θp−1 is equivalent to

cp−1 ≤ λ

β − α
≤ cp,

with cp =
∑p−1

i=1 η
2
i + (n− p+ β

α
)η2p. When p = q, the condition θq ≤ θ∗q ≤ 1 is

equivalent to

cq−1 =

q−1
∑

i=1

η2i +

(

∑n
i=q ηi

)2

n− q + β
α

≤ λ

β − α
≤ cq,

Remark that the condition λ
β−α

−∑p−1
i=1 η

2
i > 0 for the existence of θ∗p is au-

tomatically satisfied if θp ≤ θ∗p ≤ θp−1. Finally, computing the value of gp(θ
∗
p)

gives the value of Qf(η).

We now turn to the necessary and sufficient condition of existence of mini-
mizers for (1-2).
Proof of Theorem 3.9. Let q ∈ {1, . . . , n} be the smallest integer such that

ξq >

∑n
i=q ξi

β
α
+ n− q

,
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and let θ ∈ [0, 1] be the unique minimizer of

Qf(ξ) = min
0≤θ≤1

(f(θ, ξ) + λθ) .

From the proof of Theorem 3.7 we know that θ = 0 if and only if λ
β−α

≥
|ξ|2 + β−α

α
ξ2n. Then, θ = 0 implies that Qf(ξ) = β|ξ|2. On the other hand,

θ = 1 if and only if λ
β−α

≤
∑q

i=1 ξ
2
i +

(
∑

n

i=q
ξi

)2

n−q+ β
α

. Then, θ = 1 implies that

Qf(ξ) = α|ξ|2 + λ. In both cases, we have Qf(ξ) = f(ξ). Since by definition of
Qf ,

Qf(ξ) = inf
ϕ∈H1

0 (Ω;IRN )

1

|Ω|

∫

Ω

f(ξ +Dϕ)dx,

the test function ϕ = 0 achieves the minimum, and u(x) = ξx is a minimizer in
Dξ for (1-2).

In the remaining case

q−1
∑

i=1

ξ2i +

(

∑n
i=q ξi

)2

n− q + β
α

<
λ

β − α
< |ξ|2 + β − α

α
ξ2n, (25)

the minimizer θ satisfies 0 < θ < 1 and Qf(ξ) < f(ξ). For such values of ξ and
θ, there exists a smallest integer qθ ≥ q satisfying

ξqθ >

∑n
i=qθ

ξi
a+(θ)−α

a−(θ)−α
+ n− qθ

.

such that (cf. Proposition 3.3)

f(θ, ξ) = fqθ (θ, ξ).

Finally, for this choice of ξ, qθ, θ, we look at the unique minimizer (λi)1≤i≤n in
the set Gθ, defined by (20), of formula (21) which gives the value of f(θ, ξ)

f(θ, ξ) = min

{

n
∑

i=1

λiξ
2
n+1−i

}

.

Recall that in Remark 4.1 it was pointed out that the integer qθ is such that
the minimizer (λi)1≤i≤n has its last qθ − 1 components (λi)n+2−qθ≤i≤n equal to
the arithmetic mean a+(θ). In view of the proof of Theorem 3.7, qθ = 1 if and
only if

(
∑n

i=1 ξi)
2

n− 1 + β
α

≤ λ

β − α
≤
(

n− 1 +
β

α

)

ξ21 .

Let us show that, under assumption (25), there exists a minimizer of (1-2) if
and only if qθ = 1.
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When qθ = 1, none of the optimal eigenvalues λi are equal to a+(θ). There-
fore, the minimizer (λi)1≤i≤n are such that

{

a−(θ) < λi < a+(θ), 1 ≤ i ≤ n,
∑n

j=1(λj − α)−1 = (a−(θ) − α)−1 + (n− 1)(a+(θ)− α)−1.

Under these conditions, a well-known result of Tartar [27] in the theory of
homogenization and optimal bounds says that a minimizer of (1-2) is obtained
with the so-called confocal ellipsoids construction. We refer to [1] for a detailed
explanation of this construction in the present setting.

In truth, the difficulty relies in proving that if qθ > 1, then there is no min-
imizer of problem (1-2). Following an idea of [1], we proceed by contradiction :
we assume that there exists a minimizer u(x) ∈ Dξ, and we denote by Zu the
following subset of Ω

Zu =

{

x ∈ Ω, |Du(x)|2 ≤ λ

β − α

}

,

so that

f(Du) = β|Du|2 on Zu, and f(Du) = α|Du|2 + λ on Ω \ Zu.

Let Y = [0, 1]N be the unit cube in IRN . By Vitali’s theorem (assuming that
|∂Ω| = 0), there exists a countable family (Ωi)i≥1 of disjoint homothetics of Ω,
with ratio smaller than 1 and Ωi ⊂ Y , such that

|Y \ ∪i≥1Ωi| = 0.

