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Abstract. After a brief review of the homogenization and level-set methods
for structural optimization we make some comparisons of their numerical
results. The typical problem is to find the optimal shape of an elastic body
which is both of minimum weight and maximal stiffness under specified
loadings. This problem is known to be ”ill-posed”, namely there is generi-
cally no optimal shape and the solutions computed by classical numerical
algorithms are highly sensitive to the initial guess and mesh-dependent.
The homogenization method makes this problem well-posed by allowing
microperforated composites as admissible designs. It induces new numerical
algorithms which capture an optimal shape on a fixed mesh. The homoge-
nization method is able to perform topology optimization since it places no
explicit or implicit restriction on the topology of the optimal shape. The
level-set method instead does not change the ill-posed nature of the prob-
lem. It is a combination of the level-set algorithm of Osher and Sethian
with the classical shape gradient (or boundary sensitivity). Although this
last method is not specifically designed for topology optimization, it can
easily handle topology changes. Its cost is also moderate since the shape is
captured on a fixed Eulerian mesh. We discuss their respective advantages
and drawbacks.

1. Introduction

Shape optimization of elastic structures is a very important and popular
field. The classical method of shape sensitivity (or boundary variation) has
been much studied (see e.g. [10], [13], [16]). It is a very general method
which can handle any type of objective functions and structural models,
but it has two main drawbacks: its computational cost (because of remesh-



2 G. ALLAIRE

ing) and its tendency to fall into local minima far away from global ones.
The homogenization method (see e.g. [1], [2], [6], [7], [8]) is an adequate
remedy to these drawbacks but it is mainly restricted to linear elasticity
and particular objective functions (compliance, eigenfrequency, or compli-
ant mechanism). Recently yet another method appeared based on the first
approach of shape sensitivity but using the versatile level-set method for
computational efficiency (see [4], [11], [15], [17]). The level-set method has
been devised by Osher and Sethian [12] for numerically tracking fronts and
free boundaries. In this paper we review and compare the homogenization
method and this new level-set method for structural optimization.

2. Setting of the problem.

We consider the following structural optimization problem : find the optimal
shape that minimizes a weighted sum of its elastic compliance and weight.
As usual the compliance (i.e. the work done by the load) is a global measure
of the design’s rigidity. We introduce a working domain Q C R in which
all admissible shapes ) are included, i.e. Q C @Q. The boundary of a shape
Q is made of three disjoint parts

o=Tulyulp,

with Dirichlet boundary conditions on I'p, and Neumann boundary con-
ditions on I' U I'y. We assume that I'p and I'y are parts of 3@ and are
supposed to be fixed. Only I' is allowed to vary in the optimization process.

The displacement field u in € is the unique solution of the linearized

elasticity system
—div(Ae(u)) =0 inQ

u=>0 onT
(Ae(u))n=f on F? (1)
(Ae(u))n =20 onT,

where A is the elasticity tensor of a linearly isotropic elastic material (with
bulk and shear moduli x and p). Recall that the deformation tensor is
e(u) = £(Vu + (Vu)?) and the stress tensor is o = Ae(u). The compliance
of the structure € is

c(Q)z/FNf-u:/QAe(u)-e(u):/QA_la-a. (2)

Introducing a positive Lagrange multiplier ¢, our structural optimization
problem is to minimize, over all subsets 2 C (@, the objective function
J(2) equal to the weighted sum of the compliance and weight of Q. In
other words we want to compute minimizers of

dnf {7(2) =c(9) +19/}. (3)
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The Lagrange multiplier £ has the effect of balancing the two contradic-
tory objectives of rigidity and lightness of the shape (increasing its value
decreases the weight).

As is well known, in absence of any supplementary (topological) con-
straints on the admissible designs 2, the objective function J(£2) may have
no minimizer, i.e. there is no optimal shape (see e.g. [1], [9]). The physical
reason for this non-existence is that it is often advantageous to cut infinitely
many small holes (rather than just a few big ones) in a given design in or-
der to decrease the objective function. Thus, achieving the minimum may
require a limiting procedure leading to a ”generalized” design consisting of
composite materials made by microperforation of the original material.

3. Homogenized formulation.

To cope with this physical behavior of nearly optimal shapes, we enlarge
the space of admissible designs by permitting perforated composites from
the start : this process is called relaxation. Such composite structures are
determined by two functions 6(x) and A*(z) : 0 is the local volume fraction
of the original material, taking values between 0 and 1, and A* is the effec-
tive Hooke’s law determined by the microstructure of perforations. In this
section we briefly recall the main results on this so-called homogenization
approach (see [1], [7], [9] and references therein).

