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Abstra
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1 Introdu
tionWe study the spe
tral asymptoti
s of a singularly perturbed se
ond orderellipti
 operator with lo
ally periodi
 rapidly os
illating 
oeÆ
ients of theform A" = �"2 ��xi �aij(x; x" ) ��xj�+ 
(x; x" ); (1)de�ned in a bounded open set G of Rn . We assume that the 
oeÆ
ientsaij(x; z) and 
(x; z) are real suÆ
iently smooth (at least of 
lass C2) fun
tionsde�ned on G� Tn where Tn is the unit torus. Equivalently, the 
oeÆ
ients
an be seen as periodi
 fun
tions with respe
t to z with period 1 in allthe 
oordinate dire
tions. Furthermore, the matrix faij(x; z)g is symmetri
,uniformly positive de�nite. We 
onsider the following eigenvalue problemA"p" = �"p" in G; p" = 0 on �G: (2)As is well known, for ea
h �xed " > 0 this problem is selfadjoint in L2(G)and admits a dis
rete spe
trum �"1 < �"2 � �"3 � : : :, where �"k ! 1 ask ! 1, with 
orresponding eigenve
tor p"k, normalized by kp"kkL2(G) = 1.Moreover, by the Krein-Rutman theorem, �"1 is of multipli
ity one and the
orresponding eigenfun
tion p"1 
an be 
hosen positive in G.The ground state asymptoti
s (i.e. 
hara
terizing the limit of the �rsteigenpair as " goes to 0) plays an important role when studying the longtime behaviour of solutions of the 
orresponding paraboli
 equation. Namely,the �rst eigenvalue governs the rate of de
ay (or growth) of solutions whilethe limit pro�le of the solutions 
an be determined in terms of the �rsteigenfun
tion. Other motivation for studying the limit of (2) are its linkwith semi-
lassi
al analysis of S
hrodinger-type equations, or the uniform
ontrollability of the wave equation (see e.g. [11℄), or the modelling of theso-
alled 
riti
ality problem for the one-group neutron di�usion equation(whi
h allows to 
ompute the power distribution in a nu
lear rea
tor 
ore,see e.g. [2℄).The general study of the homogenization of (2) is far from being 
omplete.When the 
oeÆ
ients are not rapidly os
illating, i.e. aij(x; z) = aij(x) and
(x; z) = 
(x), it is a problem of singular perturbation (without homogeniza-tion) whi
h is quite well understood now although the asymptoti
 behaviourof p"1 is rather 
omplex. For instan
e, if 
(x) has a unique global minimum2



point x0 2 G then p"1(x) is exponentially small everywhere ex
ept at x0, andthe logarithmi
 asymptoti
s of p"1 is given by the following formulalim"!0 " log p"1(x) = dist(
(x0)�
(x))bij(x)(x; x0);where the distan
e is taken in the metri
 [
(x0) � 
(x)℄bij(x) and fbijg =faijg�1 (see [12℄). A similar logarithmi
 asymptoti
s of the ground state foran operator with lo
ally periodi
 
oeÆ
ients of the type (1) was obtained in[13℄. The limit of the entire spe
trum of (2) was studied in [4℄, but with nopre
ise asymptoti
s of the eigenve
tors.When the 
oeÆ
ients are purely periodi
ally os
illating fun
tions, i.e.aij(x; z) = aij(z) and 
(x; z) = 
(z), problem (2) is also quite well under-stood, and more pre
ise results are obtained. This problem, as well as sim-ilar ones for non self-adjoint operators or systems with periodi
 
oeÆ
ients,were studied in [2℄, [6℄, [9℄, [10℄. These works rely on a fa
torization prin
iple�rst introdu
ed in the earlier works [14℄ and [17℄. In the 
ase of the s
alarself-adjoint problem (2), all these previous results boils down to the followingtheorem.Theorem 1.1 Assume that aij(x; z) = aij(z) and 
(x; z) = 
(z). The ktheigenpair (�"k; p"k) of (2) satis�esp"k(x) = u"k(x)p1(x" )and �"k = �1 + "2�k + o("2);where (�1; p1(z)) is the �rst eigenpair of the 
ell eigenproblem (3) and, up toa subsequen
e, the sequen
e u"k 
onverges weakly in H10 (G) to uk su
h that(�k; uk) is a kth eigenpair for the homogenized problem� ��xi �aijeff �u�xj� = �u in G; u = 0 on �G:The homogenized 
oeÆ
ients are given by formula (23).The presen
e of both "slow" and "rapid" arguments in the 
oeÆ
ientsdrasti
ally 
hanges the asymptoti
 behavior of the eigenfun
tions and eigen-values of (2). In the present paper we formulate a simple suÆ
ient 
ondition(see hypothesis H1 and H2 in se
tion 2) for asymptoti
 lo
alization of p"k3