Since Zu is a subset of Ω, we associate to the family (Ωi)i≥1 the corresponding
family (Zui)i≥1 of the homothetics of Zu in Ωi. Let χ(x) and χ̃(y) be the
characteristic functions respectively of Ω \ Zu and Y \ ∪i≥1Zui. Similarly, let
us define in Y a function ũ(y), which is equal, in each copy Ωi, to a properly
rescaled version of u(x). Thanks to the affine boundary condition satisfied by
u(x), (ũ(y)− ξy) belongs to H1

#(Y ; IRN ).
We introduce the homogenized tensor Aχ associated to χ defined, for any

vector ζ ∈ IRn, by

Aχζ · ζ = min
φ∈H1

#
(Y )

∫

Y

(χ̃(y)α+ (1− χ̃(y))β)|ζ +Dφ(y)|2 dy. (26)

The matrix Aχ is obtained by periodic homogenization in the unit cell Y of a
mixture of α and β distributed according to the characteristic function χ̃ (see
e.g. [6]).

The next step is to show that the eigenvalues of this matrix Aχ are precisely
the minimizer (λi)1≤i≤n ∈ Gθ, of (21) which gives the value of f(θ, ξ). Remark
first, that using ũ(y)− ξy as a test function in the definition of Aχ leads to

Aχξ
t · ξ ≤ 1

|Ω|

∫

Ω

(χ(x)α + (1− χ(x))β)|Du(x)|2 dx. (27)
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Recall that, u being a minimizer, one has

Qf(ξ) =
1

|Ω|

∫

Ω

f(Du)dx =
1

|Ω|

∫

Ω

(χα+ (1− χ)β) |Du|2dx+ λθu, (28)

with θu =
1

|Ω|

∫

Ω

χ(x)dx =

∫

Y

χ̃(y)dy. On the one hand, a combination of (27)

and (28) yields
Aχξ

t · ξ + λθu ≤ Qf(ξ). (29)

On the other hand, from (21) we deduce

Qf(ξ) ≤ f(θu, ξ) + λθu.

Consequently, equality is achieved in (29), and, by uniqueness of the minimizers,
θu = θ and Aχ has exactly the eigenvalues (λi)1≤i≤n.

The last step is to obtain a contradiction by recalling that, since qθ > 1,
one of the eigenvalues of Aχ is equal to the arithmetic mean, i.e. λn = a+(θ).
Indeed, choosing ζ = en, an eigenvector associated to the eigenvalue λn, in (26),
the test function φ = 0 leads to

a+(θ)|en|2 = Aχen · en ≤
∫

Y

(χ̃α+ (1− χ̃)β)|en|2dx = a+(θ)|en|2.

Therefore, the test function φ = 0 is a minimizer of (26). By using Euler’s
equation associated to (26), we obtain that

∂χ̃

∂yn
(y) = 0 in Y.

Of course the same result is true for χ, i.e. ∂χ
∂xn

(x) = 0 in Ω, but the conclusion
is much stronger for χ̃ since it is true for any Vitali’s recovering of Y . To
obtain a contradiction, we thus choose a particular Vitali’s recovering. Remark
that, because θu = θ is different from 0 or 1, there exists two Lebesgue points
x0, x1 ∈ Ω such that χ(x0) = 0 and χ(x1) = 1. Let τ ∈ IRn be a translation
vector defined by τ = (x0 − x1) − (x0 − x1) · (en/|en|). Consider a Vitali’s
recovering of Y which features two disjoints copies Ω0 and Ω1 of Ω, having the
same size and such that Ω1 is translated from Ω0 by a translation τ + ten, for
some t ∈ IR. This implies that the homothetic of x1 in Ω1 and that of x0 in
Ω0 are aligned with the direction en. Therefore, it contradicts the fact that
∂χ̃
∂yn

(y) = 0, and there is no minimizer in Dξ for (1-2) wen qθ > 1.

Our proof of the equality between the quasiconvexification Qf and the rank-
one convexification Rf does not use the precise formula obtained above for Qf ,
but rather relies on the following well-known lemma in homogenization (see e.g.
[3], [2] for a proof in the context of elasticity). Let us first recall the definition
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of the subset Lθ of Gθ of the so-called finite rank sequential laminates. It is the
set of all homogenized matrices A obtained by mixing α around a core of β in
proportion θ and (1 − θ) respectively. Let p ≥ 1 be the rank of the laminate,
(ei)1≤i≤p be the lamination directions, and (mi)1≤i≤p be lamination parameters
satisfying 0 ≤ mi ≤ 1 and

∑p
i=1mi = 1. Then A ∈ Lθ if

(1− θ) (A− αI2)
−1

= (βI2 − αI2)
−1

+ θ

p
∑

i=1

mi

ei ⊗ ei
α|ei|2

. (30)

Remark that in (30) it is always possible to take p ≤ n(n+1)
2 +1 by Caratheodory

theorem since the set of all matrices
∑p

i=1miei ⊗ ei is convex in dimension
n(n+ 1)/2.

