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Abstract

We consider the homogenization of the spectral problem for a sin-
gularly perturbed diffusion equation in a periodic medium. Denoting
by € the period, the diffusion coefficients are scaled as £ and vary both
on the macroscopic scale and on the periodic microscopic scale. We
make a structural hypothesis on the first cell eigenvalue, which is as-
sumed to admit a unique minimum in the domain with non-degenerate
quadratic behavior. We then prove an exponential localization phe-
nomena at this minimum point. Namely, the k-th original eigenfunc-
tion is shown to be asymptotically given by the product of the first
cell eigenfunction (at the e scale) times the k-th eigenfunction of an
homogenized problem (at the /¢ scale). The homogenized problem is
a diffusion equation with quadratic potential in the whole space. We
first perform asymptotic expansions, and then prove convergence by
using a factorization strategy.
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1 Introduction

We study the spectral asymptotics of a singularly perturbed second order
elliptic operator with locally periodic rapidly oscillating coefficients of the
form

T x
Af = —¢? 81 (a” (z, ?%) + ¢(x, g), (1)
defined in a bounded open set G of R*". We assume that the coefficients
a’(z, z) and ¢(x, ) are real sufficiently smooth (at least of class C?) functions
defined on GG x T™ where T™ is the unit torus. Equivalently, the coefficients
can be seen as periodic functions with respect to z with period 1 in all
the coordinate directions. Furthermore, the matrix {a”(z, 2)} is symmetric,
uniformly positive definite. We consider the following eigenvalue problem

A*p® = X*pf in G, p° =0 on 0G. (2)

As is well known, for each fixed ¢ > 0 this problem is selfadjoint in L?*(G)
and admits a discrete spectrum A] < A5 < A§ < ..., where A} — oo as
k — oo, with corresponding eigenvector pj, normalized by ||pi|lz2 = 1.
Moreover, by the Krein-Rutman theorem, Aj is of multiplicity one and the
corresponding eigenfunction pj can be chosen positive in G.

The ground state asymptotics (i.e. characterizing the limit of the first
eigenpair as ¢ goes to 0) plays an important role when studying the long
time behaviour of solutions of the corresponding parabolic equation. Namely,
the first eigenvalue governs the rate of decay (or growth) of solutions while
the limit profile of the solutions can be determined in terms of the first
eigenfunction. Other motivation for studying the limit of (2) are its link
with semi-classical analysis of Schrodinger-type equations, or the uniform
controllability of the wave equation (see e.g. [11]), or the modelling of the
so-called criticality problem for the one-group neutron diffusion equation
(which allows to compute the power distribution in a nuclear reactor core,
see e.g. [2]).

The general study of the homogenization of (2) is far from being complete.
When the coefficients are not rapidly oscillating, i.e. a"(z,2) = a"(z) and
c(x,z) = ¢(x), it is a problem of singular perturbation (without homogeniza-
tion) which is quite well understood now although the asymptotic behaviour
of pi is rather complex. For instance, if ¢(x) has a unique global minimum



point zy € G then p;(z) is exponentially small everywhere except at z, and
the logarithmic asymptotics of pj is given by the following formula

limelogpi(z) = dist(c(ao)—ca)pii @) (T, o),

where the distance is taken in the metric [¢(zy) — c(x)]b¥ (z) and {b¥} =
{a“}~" (see [12]). A similar logarithmic asymptotics of the ground state for
an operator with locally periodic coefficients of the type (1) was obtained in
[13]. The limit of the entire spectrum of (2) was studied in [4], but with no
precise asymptotics of the eigenvectors.

When the coefficients are purely periodically oscillating functions, i.e.
a(z,z) = a”(z) and c(x,2) = c(z), problem (2) is also quite well under-
stood, and more precise results are obtained. This problem, as well as sim-
ilar ones for non self-adjoint operators or systems with periodic coefficients,
were studied in [2], [6], [9], [10]. These works rely on a factorization principle
first introduced in the earlier works [14] and [17]. In the case of the scalar
self-adjoint problem (2), all these previous results boils down to the following
theorem.