in a p"-neighbourhood of an interior point of the domain, and then 
on-stru
t leading terms of the asymptoti
s of p"1 in this neighbourhood. Thisallows to improve the logarithmi
 asymptoti
s mentioned above in the vi
in-ity of the lo
alization point, and to approximate p"1 in the metri
 of uniform
onvergen
e. Our main results are Theorem 4.1 and 5.3.The 
ase of non self-adjoint operators is mu
h more 
ompli
ated, and itsstudy is the fo
us of a next paper [5℄. The assumption of smooth 
oeÆ
ientsis 
ru
ial sin
e in the 
ase of dis
ontinuous 
oeÆ
ients 
ompletely di�er-ent results are obtained in 1-D [3℄. Finally, the 
ontent of the paper is thefollowing. In se
tion 2 we introdu
e notations and detail our main assump-tions. Se
tion 3 is devoted to formal asymptoti
 expansions, while se
tion4 furnishes a rigorous proof of 
onvergen
e. Lastly, se
tion 5 gives an errorestimate. Throughout this paper we use the Einstein summation 
onventionfor repeated indi
es and C stands for a generi
 
onstant, independent of ".2 Notations and assumptionsIn order to formulate our 
onditions on the operator A" we introdu
e anauxiliary eigenvalue problem (
ell eigenproblem) in the spa
e of periodi
fun
tions (or equivalently on the torus Tn) as followsA(x)p � � ��zi �aij(x; z) �p�zj�+ 
(x; z)p = �p for z 2 Tn: (3)In the sequel, for any p 2 H1(Tn), we use the notation(A(x)p; p) = ZTn�aij(x; z) �p�zj �p�zi + 
(x; z)p2� dz:In (3) the variable x 2 G is just a parameter. As is well-known, A(x) is a self-adjoint operator in L2(Tn) whi
h admits a dis
rete spe
trum �1(x) < �2(x) ��3(x) � : : : with 
orresponding eigenfun
tions p1(x; z); p2(x; z); p3(x; z); : : :,normalized by kpk(x; �)kL2(Tn) = 1. By the Krein-Rutman theorem, �1(x) isof multipli
ity one and p1(x; z) 
an be 
hosen positive in Tn. Therefore, by auniform 
ontinuity argument we have p1(x; z) > C > 0 uniformly in z 2 Tnand x 2 �G. Another 
onsequen
e of the simpli
ity of �1(x) is that the4



�rst eigenvalue and normalized eigenfun
tion have the same di�erentiabilityproperty as the 
oeÆ
ients with respe
t to x.Hypothesis H1. The fun
tion �1(x) has a unique global minimum point x0in the interior of G.HypothesisH2. The 
oeÆ
ients aij(x; z) and 
(x; z) are of 
lass C2 in �G�Tn ,and the Taylor series for �1(x) about x0 has non-degenerate (positive de�nite)quadrati
 form�1(x) = �1(x0)+Dij(x�x0)i(x�x0)j+o(jx�x0j2); (D�; �) � Cj�j2 (4)where Dij stands for 12 �2�1(x0)�xi�xj and C > 0.HypothesisH2'. The 
oeÆ
ients aij(x; z) and 
(x; z) are of 
lass C3 in �G�Tn,and the Taylor series for �1(x) about x0 has non-degenerate (positive de�nite)quadrati
 form�1(x) = �1(x0) +Dij(x� x0)i(x� x0)j +O(jx� x0j3);with the same positive de�nite matrix D as in H2.Without loss of generality we shall assume in the sequel that x0 = 0.Remark 2.1 Hypothesis H1 ensures the 
on
entration of p"1 in the neigh-bourhood of x0 while Hypothesis H2 allows to 
hara
terize, in the vi
inity ofx0, the asymptoti
 behaviour of its pro�le.Assumption H2' is a little stronger than H2 and gives a more pre
ise re-mainder term in the Taylor series (4). The proof of Theorem 5.3 requiresC3-smoothness of the 
oeÆ
ients, while the 
onvergen
e results of Theorem4.1 remain valid for C2 
oeÆ
ients.3 Formal expansionIn this se
tion we 
onstru
t the leading terms of a formal asymptoti
 expan-sion of p"1(x) in the vi
inity of the point x0 = 0. To this end we redu
e the5