Lemma 4.2 The Hashin-Shtrikman bound defined by

f(θ, η) = inf
A∈Gθ

Aηt · η

is actually equal to
f(θ, η) = min

A∈Lθ

Aηt · η,

where the minimum is attained in Lθ by a sequential laminate of rank less than
n, with lamination directions (ej)j=1,..,n which are the eigenvectors of the sym-
metric matrix ηtη.

Proof of Proposition 3.5. Let η be a fixed matrix in IRnN . By Proposition
3.3, we know that there exists θ∗ ∈ [0, 1], such that

Qf(η) = f(θ∗, η) + λθ∗. (31)

Besides, Lemma 4.2 implies the existence of a rank-n sequential laminate An in
Lθ such that

f(θ∗, η) = Anη
t · η, (32)

and the directions of laminations are the singular vectors (ej)j=1,..,n of η. With-
out any precise knowledge of the optimal parameters ei,mi allowing to calculate
An, we shall prove that Qf = Rf by establishing a connection between the it-
erative lamination process and the iterative algorithm of Kohn and Strang [18]
for computing Rf . The latter algorithm amounts to compute a sequence of
functions (fk(η))k≥0, defined by

{

f0(η) = f(η),
fk+1(η) = inf{θfk(η′) + (1− θ)fk(η′′)},

where the infimum is taken over all parameters θ, η′, η′′ such that

0 ≤ θ ≤ 1, η = θη′ + (1− θ)η′′, rank(η′ − η′′) ≤ 1.
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By construction, the sequence fk converges to Rf as k goes to +∞. To prove
the equality Qf = Rf , we have only to check that

fn(η) ≤ Qf(η). (33)

Indeed, since the sequence (f j)1≤j≤n decreases, this inequality implies that

Rf(η) ≤ fn(η) ≤ Qf(η),

and since, by definition, we have Qf ≤ Rf , this implies equality. Moreover,
from (33) we will deduce that the sequence (f j(η)) is steady after j ≥ n.

In the sequel we use the polar decomposition of η

η =
n
∑

i=1

ηihi ⊗ ei,

where (hi)i=1,...,N and (ei)i=1,...,N are two orthonormal families in IRN , and
0 ≤ η1 ≤ .. ≤ ηn are the singular values of η.

The rank-n sequential laminate An, allowing to calculate f(θ
∗, η) and defined

by (30) with p = n and (ei)i=1,...,N the singular vectors of η, can be actually
calculated by repeating n times a simple rank-one lamination. More precisely,
it is obtained by induction from the sequence of laminates Ak, which is built at
each step by a single lamination of A := αI2 and A(k−1) (with A0 = βI2) in the
direction ek and in the respective proportions θk and 1− θk

(1− θk) (Ak −A)
−1

= (Ak−1 −A)
−1

+ θkfA(ek), (34)

where

fA(ek) =
ek ⊗ ek
α|ek|2

.

The volume fraction of β at step k, is denoted by ψk, which is given by the
formula

ψ0 = 1, ψk = Πk
i=1(1− θi), (35)

so that
ψn = 1− θ∗. (36)

To obtain Qf = Rf , we prove inequality (33) without calculating fn(η). We
first check, by induction, the following properties, denoted by I(k),

fk(η̃) ≤ Akη̃
t · η̃ + λ(1 − ψk), (37)

for all matrix η̃ ∈ IRnN , having the same singular vectors (hj)j=1,...,n and
(ej)j=1,...,n than η (Ak is defined by (34) and ψk by (35)). The property I(0) is
satisfied since A0 = βI2, f

0 = f , and ψ0 = 1. Assume that I(k) is satisfied and
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let us check I(k+ 1). Denoting by Ek+1 = hk+1 ⊗ ek+1 and ck a constant in IR
(to be determined later, see (41)), define

η̃′ = η̃ − θk+1ckEk+1,

and
η̃′′ = η̃ + (1− θk+1)ckEk+1.

We check that the rank of (η̃′ − η̃′′) is less or equal to 1, and that

η̃ = (1− θk+1)η̃
′ + θk+1η̃

′′.

Therefore, the definition of fk+1 and the inequality fk(η′′) ≤ f(η′′) ≤ (Aη′′
t ·

η′′ + λ) yield

fk+1(η̃) ≤ (1 − θk+1)f
k(η̃′) + θk+1(Aη

′′t · η′′ + λ). (38)

Since the matrices η̃′ and η have the same singular directions, property I(k)
implies

fk(η̃′) ≤ Ak η̃
′t · η̃′ + λ(1 − ψk). (39)

Besides, definition (35) of the sequence ψk implies that (1 − ψk+1) = θk+1 +
(1− θk+1)(1 − ψk), so that (38) and (39) lead to

fk+1(η̃) ≤ λ(1 − ψk+1) + (1− θk+1)S(ck), (40)

with

S(ck) = Akη̃
′t · η̃′ + θk+1

1− θk+1
Aη′′t · η′′.