Theorem 1.1 Assume that a”(x,2) = a(2) and c(z,z) = c(2). The k™
eigenpair (g, p%) of (2) satisfies
T
pi(z) = ui(x)pl(g)and A=\ + €%y +o(e?),

where (A1, p1(2)) is the first eigenpair of the cell eigenproblem (3) and, up to
a subsequence, the sequence uj, converges weakly in Hy(G) to uy, such that
(v, ur) is a k™ eigenpair for the homogenized problem

- <aeff8—xj> =vu in G, u=0 on J0G.

The homogenized coefficients are given by formula (23).

The presence of both ”slow” and "rapid” arguments in the coefficients
drastically changes the asymptotic behavior of the eigenfunctions and eigen-
values of (2). In the present paper we formulate a simple sufficient condition
(see hypothesis H1 and H2 in section 2) for asymptotic localization of p,
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in a y/e-neighbourhood of an interior point of the domain, and then con-
struct leading terms of the asymptotics of pj in this neighbourhood. This
allows to improve the logarithmic asymptotics mentioned above in the vicin-
ity of the localization point, and to approximate pj in the metric of uniform
convergence. Our main results are Theorem 4.1 and 5.3.

The case of non self-adjoint operators is much more complicated, and its
study is the focus of a next paper [5]. The assumption of smooth coefficients
is crucial since in the case of discontinuous coefficients completely differ-
ent results are obtained in 1-D [3]. Finally, the content of the paper is the
following. In section 2 we introduce notations and detail our main assump-
tions. Section 3 is devoted to formal asymptotic expansions, while section
4 furnishes a rigorous proof of convergence. Lastly, section 5 gives an error
estimate. Throughout this paper we use the Einstein summation convention
for repeated indices and C stands for a generic constant, independent of ¢.

2 Notations and assumptions

In order to formulate our conditions on the operator A° we introduce an
auxiliary eigenvalue problem (cell eigenproblem) in the space of periodic
functions (or equivalently on the torus T") as follows

Alx)p = —i <aij(x, z)?—f) +c(z,2)p=Ap for z € T". (3)
j

In the sequel, for any p € H'(T"), we use the notation

n

(A(x)p, p) = / <aij(x,z) Op Op +c(x,z)p2> iz,

In (3) the variable x € G is just a parameter. As is well-known, A(z) is a self-
adjoint operator in L?(T") which admits a discrete spectrum \;(z) < Ay(z) <
A3(z) < ... with corresponding eigenfunctions p;(x, ), pa(z, 2), p3(x, 2), . . .,
normalized by ||py(z,-)||r2r» = 1. By the Krein-Rutman theorem, A;(z) is
of multiplicity one and p;(x, z) can be chosen positive in T". Therefore, by a
uniform continuity argument we have p;(z,2) > C' > 0 uniformly in z € T"
and z € G. Another consequence of the simplicity of \;(x) is that the



first eigenvalue and normalized eigenfunction have the same differentiability
property as the coefficients with respect to x.

Hypothesis H1. The function \;(z) has a unique global minimum point
in the interior of G.

Hypothesis H2. The coefficients a*(z, 2) and ¢(x, 2) are of class C? in G x T",
and the Taylor series for A (z) about x4 has non-degenerate (positive definite)
quadratic form

A () = Ay (o) + Dij(x—x0)i (2 —x0) j+0( |z — m0*), (D¢, ¢) > CIC (4)
1 62)\1(1’0)

where D;; stands for §W and C > 0.

Hypothesis H2’. The coefficients a¥/ (x, z) and ¢(z, 2) are of class C3 in G xT",
and the Taylor series for A;(z) about zy has non-degenerate (positive definite)
quadratic form

M(z) = Ay (o) + Dij(x — 20)i(z — 20); + O(Jz — 20/?),

with the same positive definite matrix D as in H2.
Without loss of generality we shall assume in the sequel that zy = 0.