lo
ally periodi
 problem under 
onsideration to a series of "purely periodi
"problems, i.e. problems that do not depend on the slow variable x but merelyon the fast periodi
 variable z.First, using assumptionH2', we write down Taylor series in the x variablefor the 
oeÆ
ients aij(x; z) and 
(x; z) about 0; this givesaij(x; z) = aij(0; z) + xk ��xkaij(0; z) + 12xkxl ��xk ��xlaij(0; z) +O(jxj3)� aij0 (z) + xkaij1;k(z) + xkxlaij2;kl(z) +O(jxj3);
(x; z) = 
(0; z) + xk ��xk 
(0; z) + 12xkxl ��xk ��xl 
(0; z +O(jxj3))� 
0(z) + xk
1;k(z) + xkxl
2;kl(z) +O(jxj3): (5)Then we write the following ansatz for the �rst eigenfun
tion of (2)p"1 = q"1kq"1kL2(G) + r"q"1 = �p0(x" ) + xkp1;k(x" ) + xkxlp2;kl(x" ) + "q0(x" )� exp(�Mx�x2" ); (6)where r" is (hopefully) a small remainder, p0(z), p1;k(z), p2;kl(z), q0(z) areperiodi
 fun
tions and M = fMijg is a positive de�nite matrix, that areto be determined. Remark that, by symmetry, we have p2;kl = p2;lk. The
orresponding asymptoti
s for the �rst eigenvalue in (2) is�"1 = �1(0) + "�1 + o("); (7)where �1 has also to be determined. Sin
e M is positive de�nite, an easy
omputation shows that, for any power 1 � � < +1 and any norm-exponentfor any 1 � m � +1, we havekx� exp(�Mx�x2" )kLm(G)k exp(�Mx�x2" )kLm(G) = O("�=2): (8)Remark that (8) holds true also in the 
ase m = +1, whi
h means thatx� exp(�Mx � x=2") is uniformly of order "�=2 in G. Therefore, in the righthand side of (6), if the �rst term is normalized to be of order 1, the se
ondterm xkp1;k(x" ) exp(�Mx�x2" ) is of orderp", the third term xkxlp2;kl(x" ) exp(�Mx�x2" )is of order ", as well as the fourth one. In the sequel we negle
t any otherhigher-order terms.Now we substitute (5), (6) and (7) in (2) and we �nd a 
as
ade of equa-tions a

ording to the various powers of " and of x. This gives0 = (A" � �"1)p"1 = (A" � (�1(0) + "�1))q"1 + ~r"6



where ~r" = (A" � �"1)r" + (�"1 � �1(0)� "�1)p"1 is hopefully small and(A" � �"1)q"1 = ��"2 ��xi �[aij0 (x" ) + xkaij1;k(x" ) + xkxlaij2;kl(x" )℄ ��xi�++�
0(x" ) + xk
1;k(x" ) + xkxl
2;kl(x" )� �1(0)� "�1�on[p0(x" ) + xkp1;k(x" ) + xkxlp2;kl(x" ) + "q0(x" )℄ exp(�Mx � x2" )o + r0"where r0" stands for higher order terms whi
h are small a

ording to (8). Forbrevity we introdu
e the notationA 0 = � ��zi �aij0 (z) ��zj� + 
0(z)� �1(0)A 1k = � ��zi �aij1;k(z) ��zj�+ 
1;k(z)A 2kl = � ��zi �aij2;kl(z) ��zj�+ 
2;kl(z)B 0;k = �aki0 (z) ��zi � ��zi�aik0 (z) � �B 1;kl = �aki1;l(z) ��zi � ��zi�aik1;l(z) � �Di�erentiating all terms, in
luding the exponential, and repla
ing x=" by z,we get(A" � �1(0)� "�1)q"1 = nA 0p0(z)+xk �A 0p1;k(z) + A 1kp0(z)�MklB 0;lp0(z)�+xkxl �A 0p2;kl(z) + A 1kp1;l(z) + A 2klp0(z)�MkjB 0;jp1;l(z)�MkjB 1;jl p0(z)�Mkjaij0 (z)Milp0(z)�+" �A 0q0(z) +Mijaij0 p0(z)� aij1;i ��zj p0(z)+B 0;jp1;j(z)� �1p0(z)� o���z=x" exp(�Mx � x2" ) + r00" (9)7