The quadratic function S(ck) is minimum for

c∗k =
(Ak −A)η̃t · Ek+1

(1− θk+1)AEt
k+1 · Ek+1 + θk+1AkEt

k+1 · Ek+1
, (41)

which simplifies in

c∗k =
(Ak −A)η̃′t ·Ek+1

AEt
k+1 ·Ek+1

, (42)

and the minimum is

S(c∗k) = (Ak − A) η̃′t · (η̃ + θk+1c
∗
kEk+1)− (c∗k)

2θk+1AE
t
k+1 · Ek+1 +

Aη̃t · η̃
1− θk+1

.

(43)
Inequality (40) implies property I(k + 1) if we check the following inequality

S(c∗k) ≤
Ak+1η̃

t · η̃
1− θk+1

. (44)
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From the single lamination formula (34), we can compute exactly the n × n
matrix Ak+1 (which is diagonal in the basis (ei)i=1,...,N of the singular vectors
of η), but we prefer to avoid this calculation which cannot be done in the
elasticity case (cf. Proposition 5.4 in section 5). Rather, by using the Legendre
transform, we rewrite

(1− θk+1)
−1 (Ak+1 −A) η̃t · η̃ = max

ξ∈IRn2
h(ξ),

where
h(ξ) = 2ξt · η̃ − (Ak −A)−1ξt · ξ − θk+1fA(ek+1)ξ

t · ξ. (45)

For ξtk = (Ak −A)(η̃′)t, we obtain a lower bound

(1− θk+1)
−1 (Ak+1 −A) η̃t · η̃ ≥ h(ξk). (46)

From (43) and (45) we remark that

S(c∗k) = h(ξk) +
Aη̃t · η̃
1− θk+1

,

and consequently (46) is the desired inequality (44). Therefore, property I(n)
is established by induction, and this proves that fn(η) ≤ Qf(η).

Remark 4.3 The inequality (46) is in fact an equality because we can check
that the matrix ξk is a minimum of the function h defined in (45).

5 Generalization to the elasticity case.

This section is devoted to the generalization of Section 3 for a double-well energy
minimization in the context of linearized elasticity. As before, Ω is a bounded
domain in IRn. From now on, u(x) denotes a vector-valued function from Ω into
IRn (i.e. N = n). Let ξ be a symmetric n× n matrix. We define the space

Dξ =
{

ξx+H1
0 (Ω; IR

n)
}

.

Instead of considering a functional of the gradient Du, we now look at a func-
tional of the symmetrized gradient, i.e. the strain tensor e(u) = 1

2 (Du +Dut).
We consider the following minimization problem

inf
u∈Dξ

F (u) :=

∫

Ω

f(e(u))dx, (47)

where the integrand f is a function from IRn2

into IR+, defined by

f(η) = min (λ+Aη · η,Bη · η) (48)
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where λ > 0 and A,B are two positive definite fourth-order tensors defined by

Aη = 2µAη +
(

κA − 2µA

n

)

tr(η)I2,

Bη = 2µBη +
(

κB − 2µB

n

)

tr(η)I2.

The positive constants κ and µ are the bulk and shear moduli respectively. The
two tensors are assumed to be well-ordered, i.e. Bη · η ≥ Aη · η for any η, or
equivalently

µA ≤ µB and κA ≤ κB.

As in the conductivity case, the functional F is not quasiconvex, and the mini-
mization problem (47-48) is generically ill-posed. Rather, one needs to introduce
the relaxed functional

F (u) =

∫

Ω

Qf(e(u))dx,

where Qf is the quasiconvexification of f , defined by

Qf(η) = inf
φ∈H1

0 (Y,IR
n)

∫

Y

f(η + e(φ))dy.

An analogous result to Lemma 3.1 holds (its proof is identical, so we omit it).

Lemma 5.1 The quasiconvexification of f , defined by (48), is

Qf(η) = inf
0≤θ≤1

inf
A∗∈Gθ

{A∗η · η + λθ} , (49)

where Gθ is the set of all symmetric fourth-order tensors which are obtained by
periodic homogenization of a mixture of A and B in proportions θ and 1− θ.

In the present setting of elasticity, the set Gθ is unknown. However, it is
still possible to compute the so-called Hashin-Shtrikman bound f(θ, η) which is
the minimal value of the energy A∗η · η when A∗ runs into Gθ. We recall the
result of this computation (see e.g. [2], [3], [13], [21]).