Remark 2.1 Hypothesis H1 ensures the concentration of p; in the neigh-
bourhood of xq while Hypothesis H2 allows to characterize, in the vicinity of
Zo, the asymptotic behaviour of its profile.

Assumption H2’ is a little stronger than H2 and gives a more precise re-
mainder term in the Taylor series (/). The proof of Theorem 5.3 requires
C3-smoothness of the coefficients, while the convergence results of Theorem
4.1 remain valid for C* coefficients.

3 Formal expansion

In this section we construct the leading terms of a formal asymptotic expan-
sion of pj(z) in the vicinity of the point xy = 0. To this end we reduce the
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locally periodic problem under consideration to a series of ”purely periodic”
problems, i.e. problems that do not depend on the slow variable z but merely
on the fast periodic variable z.

First, using assumption H2’, we write down Taylor series in the x variable
for the coefficients a(z, z) and c(x, z) about 0; this gives

a(z,2) = a’(0,2) + xp52-a" (0, 2) + §apr150 50-a7 (0, 2) + O(|z]?)
= ag (2) +apaly(2 )+$kxza§m( )+0(|x| );

c(z,2) = ¢(0,2) + zp5,-c(0,2) + xkxlag 32-¢(0, z+ O(|z]*))
= ¢(2) +:rkcl,k( ) + xpwicak(2) + O(|a:| ).

(5)

Then we write the following ansatz for the first eigenfunction of (2)

co_ G
T Tl T o
g = [po( )+xkp1k( )+xkxlp2’kl(§)+gq0(§)] eXP(—M;E'I)a

where r. is (hopefully) a small remainder, py(z), p1x(2), Poxi(2), qo(2) are
periodic functions and M = {M;;} is a positive definite matrix, that are
to be determined. Remark that, by symmetry, we have py = pox. The
corresponding asymptotics for the first eigenvalue in (2) is

AT = M(0) +epg + o(e), (7)

where p; has also to be determined. Since M is positive definite, an easy
computation shows that, for any power 1 < a < +00 and any norm-exponent,
for any 1 < m < 400, we have

|2 exp (=252 | (c)
[l exp(— M”)IILm

Remark that (8) holds true also in the case m = 400, which means that
1% exp(— Mz - x/2¢) is uniformly of order £€*/2 in G. Therefore, in the right
hand side of (6), if the first term is normalized to be of order 1, the second
term xpy i (2) exp(— M- 55e2) is of order /2, the third term zz;p, kl( ) exp(—~5
is of order ¢, as well as the fourth one. In the sequel we neglect any other
higher-order terms.

= 0("?). (8)

Now we substitute (5), (6) and (7) in (2) and we find a cascade of equa-
tions according to the various powers of € and of x. This gives

0= (A" = AD)pi = (A" = (Ai(0) +epa))gi + 7

Mz-x

)



where 7. = (A° — Aj)r. + (A] — A1 (0) — epy)pf is hopefully small and

(
=200 = {22 (1 O+ o) + (D ) +

ar;
+ (Cg(g) + xkcl,k(

)+ :L‘kMCQ,kl(g) —Mi(0) - gl“)}

T T T Mzx - x

{[po(g) + xppri(—) + xka?zpz,kz(g) + 5%(?] exp(— 92 )} + 7l
where 77 stands for higher order terms which are small according to (8). For
brevity we introduce the notation

AV = — 8azi <agj(z)a%> +eo(2) = A(0)

o (.. 0
A= (e

T
£

a [ i 9,
Ay = . (“2],1@1(2)—62.) + 2, (2)
i j

B4 = ol ()~ (aih(2) )

Bl = —af ()5 — 5~ (ali(2) - )

Differentiating all terms, including the exponential, and replacing z /¢ by z,
we get

(A= X(0) )i = {A"po(2)
+x, [A'p1(2) + Appo(z) — MleO’lp[)(Z)]
+2,1; [AOpQ,kl(z) + A}ﬁpu(z) + A2 po(2)
— My B pra(2) — MigjBy po(2) — Myjaq (2) Mapo(2)]

0

+e | A% (2) + Mijaéjpo(z) — a?gigpo(z)
j
. Mz -x
+B%7py j(2) — pupo(2)] H » exp(— 5 )+



where 7’ is another small remainder.