where r00" is another small remainder.Equating to zero the 
orresponding expressions on the r.h.s. of (9), wederive the sequen
e of auxiliary problems whi
h allow us to determine allthe unknown elements in the above expansion. The equation for the leadingterm of the asymptoti
s reads A 0p0(z) = 0: (10)This equation is solvable in the spa
e of periodi
 fun
tions L2(Tn) and has aunique (up to a multipli
ative 
onstant) solution p0(z) = p1(0; z). Sin
e the
oeÆ
ients of the operator A 0 are smooth, the solution p0 belongs, at least,to H2(Tn). For de�niteness we impose the normalization 
onditionZTn p20(z)dz = 1:At the next step (of order x) we obtain n equationsA 0p1;k(z) = �A 1kp0(z) +MklB 0;lp0(z); k = 1; 2; : : : ; n:Due to the presen
e of the 
oeÆ
ients Mkl here, it is natural to representp1;k(z) as the linear 
ombination ~p1;k(z) + Mkl~~pl1(z), and to 
onsider thefollowing two equations separatelyA 0 ~p1;k(z) = �A 1kp0(z); (11)and A 0~~pl1(z) = B 0;lp0(z): (12)A

ording to the Fredholm alternative, these equations admit solutions if andonly if their right hand sides are orthogonal to the fun
tion p0 that spansthe kernel of A 0 (orthogonality with respe
t to the usual s
alar produ
tin L2(Tn)). The equation (12) is evidently solvable sin
e B 0;l is a skew-symmetri
 operator. Indeed, it suÆ
es to multiply the right hand side ofthis equation by p0(z) and integrate by parts. To show that the solvability
ondition is satis�ed in (11), we use the fa
t that x0 = 0 is a minimum pointof �1(x). Re
alling the de�nition of A(x), p0(z) and p1(x; z), we have�A(x)p0; p0� � �A(x)p1(x; �); p1(x; �)� = �1(x) �8



�1(0) = �A(0)p1(0; �); p1(0; �)� = �A(0)p0; p0�;that is the fun
tion (A(x)p0; p0) assumes its minimum at the point x0 = 0.Taking the derivatives in x of the said fun
tion at x0 = 0 givesZTn �aij1;k ��zi p0(z) ��zj p0(z) + 
1;kp20(z)�dz = (A 1kp0; p0)L2(Tn) = 0for any k = 1; 2; : : : ; n; this implies the desired solvability 
ondition.The next equation involves all the quadrati
 in x terms of (9). It readsA 0p2;kl + A 1kp1;l + A 2klp0 �MkjB 0;jp1;l �MkjB 1;jl p0 �Mkjaij0 Milp0 =A 0p2;kl + A 1k ~p1;l + A 1kMlm~~pm1 + A 2klp0 �MkjB 0;j ~p1;l� (13)MkjB 0;jMlm~~pm1 �MkjB 1;jl p0 �Mkjaij0 Milp0 = 0; k; l = 1; 2; : : : ; n:In truth, equation (13) should be symmetrized with respe
t to k; l sin
e p2;kland xkxl are symmetri
. The solvability 
ondition of this equation requiresspe
ial 
onsiderations. There are two unknowns in the equation, namelythe matrix-fun
tion fp2;kl(z)g and the 
onstant matrix Mij. Our goal is to
hose Mij so that the above equation has a solution fp2;kl(z)g in the spa
eof periodi
 fun
tions.First of all let us show that the linear in Mij terms do not make anydiÆ
ulty. Indeed, by (11) and (12) we have~~pm1 (z) = �A 0��1 B 0;mp0(z) and ~p1;k(z) = � �A 0��1 A 1kp0(z):Thus ZTn (A 1k~~pm1 (z)� B 0;m ~p1;k(z))p0(z)dz == ZTn nA 1k �A 0��1 B 0;mp0(z) + B 0;m �A 0��1 A 1kp0(z)op0(z)dz = 0sin
e A 1k and (A 0)�1 are symmetri
 operators while B 0;m is skew-symmetri
.Thus, the solvability 
ondition in (13) is satis�ed if and only if the fol-lowing relation holds for all k; l = 1; 2; : : : ; nZTn np0(z)A 2klp0(z) + p0(z)A 1k ~p1;l(z)� p0(z)MkmB 0;m~~pj1(z)Mjl�p20(z)Mkiaij0 (z)Mjlodz = 0: (14)9