Proposition 5.2 Assume the Poisson ratio of A is positive, i.e. λA = κA −
2µA/n ≥ 0 or the space dimension is n = 2. Let η1 ≤ · · · ≤ ηn be the eigenvalues
of the symmetric matrix η. The quasiconvexification of f , defined by (48), is

Qf(η) = min
0≤θ≤1

{f(θ, η) + λθ}, (50)

where f(θ, η) is a strictly convex function of θ given by

f(θ, η) = Aη · η + (1− θ)max
τ

(

2η · τ − (B −A)−1τ · τ − θg(τ)
)

, (51)
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where

g(τ) =















(τ1−τn)
2

4µA
+ (τ1+τn)

2

4(λA+µA) if τn ≥ 2µA+λA

2(µA+λA) (τ1 + τn) ≥ τ1,
τ2
1

2µA+λA
if τ1 >

2µA+λA

2(µA+λA) (τ1 + τn),
τ2
n

2µA+λA
if τn <

2µA+λA

2(µA+λA) (τ1 + τn),

(52)

where τ1 ≤ · · · ≤ τn are the eigenvalues of the symmetric matrix τ .

The assumption λA = κA−2µA/n ≥ 0 is used only for obtaining a convenient
formula for g(τ) (see [2] for details). In (51) the maximization in τ is that of
a strictly concave function of τ . Therefore, there exists a unique maximizer τ .
This allows to prove easily that f(θ, η) is strictly convex in θ. The convexity and
differentiability properties of f(θ, η) have been studied in [14] for two anisotropic
well-ordered elastic phases. The maximization in τ can be performed explicitly
in dimension n = 2 (see e.g. [2], [11], [13]), but the explicit minimization in θ
seems to be a formidable task. However, when B = +∞, the algebra is much
simpler, and the quasiconvexification can be explicitly computed.

Theorem 5.3 Assume that µB = κB = +∞ and that the Poisson ratio of A is
positive, i.e. λA = κA − 2µA/n ≥ 0. Let η1 ≤ · · · ≤ ηn be the eigenvalues of the
symmetric matrix η. Define

g∗(η) = µA

(

n
∑

i=1

|ηi|
)2

+ (µA + λA)

(

n
∑

i=1

ηi

)2

. (53)

The quasiconvexification of f , defined by (48), is

Qf(η) =

{

Aη · η + λ if g∗(η) ≥ λ,

Aη · η + 2
√

λg∗(η)− g∗(η) if g∗(η) < λ.
(54)

We now return to the case B < +∞. As in the conductivity case, the
rank-one convexification and the quasiconvexification of f coincide.

Proposition 5.4 The rank-one convex and quasiconvex envelopes of f , defined
by (48), are equal, i.e. Qf = Rf .

Remark 5.5 The key ingredient of Proposition 5.4 is the fact that the Hashin-
Shtrikman bound f(θ, η) is achieved by sequential laminates. Then, we establish
a connection between the lamination formula and the so-called Kohn-Strang al-
gorithm for computing Rf . This is indeed a very general connection which has
also been remarked independently by Milton (see the last chapter in [22]).

Theorem 5.6 Let ξ1 ≤ · · · ≤ ξn be the eigenvalues of the symmetric matrix
ξ. The minimization problem (47-48) has a minimizer over Dξ if and only if,

23



either Qf(ξ) = f(ξ), or Qf(ξ) < f(ξ) and ξ or −ξ is a positive definite matrix
such that its eigenvalues (ξi)1≤i≤n satisfy

ξi
tr(ξ)

≥ 2µA + λA
n (2µA + λA + θ(κB − κA))

. (55)

Remark 5.7 The existence part of Theorem 5.6 is actually proved in [16] in
2-D, and in [15] in higher dimensions. When B = +∞, Theorem 5.6 is still
valid and the condition (55) of existence simplifies in ξ or −ξ being a positive
definite matrix. The condition on ξ for having Qf(ξ) = f(ξ) is not explicit (it
is equivalent to the optimal θ in (50) being equal to 0 or 1). However, when
B = +∞, it is fully explicit thanks to Theorem 5.3 : Qf(ξ) = f(ξ) if and only
if, either ξ = 0, or g∗(ξ) ≥ λ.

Remark 5.8 When B = +∞, Theorem 5.6 holds true without any technical
hypothesis as in [1]. This is due to the fact that our proof relies on the Hashin-
Shtrikman variational principle rather than on the explicit knowledge of Gθ.
Such a proof is also correct in the conductivity case, and therefore allows to
improve the result of [1] by removing any additional hypothesis for the non-
existence case (cf. Theorem 1.1).

