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Continuity of the Darcy’s Law
in the Low-Volume Fraction Limit

GRÉGOIRE ALLAIRE *

0. - Introduction

The derivation of Darcy’s law through the homogenization of the Stokes
equations in a porous medium is now well understood. Some ten years ago, J.B.
Keller [10], J.L. Lions [14], and E. Sanchez-Palencia [19] showed that Darcy’s
law is the limit of the Stokes equations in a periodic porous medium, when the
period goes to zero. Note that the assumption on the periodicity of the porous
medium implies that in each period the fluid and the solid part have a size
of the same order of magnitude. Their main tool was the celebrated two-scale
method (see also [5]), which yields heuristic results. Almost at the same time,
L. Tartar [22] proved the rigorous convergence of this limit process using his
energy method introduced in [23] (see also [16]). Later on, T. Levy [12] and E.
Sanchez-Palencia [18] showed that, for some porous media in which the solid
part is smaller than the fluid part, the homogenization of the Stokes equations
leads again to Darcy’s law, but, with a permeability different from the first
one. The rigorous convergence in this case was proved by the author [2], [3].
The purpose of this paper is to study the two permeability tensors associated
to those two Darcy’s laws, and to actually prove that there is a continuous
transition between them.

Let us describe more precisely the setting and the main results of the
present paper. The fluid part Qê of a porous medium is obtained by removing,
from a bounded domain Q, a collection of periodically distributed and identical
obstacles. We denote bye the period, and by a, the obstacle size; each obstacle
lies in a cubic cell (2013~+6:)~, and is similar to the same model obstacle T
rescaled to size a~ .

We consider a Stokes flow in Q~ under the action of an exterior force f,
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and with a no-slip condition on the boundaries of the obstacles

where u, and p, are the velocity and the pressure of the fluid.

1 ) Assume that aê = 1]é, with 1] E (0, 1).

The constant 77 is actually the obstacle size in the rescaled unit cell
p = (-1, +1)N. This case has been extensively studied with the two-scale
method (see [10], [14], [19]): when - goes to zero, the limit of the Stokes

equations is the following Darcy’s law

where u and p are the velocity and the pressure of the fluid. The matrix A is
the so-called permeability tensor given by

where the functions (Vk)lkN are the solutions of the so-called cell problems

2) Assume that aê « é.

We further assume that the obstacles are not too small

(For smaller obstacles, different limit regimes occur; see [3], [12]). This second
case has been studied by the author in [3], where he proved that when E goes
to zero, the limit of the Stokes equations is the following Darcy’s law
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where, again, (u, p) are the velocity and pressure of the fluid, and M-1 is the

permeability tensor. For each E {I, ... , ~V}, let us introduce the so-called local
problem 

--

Denoting by Fk the drag force applied on where

n is the interior normal vector of aT, the matrix M is given by

or equivalently

Apparently there is no link between the formulae for A and M-1. From
a physical point of view, there should be one. Indeed, for an entire range of
obstacle size smaller than é, we always obtain a Darcy’s law with the same
permeability tensor M-1 ; thus it seems natural that, even when the obstacle size
is exactly of the order of magnitude of e, one finds again the same permeability
tensor. This is not quite true, but, anyway, there is a sort of continuity when
passing from one case to the other. Actually we shall prove that, when q (the
obstacle size in the rescaled unit cell) goes to zero, the permeability tensor A(,q)
(obtained in the first case) converges, up to a suitable rescaling, to the other
permeability tensor M-1 (obtained in the second case). Thus, together with [3],
this result shows that there is a complete continuity of the limit regimes when
the obstacle size varies from zero to the period e (included). This process of
letting go to zero, after taking the homogenized limit, is called the low-volume
fraction limit (see, e.g., [9], [21]). Our main result (Theorem 3.1 of the present
paper) is summarized in the following

THEOREM. Let (Pk,Vk) be the unique solution of the cell problem in the
first case. Rescaling it, for x E (r~-1P - T) and for any space dimension, we
define

and

Let (qi, wi) be the unique solution of the local problem in the second case. Then
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converges weakly to