Introdu
ing a matrix X de�ned by its entriesXij = ZTn np0(z)B 0;i~~pj1(z) + p20(z)aij0 (z)odz; (15)and a matrix Y de�ned by its entriesYkl = ZTn (p0(z)A 2klp0(z) + p0A 1k ~p1;l(z))dz; (16)equation (14) is equivalent to MXM = Y:Let us 
he
k that this equation determines the matrix M . If X and Y aresymmetri
 positive de�nite, it is a 
lassi
al result that there exists a uniquesolution M given byM = X�1=2 �X 1=2YX 1=2�1=2X�1=2:We �rst prove the positive de�niteness of the matrix X .Lemma 3.1 The matrix X de�ned by (15) is symmetri
 positive de�nite.Furthermore, it 
oin
ides with the homogenized matrix for the periodi
 
oef-�
ients p20(z)aij0 (z).Proof By virtue of (12) and of the skew-symmetri
 
hara
ter of B 0;i , thematrix X is equivalently given byXij = ZTn n� B 0;ip0(z)(A 0)�1B 0;jp0(z) + p20(z)aij0 (z)odz;whi
h implies it is symmetri
. Next for any smooth fun
tion ', we havep0(z)A 0 (p0(z)'(z)) = � ��zi�p20(z)aij0 (z) �'�zj �: (17)
10



The matrix p20(z)aij0 (z) is uniformly positive de�nite. Therefore, homogeniza-tion theory applies to the operator ��xi�p20(x" )aij0 (x" )� ��xj (see, for instan
e, [8℄)whi
h admits the following e�e
tive matrixaije� = ZTn p20(z)aik0 (z)�Id+ ��zk�j(z)� dzwhere Id is the identity matrix and �j(z) is the solution of the following 
ellproblem � ��zi�p20(z)aij0 (z)� ��zj�k(z) = ��zi�p20(z)aik0 (z)�or, equivalently, by (17)p0A 0(p0�k) = ��zi�p20(z)aik0 (z)� � np0 ��zi�p0aik0 � + p0aik0 ��zi p0o � p0B 0;kp0This yields a new expression for �k sin
e the solution of this equation is�k = 1p0 (A 0)�1B 0;kp0: (18)Finally, 
onsidering the above relations, we deriveX kl = ZTn (p20akl0 � p0B 0;k~~pl1)dz = ZTn (p20akl0 � p0B 0;k (A 0)�1B 0;lp0)dz == ZTn (p20akl0 + p0B 0;k(p0�l))dz = ZTn (p20akl0 � �lp0B 0;kp0)dz == ZTn (p20akl0 � �l ��zi (p20aik0 ))dz = ZTn (p20akl0 + p20aik0 ��zi�l)dz = akle� ;whi
h is the desired result sin
e the matrix akle� is known to be positive de�-nite.Our next aim is to prove the positive (semi-)de�niteness of the matrix Y.Lemma 3.2 Under Hypothesis H1 the matrix Y is positive semide�nite. If,in addition, Hypothesis H2 holds then Y = D = 12(�2�1(0)�xi�xj ) is positive de�nite.11



Proof The three �rst terms of the Taylor series of p1(x; z) in the x variablearound x0 = 0 arep1(x; z) = p1(0; z) + xk ��xk p1(0; z) + 12xkxl �2�xk�xl p1(0; z)� p0(z) + xkp̂1;k(z) + xkxlp̂2;kl(z):Inserting this, (5) and (4) in (3) and 
olle
ting powers of x we obtainA 0p0+xk(A 0 p̂1;k+A 1kp0)+xkxl(A 0 p̂2;kl+A 1k p̂1;l+A 2klp0) = Dklxkxlp0+O(x3):Therefore, p̂1;k = �(A 0)�1A 1kp0 = ~p1;kand Dkl = ZTn p20Dkldz = ZTn �p0A 0 p̂2;kl + p0A 1k p̂1;l + p0A 2klp0	 dz:Integrating by parts and sin
e A 0p0 = 0, we getDkl = ZTn �p0A 1k ~p1;l + p0A 2klp0	 dz = Ykl;whi
h is the desired result.Remark 3.3 As a byprodu
t of Lemma 3.2, we obtained that the derivative��xk p1(0; z) is equal to ~p1;k and not to p1;k.The last equation related to the ansatz (9) 
olle
ts all terms of the �rstorder in ". It readsA 0q0 = �p0Mijaij0 � B 0;jp1;j + aij1;i ��zj p0 + �1p0:Writing down the solvability 
ondition for this equation we �nd�1 =Mij ZTn p20aij0 dz + ZTn �p0B 0;jp1;j � p0aij1;i ��zj p0�dzThis equation gives the value of the 
orre
tor �1 in the asymptoti
 expan-sion (7). Thus, we determined all the unknown elements in the asymptoti
12



expansions (6) and (7). This shows that our ansatz is viable and one 
ansafely hope to prove that it indeed holds true.More pre
isely, 
olle
ting the above results and remarking that, by virtueof (8), all remainder terms are a
tually small, the 
on
lusion of this se
tionis the following lemma.Lemma 3.4 The approximation q"1 of the �rst eigenfun
tion satis�es theestimate 