Proof of Proposition 5.2. We have to prove that f(θ, η) defined by

f(θ, η) = inf
A∗∈Gθ

A∗η · η,

is also equal to

Aη · η + (1− θ)max
τ

(

2η · τ − (B −A)−1τ · τ − θg(τ)
)

,

where g(τ) is defined by (52). This equality is classical and is obtained by using
the well-known Hashin-Shtrikman principle (see, for example, [2], [21]). We
briefly sketch its proof since we shall rely upon it in the proof of Theorem 5.6.

We start from the formula defining A∗ obtained by periodic homogenization

A∗η · η = min
φ∈H1

#
(Y,IRn)

∫

Y

(χ(y)A+ (1− χ(y))B) (η + e(φ)) · (η + e(φ))dy.

By adding and subtracting a reference energy A(η+e(φ)) · (η+e(φ)), we obtain

A∗η · η = min
φ

[∫

Y

(1− χ(y)) (B −A)(η + e(φ)) · (η + e(φ))dy+

∫

Y

A(η + e(φ)) · (η + e(φ))dy

]

.
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Using the positivity of B − A and convex duality, the first integral in the right
hand side is rewritten

sup
τ(y)

∫

Y

(1− χ(y))
(

2τ(y) · (η + e(φ)(y))− (B −A)−1τ(y) · τ(y)
)

dy. (56)

One can get a lower bound in (56) by specializing to constant tensors τ

≥ 2(1− θ)τ · η − (1 − θ)(B −A)−1τ · τ +
∫

Y

2(1− χ(y))τ · e(φ)(y)dy, (57)

where θ =
∫

Y
χ(y)dy. After some simplification, this yields

A∗η · η ≥ Aη · η + 2(1− θ)η · τ − (1− θ)(B −A)−1τ · τ+

min
φ(y)

∫

Y

[Ae(φ) · e(φ) + 2(1− χ(y))τ · e(φ)] dy. (58)

The above infimum in φ is easily computed by Fourier analysis (see e.g. [2]).
Denoting by χ̂(k) the Fourier component at frequency k of the characteristic
function χ(y), it is exactly equal to

−
∑

k 6=0

|χ̂(k)|2g(τ, k), (59)

where

g(τ, k) =
1

µA

(

|τk|2 − (τk · k)2
)

+
1

2µA + λA
(τk · k)2.

Optimizing over k gives when λA > 0 (see Proposition 7.4 in [2])

g(τ) = sup
k 6=0

g(τ, k). (60)

Remarking that
∑

k 6=0

| χ̂(k) |2= θ(1 − θ),

the quantity (59) is bounded from below by −θ(1 − θ)g(τ). Varying τ among
all constant symmetric matrices gives the lower bound

A∗η · η ≥ Aη · η + (1− θ)max
τ

(

2η · τ − (B −A)−1τ · τ − θg(τ)
)

.

To conclude the proof it remains to prove its attainability. This is a classical
matter by using the layering formula (see (61) below). For details, the interested
reader is referred to [2], [21].

Proof of Theorem 5.3. When B = +∞, we deduce from Proposition 5.2 that

f(θ, η) = Aη · η + (1− θ)

θ
g∗(η),
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where g∗(η) is the convex conjugate of g(τ). A simple minimization with respect
to θ gives the values of Qf(η). To compute g∗(η) = maxτ (2τ · η − g(τ)), we
assume with no loss of generality that η has at least a positive eigenvalue, i.e.
ηn > 0. If all the eigenvalues of η are positive, i.e. 0 < η1 ≤ ... ≤ ηn, then it
is easily seen that the unique maximizer τ is equal to (2µA + λA)tr(η)I2, which
gives the desired value (53). If not, we introduce the integer p ∈ {1, ..., n− 1}
such that η1 ≤ ... ≤ ηp ≤ 0 < ηp+1 ≤ ... ≤ ηn. In this case, let us show that
there exists an optimal τ with eigenvalues τ1 ≤ · · · ≤ τn which lies in the first
regime of (52), i.e.

g(τ) =
(τ1 − τn)

2

4µA

+
(τ1 + τn)

2

4(λA + µA)
.

If all eigenvalues ηi are non-zero, the optimality condition delivers the unique
maximizer τ given by

τ1 = ... = τp = (2µA + λA)

p
∑

i=1

ηi + λA

n
∑

i=p+1

ηi,

τp+1 = ... = τn = λA

p
∑

i=1

ηi + (2µA + λA)

n
∑

i=p+1

ηi,

and the maximal value is exactly (53). One easily check that τ1 < τn and

τn ≥ 2µA + λA
2(µA + λA)

(τ1 + τn) ≥ τ1,

which implies that τ is indeed optimal in the definition of g∗(η). When one
eigenvalue ηi is equal to zero, the optimal τ is not unique but the above formula
still define one such optimal τ which is not a scalar matrix.