Equating to zero the corresponding expressions on the r.h.s. of (9), we
derive the sequence of auxiliary problems which allow us to determine all
the unknown elements in the above expansion. The equation for the leading
term of the asymptotics reads

Apo(2) = 0. (10)

This equation is solvable in the space of periodic functions L?(T") and has a
unique (up to a multiplicative constant) solution py(z) = p1(0, z). Since the
coefficients of the operator A° are smooth, the solution py belongs, at least,
to H?(T"). For definiteness we impose the normalization condition

/npg(z)dz _1.

At the next step (of order z) we obtain n equations
A%py(2) = —Abpo(2) + MpBY po(2), k=1,2,...,n.

Due to the presence of the coefficients Mj; here, it is natural to represent

p1i(2) as the linear combination pjx(z) + Mklﬁll(z), and to consider the
following two equations separately

Aoﬁl,k(z) = —A;po(2), (11)

and Ny
A'p, (2) = B py(2). (12)

According to the Fredholm alternative, these equations admit solutions if and
only if their right hand sides are orthogonal to the function p, that spans
the kernel of A’ (orthogonality with respect to the usual scalar product
in L2(T")). The equation (12) is evidently solvable since B%' is a skew-
symmetric operator. Indeed, it suffices to multiply the right hand side of
this equation by po(z) and integrate by parts. To show that the solvability
condition is satisfied in (11), we use the fact that o = 0 is a minimum point
of Ai(z). Recalling the definition of A(x), po(z) and p(x, z), we have

(A@)po.po) > (A, ), p1(2.)) = M) >
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X(0) = (AO)pi(0,,m(0,)) = (AO)po,po ),

that is the function (A(z)pg,po) assumes its minimum at the point z5 = 0.
Taking the derivatives in x of the said function at xy = 0 gives

;i 0 0
/ (alj,ka—zipo(z)a—szo(z) + C1,kpg(z))dz = (A}ﬁpoapo)m(w) =0
T’n

for any k = 1,2,...,n; this implies the desired solvability condition.

The next equation involves all the quadratic in z terms of (9). It reads
Apo gy + Appry + Afypo — My B pyy — MyBy po — Myjag Mupy =
A’pa g + Aipry + A Mimpy + Afypo — MiB™ iy — (13)
. T . g
M;B% Myp,” — MyB 7 po — Myjal Mypo =0, k,1=1,2,...,n.
In truth, equation (13) should be symmetrized with respect to &, since po
and xx; are symmetric. The solvability condition of this equation requires
special considerations. There are two unknowns in the equation, namely
the matrix-function {ps 4 (2)} and the constant matrix Af;;. Our goal is to

chose M;; so that the above equation has a solution {ps(z)} in the space
of periodic functions.

First of all let us show that the linear in A/;; terms do not make any
difficulty. Indeed, by (11) and (12) we have

]~3T(z) = (AO)_1 B*™po(2) and py x(2) = — (AO)_1 Arpo(2).

Thus
/ (Al%:ij?ln(z) - Bo’mﬁl,k(z))po(z)dz —
= / {Allc (AO)*l I[BUympO(Z) 4 BO™ (AU)*I Akpo(z)}po(z)dz —0

since AL and (A°)”" are symmetric operators while B*™ is skew-symmetric.
Thus, the solvability condition in (13) is satisfied if and only if the fol-

lowing relation holds for all k,l =1,2,...,n

/ {pO(Z)Aizpo(Z) + po(2)Appry(2) — pO(Z)MkmBO’mﬁi(z)Mjl "
™ 14
R M ()M} =,

9



Introducing a matrix X defined by its entries
Xy = [ {56 + 20 () (15)
Tn
and a matrix ) defined by its entries
Vi = [ (o) Kmn(2) + )z, (16
TTL
equation (14) is equivalent to
MXM =Y.