�A" � (�1(0) + "�1)� q"1kq"1k


L2(G) � 
"3=2: (19)The proof of this bound is an immediate 
onsequen
e of the fa
t thatthe negle
ted terms are proportional to x3, "x or higher order terms. Itremains to prove that q"1 is indeed 
lose to the true �rst eigenfun
tion p"1. Intheory we 
ould 
ontinue the ansatz and 
ompute further 
orre
tors, but thealgebra be
omes soon formidable and anyway we are able only to prove the
orre
tness of the �rst term of q"1.4 Variational proof of the 
onvergen
eIn this se
tion we develop the analysis of the bottom of spe
trum of eigen-problem (1), whi
h relies on fa
torization in the neigbourhood of the 
on-
entration point of the ground state, and on homogenization te
hnique. Inparti
ular, this allows to justify the �rst two terms of the asymptoti
s of theleading eigenvalues in (1) and to obtain a lower bound for the spe
tral gap.Theorem 4.1 Let p1(x; z) and �1(x) be the �rst eigenve
tor and eigenvalueof the 
ell problem (3) normalized by kp1(x; �)kL2(Tn) = 1. Assume that as-sumptions H1 and H2 hold, and that the 
oeÆ
ients are of 
lass C2 withrespe
t to the 
ouple (x; z). For k � 1, let �"k and p"k be the kth eigenvalueand normalized eigenve
tor of (1). Then,p"k(x) = u"k( xp")p1(x; x" ); �"k = �1(0) + "�k + o (") ; (20)where, up to a subsequen
e, the sequen
e u"k(y) 
onverges weakly in H1(Rn) touk(y), and (�k; uk) is the kth eigenvalue and eigenve
tor for the homogenized13



problem ( � ��yi �aijeff �u�yj �+ (
eff +Dy � y)u = �u in Rn ;u 2 L2(Rn); (21)where D is the Hessian matrix 12rxrx�1(0). The homogenized 
oeÆ
ientsare given by
eff = � ZTn p1(0; z)��aij�xi �p1�zj + aij �2p1�zj�xi + ��zi �aij �p1�xj�� (0; z) dz(22)and aijeff = ZTn p21(0; z)�aij(0; z) + aki(0; z)��j�zk (z)� dz (23)where the fun
tions ��k�1�k�n are the solutions in H1(Tn) of� ��zi �p21(0; z)aij(0; z)��k�zj (z)� = ��zi �p21(0; z)aik(0; z)� (24)Remark 4.2 In order to see the 
onne
tion between Theorem 4.1 and theresults of the formal asymptoti
 expansion, we 
an rewrite the homogenized
oeÆ
ients with the notation of se
tion 3. Re
all �rst thatp1(0; z) � p0(z); �p1�xj (0; z) � ~p1;j(z); aij(0; z) � aij0 (z); and �aij�xi (0; z) � aij1;i(z):Thus, we obtain aijeff = Xij and
eff = ZTn �p0B 0;j ~p1;j � p0aij1;i�p0�zj �dz:The eigenvalues and eigenfun
tions of the homogenized problem (21) 
an be
omputed expli
itely (see e.g. [15℄). Therefore, we re
over the result of theformal asymptoti
 expansion. In parti
ular, the �rst eigenpair of (21) is�1 = 
eff + tr(MX ); and u1(y) = exp��My � y2 �;with M = X�1=2 �X 1=2YX 1=2�1=2 X�1=2.14



Proof Let (�"; p") be an eigenpair of( �"2 ��xi �aij(x; x" ) �p"�xj� + 
(x; x" )p" = �"p" in G;p" = 0 on �G: (25)We perform the following 
hange of unknownv"(x) = p"(x)p1 �x; x"� ; (26)whi
h was already used in the proof of lemma 5.1. A

ording to Proposition3.6 in [2℄, (26) de�nes an invertible and bi
ontinuous 
hange of variables inH10 (G). We repla
e p" by v" in (25), and we re
all that p1(x; z) is the �rsteigenfun
tion of (3). After a little algebra and using the following identityp1 ��xi �aij �(p1v")�xj � = ��xi �p21aij �v"�xj�+ p1v" ��xi �aij �p1�xj� ;we obtain that (25) is equivalent to( �" ��xi �p21aij �v"�xj� + ��"(x) + �1(x)��(0)" p21� v" = �"p21v" in G;v" = 0 on �G; (27)where the 
oeÆ
ients p21 and aij are evaluated at (x; x="), with �" = "�1(�"��1(0)) and�"(x) = ��p1 � ��zi �aij �p1�xj�+ ��xi �aij �p1�zj �+ " ��xi �aij �p1�xj����x; x"� :In order to eliminate the " s
aling in front of the se
ond-order operator in(27), we res
ale the spa
e variable by introdu
ingy = xp" 2 G" = "�1=2G and u"(y) = v"(x):This yields( � ��yi �~aij" �u"�yj � + �~�"(y) + �1(p"y)��(0)" ~p21;"� u" = �"~p21;"u" in G";u" = 0 on �G";(28)15