Remark that a necessary and sufficient condition for the existence of a max-
imizer τ , in the definition of g∗(η), which is not proportional to the identity I2
is that η has one zero eigenvalue or two eigenvalues of opposite signs.

Proof of Proposition 5.4. The proof is almost identical to that of Proposition
3.5. Let us notice first that, in the elasticity case, a function g is said to be rank-
one convex if it is rank-one convex in the space IRn×n

s of symmetric matrices,
i.e.

g(tσ + (1− t)τ) ≤ tg(σ) + (1 − t)g(τ),

for all t ∈ [0, 1], and for all symmetric matrices τ, σ such that rank (τ − σ) ≤ 1.
The lamination formula is also slightly different in elasticity (cf. [12]). A

rank-p sequential laminate Ap ∈ Lθ, obtained by mixing A and B in proportion θ
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and (1−θ) respectively, is determined by the lamination directions (ei)1≤i≤p and
the lamination parameters (mi)1≤i≤p, satisfying 0 ≤ mi ≤ 1 and

∑p
i=1mi = 1,

(1 − θ) (Ap −A)
−1

= (B −A)
−1

+ θ

p
∑

i=1

mifA(ei), (61)

where fA(ei) is a positive non-definite fourth-order tensor defined by the quadratic
form

fA(e)ξ · ξ =
1

µA

(

|ξe|2 − (ξe · e)2
)

+
1

2µA + λA
(ξe · e)2.

Remark that in (61) it is always possible to take p bounded by application of
Caratheodory theorem since the set of all fourth order tensors

∑p
i=1mifA(ei)

is convex. Moreover, a generalization of Lemma 4.2 states that the Hashin-
Shtrikman bound (50) is indeed attained by a sequential laminate of rank at
most n (see e.g. [2]). Therefore, as in the conductivity case, only n steps of
the Kohn-Strabg algorithm are necessary to reach the rank-one convex envelope
Rf .

The only modifications in the proof consist in using the eigenvalues and the
eigenvectors (ek)1≤k≤n of the symmetric matrix η instead of its singular values
and directions. Consequently, the formula (41) can be written as follows

c∗k =
(Ak −A) η̃ · Ek+1

(2µA + λA)(1 − θk+1) + θk+1AkEk+1 ·Ek+1
,

with Ek+1 = ek+1 ⊗ ek+1. The end of the proof can be reproduced step by step
by noticing that

fA(ek+1)ξk · ξk =
1

2µA + λA
(ξkek+1 · ek+1)

2,

with ξk = (Ak−A)η̃′. Let us emphasize that we can not obtain easily an explicit
formula for the tensors Ak, although it was possible in the conductivity case.

Proof of Theorem 5.6. When Qf(ξ) = f(ξ), it is easy to check that u(x) = ξx
is a minimizer in Dξ for (47-48). In the remaining case Qf(ξ) < f(ξ), the
existence or not of a minimizer will be governed by the nature of the unique
optimal τ in (51). We shall prove that there exists a minimizer if and only if this
optimal τ is proportional to the identity I2. Such a minimizer will be obtained
with the confocal ellipsoids construction which has been studied in the context
of elasticity by Grabovsky and Kohn (see [16], or section 6 in [15]).

In a first step, we prove by contradiction that, if the optimal τ in (51) is not
a scalar matrix, then there is no minimizer of problem (47-48). As in Theorem
3.9, we assume that there exists a minimizer u(x) ∈ Dξ, and we denote by Zu

the following subset of Ω

Zu = {x ∈ Ω, Be(u) · e(u) ≤ Ae(u) · e(u) + λ} .
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By Vitali’s theorem, we cover the unit cube Y = [0, 1]n by a countable family
(Ωi)i≥1 of disjoint homothetics of Ω. We also denote by (Zui)i≥1 the family of
the homothetics of Zu in Ωi. Let χ(x) and χ̃(y) be the characteristic functions
respectively of Ω \ Zu and Y \ ∪i≥1Zui.

We introduce the homogenized tensor A∗ associated to χ defined by

A∗ξ · ξ = min
φ∈H1

#
(Y ;IRn)

∫

Y

(χ̃A+ (1− χ̃)B) (ξ + e(φ)) · (ξ + e(φ))dy. (62)

We are going to show that the characteristic function χ̃ is invariant in one
direction by using the Hashin-Shtrikman variational principle for the tensor A∗

at the energy ξ. If this is true, namely if, in some basis, ∂χ̃
∂yn

(y) = 0 in Y , then

the same trick used at the end of the proof of Theorem 3.9 (using a special
choice of Vitali covering with two identical copies of Ω slightly misfitted) leads
to a contradiction.

From Proposition 5.2 we know that

A∗ξ · ξ ≥ f(θu, ξ),

where f(θu, ξ) is the value of the Hashin-Shtrikman bound with θu =
1

|Ω|

∫

Ω

χ(x)dx.