Let us check that this equation determines the matrix M. If X and ) are
symmetric positive definite, it is a classical result that there exists a unique
solution M given by

M = X_l/Q (Xl/nyl/2)1/2 X_l/Q-

We first prove the positive definiteness of the matrix X.

Lemma 3.1 The matriz X defined by (15) is symmetric positive definite.
Furthermore, it coincides with the homogenized matrixz for the periodic coef-

ficients pR(2)a (2).

Proof By virtue of (12) and of the skew-symmetric character of B, the
matrix X is equivalently given by

Xy = [{ - BmE) BIm(e) + @ ()} da

Tn

which implies it is symmetric. Next for any smooth function ¢, we have

P (n(2p() =~ (a3 ()57 (17)

10



The matrix p?(z)a () is uniformly positive definite. Therefore, homogeniza-

tion theory applies to the operator 5 (po( )ag (‘”)) a?; (see, for instance, [8])

which admits the following effectlve matrix

z%f—/po() ()<Id+a% '(z>>dz

where Id is the identity matrix and x7(z) is the solution of the following cell
problem

5= (B 0) ) = 5 (i (2)
or, equivalently, by (17)

PoA” (pox*) = aaz (po( Ja ““(Z)) {po aiz (poao ) + poay aaipo} = poB”* py

This yields a new expression for x* since the solution of this equation is

1 _
X" = —(A")"'B"*p,. (18)
Po

Finally, considering the above relations, we derive

~[ -
Xt = / (Pag’ — poB™* py)dz = / (Ppay — poB™* (A") ™' B py)dz =

AQ AQ

/ (paag’ + poB™* (pox'))dz = / (paab! — X'poB™* po)dz =

AQ T

0 0
/(pﬁa’él X' o (pat’))dz = /(pﬁa'él + poagy o7 x')dz = alf,

AU ™

which is the desired result since the matrix a*% is known to be positive defi-
nite.

Our next aim is to prove the positive (semi-)definiteness of the matrix ).

Lemma 3.2 Under Hypothesis H1 the matriz Y is positive semidefinite. If,

in addition, Hypothesis H2 holds then Y = D = %(%1/\3;0])) is positive definite.
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Proof The three first terms of the Taylor series of p;(x, z) in the = variable
around zg = 0 are

0 1 0?
(0, 2) + —zpy

pl(xaz):pl(oaz)-l-xka o 5 B kaxlpl(o,z)

= po(2) + Teprx(2) + TrTiPo s (2)-
Inserting this, (5) and (4) in (3) and collecting powers of x we obtain
A'py +«Tk(A0]51,k +A11gp0) + 2T (AOﬁZ,kl +A116251,z +Azzpo) = Dyxrxipo+ O($3)-

Therefore,
Pre=—(A")""Arpo = Pr
and
Dy = /poDkde = / {poA Dokt + DoApP1y + poAklpo} dz.

TTL

Integrating by parts and since A’p, = 0, we get

Dy = / {PoAp D11 + PoAypo } dz = Vi,

which is the desired result.

Remark 3.3 As a byproduct of Lemma 3.2, we obtained that the derivative
%pl(o, z) is equal to Py and not to py .

The last equation related to the ansatz (9) collects all terms of the first
order in €. It reads

g , !
Aqy = —poMijag — B py; + allj,igpo + H1Po-
j
Writing down the solvability condition for this equation we find

i i i 0
= Mzg/pgaojdz+/ (poIB%O’JpLj —poaf,igpo)dz
7

This equation gives the value of the corrector u; in the asymptotic expan-
sion (7). Thus, we determined all the unknown elements in the asymptotic
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expansions (6) and (7). This shows that our ansatz is viable and one can
safely hope to prove that it indeed holds true.