with~aij" (y) = fp21aijg(p"y; y=p"); ~p21;"(y) = p21(p"y; y=p"); ~�"(y) = �"(p"y);and �1(p"y)� �(0)" = 12rxrx�1(0)y � y + o(1):Equation (28) is a 
ombined problem of homogenization and singular per-turbations: the 
oeÆ
ients are os
illating with a period p", and they 
on-
entrate to 0 with respe
t to their �rst ma
ros
opi
 argument. Remark alsothat the domain G" is 
onverging to Rn . Therefore, we expe
t that the limitproblem of (28) is pre
isely the homogenized problem (21). To prove thisstatement and study the spe
tral asymptoti
s of (28), we follow the method-ology of [2℄, [4℄. We introdu
e the 
orresponding Green operatorS" : L2(G") ! L2(G")f ! U " (29)where U " is the unique solution in H10(G") of( � ��yi �~aij" �U"�yj � + �~�"(y) + �1(p"y)��(0)" ~p21;"�U " = ~p21;"f in G";U " = 0 on �G": (30)Remark that, under the assumed smoothness of the 
oeÆ
ients, the fun
-tion ~�"(y) is uniformly bounded in Rn . Thus, adding to it C ~p21;"(y) with Cpositive and suÆ
iently large will make it positive too and has the e�e
t ofsimply shifting the entire spe
trum by this 
onstant C. Therefore, we shallassume without loss of generality that ~�"(y) is positive. In the sequel weshall 
onsider that S" is an operator de�ned in L2(Rn) by simply taking f asthe restri
tion to G" of a fun
tion of L2(Rn) and extending by zero outsideG" the solution U " = S"f . The homogenization of (29) is quite standard.We introdu
e the limit Green operatorS : L2(Rn) ! L2(Rn)f ! U unique solution in H1(Rn) of� ��yi �aijeff �U�yj �+ (
eff +Dy � y)U = f in Rn ; (31)whi
h is a 
ompa
t operator (see e.g. [15℄) whose spe
trum 
an be expli
itly
omputed. Then, we obtain the following 
onvergen
e result whi
h 
ompletesthe proof. 16



Lemma 4.3 The sequen
e of operators S" 
ompa
tly 
onverges to the limitoperator S in the sense that (see e.g. [7℄)(i) for any f 2 L2(Rn), lim"!0 kS"(f)� S(f)kL2(Rn) = 0,(ii) the set fS"(f) : kfkL2(Rn) � 1; " � 0g is sequentially 
ompa
t.Proof The proof is quite 
lassi
al (see e.g. [2℄, [4℄ for similar examples), sowe simply indi
ate the main ingredients. First, we multiply (30) by U" andintegrate by parts to obtain a priori estimates. Sin
e by assumptions H1and H2 there exists a positive 
onstant C > 0 su
h that�1(p"y)� �(0)" � Cjyj2;we get krU "kL2(Rn) + kyU "(y)kL2(Rn) � CkfkL2(Rn): (32)This implies that the sequen
e U " is not only pre-
ompa
t in H1(Rn)-weakbut also pre-
ompa
t in L2(Rn)-strong. Se
ond, we pass to the limit in(30) by using the two-s
ale 
onvergen
e [1℄. We multiply (30) by a testfun
tion '(y)+"'1(y; y=p") where '; '1 are smooth fun
tions with 
ompa
tsupport with respe
t to the �rst variable y and periodi
 with respe
t to these
ond variable z = y=p". Sin
e this test fun
tion has 
ompa
t support(�xed with respe
t to "), the e�e
t of the non-periodi
 modulation in the
oeÆ
ients is negligible. Indeed, on any �xed bounded domain, the valuesof the 
oeÆ
ients, depending on (p"y; y=p") are uniformly 
lose to theirvalues at (0; y=p"). Now, this is a standard matter in the theory of two-s
ale 
onvergen
e to dedu
e that any 
onverging subsequen
e of U" 
onvergesweakly inH1(Rn) to U whi
h is the unique solution of (31). The homogenized
oeÆ
ients in (31) are thus obtained by 
onsidering the 
ell problems withthe frozen ma
ros
opi
 variable x = 0 (remark that the weak limit of ~p21;"(y)is pre
isely RTn p21(0; z)dz whi
h is equal to 1 by our normalization 
ondition).By uniqueness of the limit, the entire sequen
e U" 
onverges. Furthermore,estimate (32) shows that U" does also 
onverge strongly in L2(Rn). Thisproves statement (i) of the lemma. To prove statement (ii) we simply remarkthat estimate (32) as well as the strong L2(Rn) 
onvergen
e of U" is still validif the right hand side f is repla
ed by a bounded sequen
e f" in L2(Rn). Thisshows that S" 
ompa
tly 
onverges to S.17