Furthermore we have

Note that the solutions of the cell problem, in the first case, do not

converge to the solutions of the local problem, in the second case, but rather
to a linear combination of them (this fact has already been mentioned by E.
Sanchez-Palencia in [18]). We give an explanation of it based on a new corrector
result for the velocity (see Theorem 1.3). In [3], when ae G e, we pointed out
that the solutions of the local problem are the boundary layers of the Stokes flow
around the obstacles. In Theorem 1.3 of the present paper, when a, = 77,-, we
see that the boundary layers actually are a linear combination of the solutions
of the cell problem. Thus, from a physical point of view, it seems natural that
Theorem 3.1 corresponds to a continuity between boundary layers, rather than
between solutions of the cell, or local, problem.

Let us conclude this introduction by saying that the idea of the "low-
volume fraction limit" goes back to R.S. Rayleigh [17]. Stokes flows through
periodic arrays of obstacles have been studied by H. Hasimoto [9] and A.S.
Sangani and A. Acrivos [21] (see also the references therein). Using different
methods, restricted to the case of spherical obstacles, they obtained an asymptotic
expansion of the permeability A(q) (instead of just its limit, as we do here).
Finally, we also mention that the framework of the present paper is similar to that
introduced by T. Levy and E. Sanchez-Palencia in [13] and [20] (concerning the
derivation of the Einstein formula for the viscosity of a suspension of particles).

NOTATIONS. Throughout this paper, C denotes various real positive
constants which never depend one or ?7. Let H# (P) (resp. L2(P)) denote
the space of P-periodic functions of H1 (P) (resp. L2(P)). The duality products
between Hol(f2) and H-1(Q), and between [Hol (Q)]N and [H - 1(Q)]N , are both
denoted by (’, ’)H-1,Hoi(n). The duality product between [H# (P))N and its dual,
is denoted by (’, ’ )H;,,H#,(p). The canonical basis of ~ is denoted by (e~)i~~.

1. - Obstacles size of the order of the period

Throughout this paper, we consider a porous medium modelled by a

periodic array of fixed and isolated obstacles. The present section is devoted
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to the case where the obstacles have a size of the same order of magnitude
than the period. This situation has been extensively studied with the celebrated
two-scale method (see [1], [10], [14], [19], [22]).

1. a) Recall of previous results.

Let us briefly describe the geometry under consideration; the porous
medium Q~ is defined as follows. Let Q be a bounded, connected, open set in
]RN (N &#x3E; 2), with Lipschitz boundary aSZ, Q being locally located on one side
of its boundary. Let - be a sequence of strictly positive reals which tends to
zero. The set Q is covered with a regular mesh of size 2e, each cell being a
cube Pt, identical to (-0, +8)N. At the center of each cube P,, entirely included
in Q, we put an obstacle Tt of size of the same order of magnitude than the
period e. The fluid domain S2~ is obtained by removing from Q all the holes

N(s)

T E : thus QE = Q - U Ty (the total number of obstacles N(é) is of the order of
i=l

6-1). By perforating only the cells which are entirely included in Q, it follows
that no obstacle meets the boundary aSZ. Every obstacle Tt is similar to the
same model obstacle T rescaled to size r¡8, where q is a positive constant. (We
assume that T is a smooth closed set, which contains a small open ball, and
which is, itself, included in the unit ball). When rescaled to size 1, the fluid
cell Pt - Til is similar to the so-called unit cell P - qT, where P is equal to
(-1, +1)N. Thus, the constant is actually the size of the obstacle in the unit
cell, while r¡8 is the size of the obstacle in the 8-cell Pt. In the present section
r~ is considered as a constant, although in Section 2 we shall study the limit
when q goes to zero (the so-called low-volume fraction limit).