More precisely, collecting the above results and remarking that, by virtue
of (8), all remainder terms are actually small, the conclusion of this section
is the following lemma.

Lemma 3.4 The approximation q; of the first eigenfunction satisfies the

estimate A

H (AE — (A(0) + 5#1)) o

< 22, 19
T (19)

L2(@)

The proof of this bound is an immediate consequence of the fact that
the neglected terms are proportional to 2®, ez or higher order terms. It
remains to prove that ¢f is indeed close to the true first eigenfunction pj. In
theory we could continue the ansatz and compute further correctors, but the
algebra becomes soon formidable and anyway we are able only to prove the
correctness of the first term of ¢j.

4 Variational proof of the convergence

In this section we develop the analysis of the bottom of spectrum of eigen-
problem (1), which relies on factorization in the neighourhood of the con-
centration point of the ground state, and on homogenization technique. In
particular, this allows to justify the first two terms of the asymptotics of the
leading eigenvalues in (1) and to obtain a lower bound for the spectral gap.

Theorem 4.1 Let pi(x, z) and X\(x) be the first eigenvector and eigenvalue
of the cell problem (8) normalized by ||pi(x,-)||r2r) = 1. Assume that as-
sumptions H1 and H2 hold, and that the coefficients are of class C? with
respect to the couple (z,2). For k > 1, let \; and p; be the k™ eigenvalue
and normalized eigenvector of (1). Then,

@) =D D), = a0 +emto), (20

where, up to a subsequence, the sequence us,(y) converges weakly in H'(R"™) to
ug(y), and (ug, uy) is the k™ eigenvalue and eigenvector for the homogenized
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problem

u € L*(R"),

where D s the Hesstan matriz %VIVI)\l(O). The homogenized coefficients
are given by

_ 0a" Opy . 0°py 0 i P op1
Cett = /npl (0, Z) <6xz azj ta aZjaLL‘Z + 8zl ij (0, Z) dz

(22)

and
iJ 2 ki aX]
aggr= | pi(0,2) { a?(0,2) +a"(0,2)5(2) | d2 (23)
m 2k
where the functions (Xk)1<k:<n are the solutions in H'(T") of

_3621 (p%(O,Z) (0 z)gx (z)) _ 9 (p}(0,2)a™(0, 2)) (24)

Zj 821

Remark 4.2 In order to see the connection between Theorem 4.1 and the
results of the formal asymptotic expansion, we can rewrite the homogenized
coefficients with the notation of section 3. Recall first that

3 - ii i 8&” ii
(0, 2) = po(2), a—?(o,z) =p1;(2), a”(0,2) = ag (2), and —— o —(0,2) = alj,i(z).

J

Thus, we obtain aeff Xij and

- dp
Ceff:/ (poBO’”pu poa“ao)dz

The eigenvalues and eigenfunctions of the homogenized problem (21) can be
computed explicitely (see e.qg. [15]). Therefore, we recover the result of the
formal asymptotic expansion. In particular, the first eigenpair of (21) is

My-z;)

p = Cepp +tr(MX), and uy(y) = exp <— 5

1/2

with M = X~ Y2 (xV2yx1/2) = x-1/2,
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Proof Let (A%, p%) be an eigenpair of

2 (@@ D) +ele, = NP G (25)
p° =0 on 0G.

We perform the following change of unknown

() = p°(z)

.7 26
(@) (26)

which was already used in the proof of lemma 5.1. According to Proposition
3.6 in [2], (26) defines an invertible and bicontinuous change of variables in
H}(G). We replace p° by v° in (25), and we recall that p;(z, 2) is the first
eigenfunction of (3). After a little algebra and using the following identity

9, - 0(p1v°) 0 ([ o ;.00° 0 - Opy
ij — ij € ij 1
P 61;Z (CL 8xj ) 8% <p1a 6xj + pro 61;Z “ 6xj ’

we obtain that (25) is equivalent to

o (D) + (Z0(a) + 220 v = gt in Gy
: ; (27)
vE =0 on 0G,

where the coefficients p? and a* are evaluated at (x, z/c), with u® = =1 (\* —
A1(0)) and