A minimizing sequence of the objective function (3) can be regarded as
a composite material obtained by microperforation of the original material
A. The effective behavior of such a composite material is characterized by
a material density 6(z) € [0,1] and a Hooke’s law A*(z) such that the
average or macroscopic behavior of solutions of (1) are determined by the
homogenized problem

o= A*(z)e(u) e(u) = 3(Vu+ Viu)

dive =0 in Q

u=20 onTp (4)
on=f on I'y

on =10 on 0Q\ T'pUTly).

The homogenized compliances is
é0,A*) = fu:/ A*(z)" 1o o,
I'n Q

where the stress o is solution of the homogenized equation (4). Remark
that, for a given value 8 of the density, there are many different possible
effective Hooke’s law A* in a set GGy, the so-called G-closure set at volume
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fraction 6, which is the set of all possible homogenized Hooke’s law with
density 0. We thus obtain the relaxed or homogenized functional

050311{11}11*6(;6 {J(H’A ) =¢(0,47) +€/QH(:E) d:v} }

The relaxed functional J(6, A*) has to be minimized over all admissible
composite designs, i.e. over all density € and effective Hooke’s law A* € Gy.
Although Gy is not known explicitly, the minimization of the compliance
¢(0, A*) can be done analytically since optimal composites are shown to be
the so-called sequential laminates (which have explicit elasticity tensors).
Indeed, we rewrite the compliance as

dive=0 in Q
on=f on ')
on=0 on I'

é6,A") =  min /Q A*(z) o -0, (5)

Then, the two minimizations, in (A, A*) and in o, can be switched. Since
the microstructure can be optimized pointwise in the domain, the relaxed
formulation becomes

~ min / min (A*_la -0+ 50) dz. (6)
dive=0 in Q Q 0<0<1, A*eGy
N

on=f on I'
on=0 on I'

For a fixed stress o, the minimization of A* 'o - o on Gy is a classical
problem in the theory of homogenization and composite materials [1], [9].
It amounts to find the most rigid composite of given density § under the
stress o. In two dimensions, the result is
K 1-6

Al}leige A7 v o =410 0+ %ﬂaﬂ + |oa])? (7)
where o1 and o9 are the eigenvalues of the 2 by 2 symmetric matrix o.
Furthermore, optimality in (7) is achieved for a so-called rank-2 sequential
laminate aligned with the eigendirections of o. In three dimensions, the
result is more complicated, and we give it in the special case of Poisson’s
ratio equal to zero, i.e. 3k = 2y (the general case is not much different in

essence)
_ 1-90)
. A* 1 . — A—l . ( *
min o0 g0+ 10 g (o)

with

2 .
g*(0) = § ol Hlool +los))" il los| < Jou] 4 o] (8)
2 ((lo1] + lo2])* + [o3[*) if |oa] > [o1] + |oo]
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where the eigenvalues of ¢ are labeled in such a way that || < |og| < |o3].
Furthermore, optimality in the first regime of (8) is achieved by a rank-
3 sequential laminate aligned with the eigendirections of ¢, while in the
second regime it is achieved by a rank-2 sequential laminate aligned with
the two first eigendirections of o.

After this crucial step, the minimization in 6 can easily be done by hand,
which completes the explicit calculation of the relaxed formulation. From a
mathematical point of view, one can prove that the relaxed formulation (6)
admits a minimizer, that any minimizing sequence of the original problem
(3) converges (in the sense of homogenization) to a minimizer of (6), and
that the two infimum values of (6) and (3) are equal. However, in general
there is no uniqueness of the minimizer.

4. Numerical algorithm for the homogenization method.

Figure 1. Boundary conditions of a 2-d cantilever.

The first main advantage of the homogenization method is to change a
difficult ”free-boundary” problem into a much easier ”sizing” optimization
problem in a fixed domain. The computational cost is thus very low com-
pared to traditional algorithms since the mesh is fixed (shapes are captured
rather than tracked). The second main advantage is that the homogenized
formulation is well-posed. In practice, the resulting optimal shape is inde-
pendent of the initial guess and the homogenization method thus performs
topology optimization (the final optimal shape may have a topology com-
pletely different from that of the initial guess).