Let us consider a Stokes flow in Q~ under the action of an exterior force f,
and with a Dirichlet boundary condition on 8Q~. Let u, and p, be the velocity
and the pressure of the fluid (its viscosity and density are set equal to 1). If

f E [L2(SZ)]N, there is a unique solution (u,,p,) in [HÓ(Qê)]N x [L2(Qê)jR] of
the Stokes equations

Using the celebrated two-scale method, several authors ([10], [14], [19]) have
heuristically shown that the limit, when e goes to zero, of the Stokes problem
(1.1) is the following Darcy’s law

where u ant p are the velocity and the pressure of the fluid, and the permeability
tensor A is a symmetric, positive definite, matrix. (Problem (1.2) is a second
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order elliptic equation for the pressure p, and there exists a unique solution p
in 

Furthermore, the permeability tensor A is given by an explicit expression
involving the so-called local solutions (vk)1x_N of a Stokes flow in the unit
cell P - qT (see, e.g., Section 7.2 in [19])

For each E [1, N], the velocity Vk is defined as the solution, in
of the local problem

Besides these work based on asymptotic expansions, Tartar [22] gave a rigorous
proof of the convergence, using his energy method (see [23] or [16]). We recall
his result

THEOREM 1.1. Let (Uê,Pê) be the solution of ( 1.1 ), and (u, p) be the solution
of (1.2). Let Uê be the extension of the velocity Uê defined by

There exists an extension P, of the pressure such that

REMARK 1.2. The main difficulty in Theorem 1.1 is the construction of a

uniformly bounded extension of the pressure. L. Tartar built it using a theoretical
"dual" argument (see [22]), and later on, R. Lipton and M. Avellaneda [15]
made Tartar’s extension explicit. Theorem 1.1 has been generalized in [1] to

the case of a porous medium with a connected solid part.

l.b) A corrector result for the velocity

In Theorem 1.1 the convergence of the pressure is strong, while that of the

velocity is merely weak. A natural question arises: can we improve it by adding
a so-called corrector to the velocity, and then obtain a strong convergence? The
present subsection is devoted to this problem which, surprisingly, has not been
addressed before (to the author’s knowledge), although its resolution involves
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only elementary arguments. In the same setting as in Subsection 1. a, our main
result is

THEOREM 1.3. For k E [1, N], let Vk be the solution of the local problem
(1.4). Let us define a function vk E [H1 (S2)]N by

Then, the corrector of the velocity is and we have

REMARK 1.4. There is no assumption on the smoothness of the limit

velocity u, and yet the corrector is well defined in L2(Q). As a matter of fact,
we notice that, if the obstacle T is smooth, standard regularity results imply
that the solution vk of (1.4) belongs to Thus, the sequence is
bounded in [LI(K2)]N, and (tuA-1ek)vk is bounded in [L2(Q)]N, without any
further hypothesis.

Before proving Theorem 1.3, we need to establish some lemmas about
the weak semi-continuity of the energy (which are related to the r-convergence
introduced by E. De Giorgi [7]).

LEMMA 1.5. Let ze be a sequence such that

Then

PROOF. We briefly sketch the proof, as it is a simple adaptation, to the
case at hand, of a result due to D. Cioranescu and F. Murat [6] (see also

Proposition 3.4.6 in [3]).
For any smooth function 0 E [D(Q)]~, let us define a real sequence
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We expend A, and obtain

Using standard estimates, it is easy to show that the last three terms of (1.10)
go to zero as 6- does. In order to pass to the limit in the second term of ( 1.10),
we notice that the sequence é2Vvk : Vvi is periodic and bounded in 
Thus, as a measure, it converges to its mean value, and we obtain

Integrating by parts the third term of ( 1.10) yields

Recalling from (1.4) that is equal to ek, we deduce from ( 1.11 )

Finally, passing to the limit in (1.10) leads to

Replacing 0 by A-1 z gives the desired result.
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LEMMA 1.6. If we add to the hypotheses of Lemma 1.5 the assumption
that 

, ,

then, we obtain

PROOF. As Lemma 1.5 above, the present lemma is adapted from a result
due to D. Cioranescu and F. Murat [6]. Using the new assumption while passing
to the limit in ( 1.10) yields

Then, introducing a sequence 0,, of smooth functions which converges to A-’z
in [L2(S2)]N, and passing to the limit in (1.13), we obtain

Using Poincar6 inequality in Q~ (see, e.g., Lemma 1 in [22]) leads to the desired
result.