0 ~-8p1 0 ~-8p1 0 ~-3p1 T
5 - _ s iy L - ig L = iy L -
> (1’) {pl [Ozl <a 81‘]> + 8% <CL 8z9> +66xz~ (CL 6%)} } (l‘, 6) '

In order to eliminate the ¢ scaling in front of the second-order operator in
(27), we rescale the space variable by introducing

oz
T VE
This yields
g (1955) (5004 M0 o — it
ut =0 on 0G*®,
(28)

€ G =¢12@ and u(y) = v°(x).
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with

a(y) = {pla"}(Vey, y/VE), Bi.(y) =P (VeEy y/VE), E(y) = Z°(Vey),

and \ \
ey) — A0 1

Equation (28) is a combined problem of homogenization and singular per-
turbations: the coefficients are oscillating with a period /z, and they con-
centrate to 0 with respect to their first macroscopic argument. Remark also
that the domain G° is converging to R". Therefore, we expect that the limit
problem of (28) is precisely the homogenized problem (21). To prove this
statement and study the spectral asymptotics of (28), we follow the method-

ology of [2], [4]. We introduce the corresponding Green operator

S I2(GY) — LX(GY)

f — U (29)

where U* is the unique solution in Hj(G?) of

_8?;,' <delsj?9—gj) + (ie(y) + )\1(\/522)—)\(0)23%’8> e — ﬁ%’gf in G°, (30)
Us=0 on 0G®.

Remark that, under the assumed smoothness of the coefficients, the func-
tion Y°(y) is uniformly bounded in R". Thus, adding to it Cpi .(y) with C
positive and sufficiently large will make it positive too and has the effect of
simply shifting the entire spectrum by this constant C. Therefore, we shall
assume without loss of generality that %°(y) is positive. In the sequel we
shall consider that S¢ is an operator defined in L*(R") by simply taking f as
the restriction to G° of a function of L?(R™) and extending by zero outside
G* the solution U® = S°f. The homogenization of (29) is quite standard.
We introduce the limit Green operator

S: L*R") — L*R")
f — U unique solution in H'(R") of (31)
~o (“Zejffg_;;) + (Cesr +Dy-y)U = finR",
which is a compact operator (see e.g. [15]) whose spectrum can be explicitly

computed. Then, we obtain the following convergence result which completes
the proof.
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Lemma 4.3 The sequence of operators S compactly converges to the limit
operator S in the sense that (see e.g. [7])

(i) for any f € L*(R"), lim._,o |S*(f) — S(f)llr2@®n) =0,
(i) the set {S°(f) : || fllz2@mny < 1, € > 0} is sequentially compact.

Proof The proof is quite classical (see e.g. [2], [4] for similar examples), so
we simply indicate the main ingredients. First, we multiply (30) by U. and
integrate by parts to obtain a priori estimates. Since by assumptions H1
and H2 there exists a positive constant C' > 0 such that

)\1(\/5?/) — )‘(0) > C’|y|2,

we get
IVU |2y + [lyU ()] 2mmy < Cll fllL2@ny.- (32)