However, using again in (62) the test function obtained by pasting together the
properly rescaled copies of u(x)− ξx in each Ωi gives

A∗ξ · ξ ≤ 1

|Ω|

∫

Ω

(χA+ (1− χ)B)e(u) · e(u)dx = Qf(ξ)− λθu (63)

since u is a minimizer. The same argument as in Theorem 3.9 leads to

A∗ξ · ξ = f(θu, ξ). (64)

Therefore, in view of (64) A∗ achieves equality in the Hashin-Shtrikman bound.
Recall from the proof of Proposition 5.2 that the Hashin-Shtrikman bound was
established by making two inequalities in (56) and (59). For the present tensor
A∗ these inequalities must be actually equalities. Let τ be the non-scalar matrix
which is optimal in (51). We focus on (59) which is now the following equality

∑

k 6=0

|χ̂(k)|2g(τ, k) = θ(1 − θ)g(τ), (65)

where g(τ) = supk 6=0 g(τ, k) and

g(τ, k) =
1

µA

(

|τk|2 − (τk · k)2
)

+
1

2µA + λA
(τk · k)2.

If τ is proportional to the identity, then g(τ, k) is constant, equal to g(τ) for
any k, and (65) is an obvious equality. If τ is not proportional to the identity,
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then g(τ, k) is obviously not constant. However, in view of (65) g(τ, k) must
be equal to g(τ) for any k such that χ̂(k) 6= 0. Therefore, for any k such that
g(τ, k) < g(τ), we necessarily have χ̂(k) = 0. This implies that χ(y) does not
depend on the component y · k, and leads to the desired contradiction.

In a second step, we find a necessary condition on ξ for the optimal τ to be
a scalar matrix. We write the optimality condition of (51) (for details, see [2])

0 ∈ 2ξ − 2(B −A)−1τ − θ∂g(τ), (66)

where ∂g(τ) is the subdifferential of g(τ). Since g(τ) is the supremum of
quadratic functions (cf. (60)), its subdifferential is the convex hull of the gra-
dients of those quadratic functions which are extremal in (60). Specifying (66)
for τ = tI2, with t ∈ IR, yields

ξ =
t

n(κB − κA)
I2 +

θ

2µA + λA
t

p
∑

i=1

miei ⊗ ei, (67)

where (ei)1≤i≤p are unit vectors and the parameters (mi)1≤i≤p satisfy mi ≥ 0
and

∑p
i=1mi = 1. Taking the trace of (67) yields the value of t

(

1

(κB − κA)
+

θ

2µA + λA

)

ξ

tr(ξ)
=

1

n(κB − κA)
I2 +

θ

2µA + λA

p
∑

i=1

miei ⊗ ei.

Since the sum
∑p

i=1miei ⊗ ei is positive, it implies that ξ or −ξ is positive
definite and each of its eigenvalue satisfy

(

1

(κB − κA)
+

θ

2µA + λA

)

ξi
tr(ξ)

≥ 1

n(κB − κA)
,

which is nothing but condition (55). Therfore, (55) is a necessary condition for
the optimal τ to be a scalar matrix. It turns out that (55) is precisely condition
(6.11) in [15] for the existence of the confocal ellipsoid construction optimal for
ξ. This concludes the proof.

Remark 5.9 We briefly explain why the proof of Theorem 5.6 is still valid
when B = +∞. We know from Theorem 5.3 that if ξ or −ξ is positive definite,
then there exists a unique optimal τ in (51) being proportional to the identity
I2. In this case, the confocal ellipsoids construction of Grabovsky still yields a
minimizer. If ξ has one zero eigenvalue or eigenvalues of opposite signs, then
there is an optimal τ (possibly non-unique) which is not a scalar matrix. The
contradiction argument is still valid by defining the homogenized tensor A∗ as
follows to χ defined by

A∗ξ · ξ = inf
φ∈H1

#
(Y ;IRn)

∫

Y

χ̃(y)A(ξ + e(φ)) · (ξ + e(φ))dy, (68)
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with ξ + e(φ)(y) = 0 whenever χ̃(y) = 0 in Y . Remark that (68) makes sense
(i.e. A∗ξ · ξ < +∞) since there exists at least one test function satisfying the
constraint which is obtained from u(x)− ξx. Eventually, the Hashin-Shtrikman
bound is also valid when B = +∞ (cf. the proof of Proposition 5.2).

Acknowledgements. Part of this work was carried out while the first au-
thor was a researcher at the French Atomic Energy Commission (CEA Saclay,
France), the support of which is kindly acknowledged. We thank Gilles Francfort
and Graeme Milton for stimulating comments and remarks on this work.

References

[1] ALLAIRE G., FRANCFORT G.A., Existence of minimizers for non-
quasiconvex functionals arising in optimal design, Ann. Inst. H. Poincaré,
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