Q.E.D.

PROOF OF THEOREM 1.3. Les ut check that the assumptions of Lemmas
1.5 and 1.6 are satisfied by the sequence of solutions Uê/82 and its limit u,
solution of the Darcy’s law (1.2). The only non-trivial point is the convergence
of the energy. We have 

1* p

From Theorem 1.1 we know that

Then, using Darcy’s law, and integrating by parts yields
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Finally we obtain

Applying Lemma 1.6 gives the desired result.
Q.E.D.

2. - Obstacles size smaller than the period

In this second section we recall some results obtained in [3] about the
homogenization of a Stokes flow in a porous medium made of periodically
distributed obstacles smaller than the period. This is in contrast with the situation
in Section 1 where both the obstacles size and the period were of the same
order of magnitude.

In the present case, the porous medium Qê is defined exactly as in Section
1 except that each hole Tiê is similar to the same model obstacle T rescaled to
a size a, smaller than the period. In other words, we assume that the size a,
satisfies . 

’

Now, as in [3], we define a ratio use

In addition to (2.1 ), we assume that

The assumption (2.2) implies that the obstacles are not too small, so that the
homogenized limit of the Stokes flow is always the following Darcy’s law

where (~,p) are the velocity and pressure of the fluid (problem (2.3) is a second
order elliptic equation for the pressure p, and there exists a unique solution p
in HI(Q)IR).
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To compute the permeability tensor M-1, we need to introduce the local
problem for each E {1,..., JV}

Denoting by Fk the drag force applied on T, i.e., where

n is the interior normal vector of aT, the matrix M is given by

The formula (2.5) is valid in any dimension, but there is actually a big difference
between the 2-D case and the others. For any obstacle T, it turns out that

The result (2.6) is a consequence of the well-known Stokes paradox and of the
Finn-Smith paradox [8], while formula (2.7) is obtained through an integration
by parts, valid only for a space dimension N &#x3E; 3 (see [4] for details).

Now, we recall the precise convergence theorem [3].

THEOREM 2.1. Assume the hole size satisfies (2.1) and (2.2). Let (Uê’ Pê)
be the unique solution of the Stokes system ( 1.1 ). Let Uê be the extension of the
velocity by 0 in Q - There exists an extension P, of the pressure such that

where (u, p) is the unique solution of the Darcy’s law (2.3).

REMARK 2.2. For any hole size, satisfying (2.1 ) and (2.2), we obtain a
Darcy’s law with the same permeability tensor, independent of the hole size. In
other words, the limit problem is always the same Darcy’s law (2.3) for all the
range of sizes aê satisfying (2.1 ) and (2.2); the only difference between two
sizes is the value ue which rescales the velocity.

Let us mention also that assumption (2.2) is required to obtain a Darcy’s
law as the homogenized limit. If the limit of ue is strictly positive and finite,
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then the limit problem is Brinkman’s law, while, if ue goes to infinity, then the
Stokes equations are obtained at the limit (see [3] for more details).

We have not yet said anything about existence and uniqueness of solutions
of the local problem (2.4). Let us begin by a definition: D 1,2(R:lv - T) is defined
as the completion, with respect to the L2-norm of the gradient, of the space of
all smooth functions with compact support in T, i.e.,

Though HI is the usual space of admissible velocities for a Stokes problcm
in a bounded domain, it is well-known (see Section 2, Chapter 2 of [11]) that
D 1,2 is the "natural" space for a Stokes problem in an exterior domain. Now,
we are in a position to state

LEMMA 2.3. Let O(x) be a smooth function equal to 0 on the obstacle
T, and equal to 1 in a neighbourhood of infinity. If N &#x3E; 3, the local problem
(2.4) admits a unique solution (qk, Wk - Oek) in L2(RN - T) X [D1~2(I~N - T)]N.
Furthermore, the boundary condition at infinity is satisfied through the following
Sobolev embedding

If N = 2, there exists a unique solution (qk, Wk) of (2.4) which is the sum of
two terms. The first one, (q£, wo), is the solution of (2.4), when the obstacle T
is the unit ball, which is explicity given by

The second one, (q~, w~), is now the solution of a "difference" problem which
admits a unique solution in L~(R~ - T) x [171~2(I1~2 _ T)]2
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where 8BI is the unit mass measure concentrated on the unit sphere aB1 (recall
that we have assumed that T is included in the ball B1).