Let us describe briefly our favorite algorithm. It is an alternate direction
algorithm: we start with an initial design (usually full material everywhere),
then, at each iteration, we compute the stress o solution of a linear elastic-
ity problem with a Hooke’s law corresponding to the previous design, and
we update the design variables # and A* in terms of ¢ by using the explicit
formula for the optimal laminated composite material in (7) or (8). We
iterate this process until convergence which is detected when the density
variation becomes smaller than some threshold. This algorithm converges
smoothly in a relatively small number of iterations (between 10 and 100,
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Figure 2. Homogenization method: optimal shape of the cantilever: composite (left) and
penalized (right).

depending on the desired accuracy). Furthermore, in practice it is insensi-
tive to the choice of initial guess and convergent under mesh refinement,
suggesting that the numerical algorithm always picks up the same global
minimum. However, as expected, it usually produces homogenized optimal
designs that include large region of composite materials with intermediate
density. From a practical point of view, this is an undesirable feature since
the primal goal is to find an optimal shape, i.e. a density taking only the
values 0 or 1! The remedy is to introduce a penalization technique that
will get rid of composite materials. The strategy is the following : after
convergence has been reached on a homogenized optimal design, we run
a few more iterations (around 10) of our algorithm during which we force
the density to take values close to 0 or 1. More specifically, denoting by
Oopt the true optimal density, the penalization procedure amounts to up-

date the density at the value 0, = w. There is no specific reason
to choose a cosine-shape function for the penalized density, except that it
works fine and yields surprisingly nice shapes featuring fine patterns instead
of composite regions.

The success of this method is due to the fact that the relaxed design
is characterized not only by a density # but also by a microstructure A*
which is hidden at the sub-mesh level. The penalization has the effect of
reproducing this microstructure at the mesh level. Of course it is strongly
mesh-dependent in the sense that the finer the mesh the more complicated
the resulting ”almost optimal” structure.

The homogenization method can be generalized to several other types
of objective functions, including sum of compliances for multiple loads,
eigenfrequencies, least square criteria for a target displacement or stress
(see e.g. [1], [3])- However, in its rigorous setting it is restricted to a linear
elasticity model.
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5. Shape derivative

In this section we come back to the classical setting of shape sensitivity for
structural optimization. We briefly recall how to compute a shape derivative
for the objective function J(Q2) defined by (3). In order to define a shape
derivative we follow the approach of Murat-Simon [10] (see also [13], [16]).
Starting from a reference domain gy, we consider domains of the type

Q= (Id+ 7)(Q0), (9)

where 7 € WH°(RR%, R?) (for sufficiently small 7, (Id + 7) is a diffeomor-
phism). We further restrict the class of domains by asking that they all share
the same parts of the boundary I'y and I'p: specifically, the map 7 must
vanish on I'y UT" p. The shape derivative of J(€2) at € is then defined as the
Fréchet derivative in WL (R%, R?) at 0 of the map 7 — J((Id 4 7)()).
This notion is well defined and a standard computation shows that the
shape derivative of (3) is

<g—é(90),7> = [ (£ Aetw) - e(w)) - nds, (10)

where u is the solution of (1) in Qg, n is the unit exterior normal and H
the curvature of I'. Remark that there is no adjoint state involved in (10)
(indeed the minimization of (3) is a self-adjoint problem). Of course, the
shape derivative can be computed for other objective functions and other
model problems including non-linear elasticity [4], [5].

6. Numerical algorithm for the level-set method

We review the numerical implementation of a gradient method for the min-
imization of problem (3) as proposed in [4], [5]. The idea is to combine the
shape derivative of Section 5 and the level-set method of Osher and Sethian
[12].

In order to describe the boundary of 2 we introduce a level-set function
1) defined on the working domain () such that

P(z)=0 ©z€d2NQ
{¢(m)<0 Sz e

P(x) >0 oze(@\Q)

The normal n to the shape Q is recovered as V1/|V1| and the curvature
H is given by the divergence of n (these quantities are evaluated by finite
differences since our mesh is uniformly rectangular). Remark that, although
n and H are defined on I, the level set method allows to define easily their
extension in the whole domain Q. We fill the void part @ \  with a very
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Figure 8. Short cantilever with the level-set method: initialization and successive iter-
ations.

weak material with Hooke’s law B = 1073 A and we perform the elasticity
analysis on a fixed rectangular mesh in @ (using Q1 finite elements). Since
n and H, as well as the displacement u, are computed everywhere in (),
formula (10) delivers a vector field V' throughout the domain and not only
on the free boundary I', namely

V=vn with v=~0—Ae(u)-e(u).