This implies that the sequence U? is not only pre-compact in H'(R")-weak
but also pre-compact in L?(R")-strong. Second, we pass to the limit in
(30) by using the two-scale convergence [1]. We multiply (30) by a test
function ¢(y)+ep1(y, y/\/2) where ¢, p; are smooth functions with compact
support with respect to the first variable y and periodic with respect to the
second variable z = y/y/2. Since this test function has compact support
(fixed with respect to ¢), the effect of the non-periodic modulation in the
coefficients is negligible. Indeed, on any fixed bounded domain, the values
of the coefficients, depending on (\/zy,y//¢) are uniformly close to their
values at (0,y/v/). Now, this is a standard matter in the theory of two-
scale convergence to deduce that any converging subsequence of U, converges
weakly in H'(R™) to U which is the unique solution of (31). The homogenized
coefficients in (31) are thus obtained by considering the cell problems with
the frozen macroscopic variable z = 0 (remark that the weak limit of p7 _(y)
is precisely [, p1(0, z)dz which is equal to 1 by our normalization condition).
By uniqueness of the limit, the entire sequence U, converges. Furthermore,
estimate (32) shows that U, does also converge strongly in L*(R™). This
proves statement (i) of the lemma. To prove statement (ii) we simply remark
that estimate (32) as well as the strong L?*(R") convergence of U, is still valid
if the right hand side f is replaced by a bounded sequence f. in L?>(R"). This
shows that S® compactly converges to S.
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To finish the proof of Theorem 4.1, it remains to check that the operator
convergence furnished by Lemma 4.3 yields the desired convergence of the
spectrum, as stated in Theorem 4.1. This is indeed true by a classical result
on the operator compact convergence (see [7]) that we recall.

Lemma 4.4 [7] If a sequence of compact self-adjoint operators S€ compactly
converges to a limit compact self-adjoint operator S in L*(R™), then the spec-
trum of S° converges to that of S in the sense that the k'™ eigenvalue of S°
converges to the k'™ one of S and, up to a subsequence, the k'™ normalized
eigenvector of S. converges strongly in L*(R") to a k' eigenvector of S.

Remark 4.5 Lemma 4.4 would be obvious if the sequence S° were to con-
verge uniformly to S. Howewver, this is not the case because the right hand side
coefficient Pt (y) converges merely weakly to its limit value [1, p}(0, 2)dz = 1.
Lemma 4.4 extends to the case of non self-adjoint operators.

Corollary 4.6 In the statement of Theorem 4.1 the whole sequence uj (%)

associated to the ground state pj(x), does converge, as € — 0. Thus, the
asymptotics of the ground state is uniquely defined.

Proof This is immediate consequence of the fact that the principal eigen-
value of the homogenized problem (21) is simple.

5 Error estimation for the ground state asymp-
totics.

In this section we show that, under hypotheses H1-H2’, the remainders in
(6) and (7) admit qualified upper bounds. To this end we combine the formal
asymptotics built above with the estimates proved in the preceding section.

The statement below is a trivial consequence of Theorem 4.1.

Lemma 5.1 Under hypothesis H1 there exists a constant C' > 0, indepen-
dent of ¢, such that

A(0) — Ce < AT < A5 < A(0) + Ce. (33)
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If, in addition, the hypothesis H2 holds then
A5 —A] > Ce. (34)

Remark 5.2 We derive the statement of Lemma 5.1 as a consequence of
the homogenization results of Theorem 4.1. Another, direct way to prove
this statement would be to use the min-max principle and a properly chosen
ansatz of the form

T !L‘2

<QO(§) + szlz(g) + xixj(h,ij(g)) exp(—?).

Combining the bounds of Lemma 5.1 with (19) and (20), we obtain the
main estimates of this work. Let p] be the leading normalized eigenfunction
of problem (2) and Aj the corresponding eigenvalue.

Theorem 5.3 Under Hypotheses H1 and H2’ there hold the estimates

AL = Ai(0) = eu| < C¥2

Proof We write down the Fourier series of the function (¢5/||¢j||) w.r.t. the
eigenbasis {p5}2;:

q5
i —
gl

< ce'l?,
L2(G)

qi § ’ —

1 E : € 2
- = o;p;, Q; 1.
||qi||LZ(G) i=1 o =1 '

Substituting this series in (19) we get

2

L2(G)

[ (4 = () + ) “Zﬁ

= aj(\] = M(0) —em)? + Z aZ(A5 = A (0) — epy)? < e
i=2
By Theorem 4.1 and Lemma 5.1, we have for all ¢ > 2

(A5 — A1(0) — ep11)? > 22
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Therefore,

o0
E of <ce

=2

and the second inequality of Theorem 5.3 follows. To justify the first one it
suffices to note that «; tends to one as € — 0.
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