To �nish the proof of Theorem 4.1, it remains to 
he
k that the operator
onvergen
e furnished by Lemma 4.3 yields the desired 
onvergen
e of thespe
trum, as stated in Theorem 4.1. This is indeed true by a 
lassi
al resulton the operator 
ompa
t 
onvergen
e (see [7℄) that we re
all.Lemma 4.4 [7℄ If a sequen
e of 
ompa
t self-adjoint operators S" 
ompa
tly
onverges to a limit 
ompa
t self-adjoint operator S in L2(Rn), then the spe
-trum of S" 
onverges to that of S in the sense that the kth eigenvalue of S"
onverges to the kth one of S and, up to a subsequen
e, the kth normalizedeigenve
tor of S" 
onverges strongly in L2(Rn) to a kth eigenve
tor of S.Remark 4.5 Lemma 4.4 would be obvious if the sequen
e S" were to 
on-verge uniformly to S. However, this is not the 
ase be
ause the right hand side
oeÆ
ient ~p21;"(y) 
onverges merely weakly to its limit value RTn p21(0; z)dz = 1.Lemma 4.4 extends to the 
ase of non self-adjoint operators.Corollary 4.6 In the statement of Theorem 4.1 the whole sequen
e u"1� xp"�asso
iated to the ground state p"1(x), does 
onverge, as " ! 0. Thus, theasymptoti
s of the ground state is uniquely de�ned.Proof This is immediate 
onsequen
e of the fa
t that the prin
ipal eigen-value of the homogenized problem (21) is simple.5 Error estimation for the ground state asymp-toti
s.In this se
tion we show that, under hypotheses H1-H2', the remainders in(6) and (7) admit quali�ed upper bounds. To this end we 
ombine the formalasymptoti
s built above with the estimates proved in the pre
eding se
tion.The statement below is a trivial 
onsequen
e of Theorem 4.1.Lemma 5.1 Under hypothesis H1 there exists a 
onstant C > 0, indepen-dent of ", su
h that �1(0)� C" � �"1 < �"2 � �1(0) + C": (33)18



If, in addition, the hypothesis H2 holds then�"2 � �"1 � C": (34)Remark 5.2 We derive the statement of Lemma 5.1 as a 
onsequen
e ofthe homogenization results of Theorem 4.1. Another, dire
t way to provethis statement would be to use the min-max prin
iple and a properly 
hosenansatz of the form�q0(x" ) + xiq1;i(x" ) + xixjq2;ij(x" )� exp(�x2" ):Combining the bounds of Lemma 5.1 with (19) and (20), we obtain themain estimates of this work. Let p"1 be the leading normalized eigenfun
tionof problem (2) and �"1 the 
orresponding eigenvalue.Theorem 5.3 Under Hypotheses H1 and H2' there hold the estimatesj�"1 � �1(0)� "�1j � C"3=2


p"1 � q"1kq"1k


L2(G) � 
"1=2:Proof We write down the Fourier series of the fun
tion (q"1=kq"1k) w.r.t. theeigenbasis fp"ig1i=1: q"1kq"1kL2(G) = 1Xi=1 �ip"i ; 1Xi=1 �2i = 1:Substituting this series in (19) we get


�A" � (�1(0) + "�1)� q"1kq"1k


2L2(G) == �21(�"1 � �1(0)� "�1)2 + 1Xi=2 �2i (�"i � �1(0)� "�1)2 � 
"3:By Theorem 4.1 and Lemma 5.1, we have for all i � 2(�"i � �1(0)� "�1)2 � 
"2:19



Therefore, 1Xi=2 �2i � 
"and the se
ond inequality of Theorem 5.3 follows. To justify the �rst one itsuÆ
es to note that �1 tends to one as "! 0.A
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