After evaluating the gradient of J(£2), or equivalently this vector field V', we

transport the level set function 1 along this gradient low —V = —v n. Since
n = V¢ /|V1|, we end up with the following Hamilton-Jacobi equation
oy
— —v|Vy| =0 11
L o9yl =0, (11)

where the time variable ¢ plays the role of the descent step in the gradient
algorithm. Transporting ¢ by (11) is equivalent to move the boundary of
Q (the zero level set of 1) along the descent gradient direction _g_sjz' We
solve (11) using a standard explicit upwind finite difference scheme (see e.g.
[14]). Finally, our algorithm is an iterative method, structured as follows:

1. Initialization of the level-set function 1 as the signed distance function
to the boundary of an initial guess €.
2. Iteration until convergence, for k > 0:

(a) Computation of uy by solving a linear elasticity problem in Q
with Hooke’s law

Ag(z) = A where 9i(z) <0 Ag(z) = B where 9 (z) > 0.
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Figure 4. Medium cantilever with the level-set method: initialization with many holes
and successive iterations.

(b) Deformation of the shape through the transport of the level set
function: 91 (x) = ¥ (Atg, ) where ¥(t, ) is the solution of (11)
with velocity vy = £— Ae(ug)-e(ug) and initial condition (0, z) =
(). The time step Aty is chosen such that J(Q11) < J(Q)-

This algorithm never creates new holes or boundaries if the time step
Aty satisfies a CFL condition for (11) (there is no nucleation mechanism
for new holes). However the level set method is well known to handle eas-
ily topology changes, i.e. merging or cancellation of holes. In numerical
practice, the number of holes always decrease in dimension d = 2, so the
initialization must contain enough holes in order to obtain a good optimal
shape (compare Figures 4 and 5). However, in dimension d = 3 new holes
can appear by pinching thin plate-like objects, so the initial design is less
critical (also still important). In any case, our algorithm is able to per-
form topology optimization. The algorithm converges smoothly to a (local)
minimum which depends, of course, on the initial topology. The numerical
results are very similar to those obtained by the homogenization method. In
order to speed up the convergence we perform several (of the order of 20 in
numerical practice) time steps of the transport equation for each elasticity
analysis. The exact number of time steps is controlled by the decrease of
the objective function.

From time to time, for stability reasons, we also reinitialize the level set
function 9 in order that it be the signed distance function to the boundary
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Figure 5. Medium cantilever with the level-set method: initialization with few holes and
successive iterations.

of the current shape €2 (see [14]).

We give some numerical results for the compliance objective function (3)
(more examples, including load dependent designs can be found in [5]). The
boundary conditions for cantilever problems are displayed on Figure 1. The
results are shown on Figures 4 and 5 for an increasing number of iterations.
Figure 6 shows the history of the objective function for a medium cantilever
optimized with the two methods discussed here: homogenization and level-
set. A three-dimensional example is given on Figure 7.

T T T T T
21| -
L Level-set

Homogenization

20F

0 10 20 30 40 50 60 70

Figure 6. Convergence of the objective function for the two iterative methods.
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Figure 7. Three-dimensional cantilever by the level-set method.

Figure 8. Three-dimensional gripping mechanism by the level-set method.
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7. Comparisons and conclusions

We implemented the homogenization method and the level-set method in
two and three space dimensions for shape and topology optimization. They
both share the following advantages:

1. they allow for drastic topology changes during the optimization pro-
cess,

2. their cost is moderate in terms of CPU time since they are Eulerian
shape capturing methods.

However, they are very different with respect to the following points.

1. Influence of the initial design: since the homogenization method is a
relaxation method, it is independent of the initial guess and it numer-
ically converges to a global maximum ; on the contrary, the level-set
method is very sensitive to the initial guess and easily get caught in
local minima.

2. Generality of application: the homogenization method is mostly re-
stricted to some specific objective functions and to the linear elasticity
setting ; on the other hand, the level-set method can handle very gen-
eral objective functions and mechanical models, including nonlinear
elasticity (see Figure 9).

Figure 9. Optimal cantilever in non-linear elasticity (the bars under compression are
thicker than those under traction).

The two methods discussed above are not in competition ; rather they
are complementary. One should find a correct topology for a simple objec-
tive function in linear elasticity by applying the homogenization method,
and then use it as an initial guess for the level-set method in the context
of a more involved objective function and non-linear elasticity model.
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