Furthermore, the boundary condition at infinity is satisfied through the
following embedding

which can be interpreted as 0 = o(log r), because log r does not belong to the
space on the right-hand-side of (2.12).

For a proof of Lemma 2.3, we refer to Lemma 2.2 in [4] (see also [11]
and [18]).

In the sequel we shall need a characterization of the space T)
which is given by

LEMMA 2.4. If N &#x3E; 3, then

If N = 2, then

PROOF. Thanks to (2.9) and (2.12), we already know that DI,2(R!~’ - T)
is included in the space on the right-hand-side (let us call it H). It remains to

prove that any function of H is the limit of a sequence of smooth functions
with compact support in T, such that the sequence of their gradients is
bounded in T).

Let pn be a sequence of mollifiers with compact support in a ball of radius
1 /n. Let X be a smooth cut-off function defined by

For any 0 E H, we define a sequence

The function 0 * is a regularization by convolution with a mollifier of the
function 4J, and it is well-known that § * p,, converges almost everywhere to 4J.
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Thus

Using elementary properties of the convolution, we have

where i7§ * pn is bounded in LZ(I1~N), ~ * pn is bounded in and i7xn
is bounded in Thus, (2.14) implies that is bounded in 

which, together with (2.13) yields the desired result.

. For any 0 E H, we define a sequence

The convergence (2.13) still holds, but now, we bound (2.14) by noticing that

is bounded in is bounded in L2 (I~2 ), and

(r + 1) log(r + 2)Vxn is bounded in Thus, (2.14) implies that B7 cPn is
bounded in L~(R~), which leads to the desired result.

We have cheated a bit because §n is equal to zero, not in T, but in a
smaller subset which tends to T as n goes to infinity. Nevertheless, on is equal
to zero in T if the function 0 is equal to zero in a neighbourhood of T. Thus
we can remedy this, by approximating any function 0 of H by a sequence of
functions of H which are supported away of T, then apply the above result
to each function of this sequence, and finally extract a diagonal sequence and
conclude.

Q.E.D

3. - Main result: continuity of the permeability tensor

In Sections 1 and 2, under different hypotheses on the obstacle size, we
have obtained, in both cases, a Darcy’s law as the homogenized problem. The
permeability tensors, associated to these Darcy’s law, are given, either by (1.3)
or (2.5). Obviously these formulae are completely different, and so are the

permeability tensors M-1 and A. From a physical point of view, this statement
seems paradoxical. Why should the permeability tensor be the same for a large
range of obstacle sizes smaller than the period, and then have a different value
when the obstacle size is equal to the period? We shall prove in this last
section that, beyond this seemingly paradox, there is an actual continuity of the
permeability tensor.

In Section 1 we took care of defining the size 1Jé of the obstacles as

the product of two contributions: first, s is the size of the period (which goes to
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zero in the homogenization process), and second, q is the size of the obstacle
in the unit cell (which is a constant during the homogenization process). Thus,
after passing to the homogenized limit (i.e., - goes to zero) in Section 1, we
can take a second limit (the so-called low-volume fraction limit) as q goes to
zero. _We shall prove that, in this second limit process, the permeability tensor
A (which depends on q, and, from now on, denoted by A(q)) converges (after
a suitable rescaling) to the permeability tensor M-1 which was obtained in
Section 2. More precisely, we obtain

THEOREM 3.1. Let (Pk, Vk) be the unique solution of the cell problem (1.4)
in [L2(P)/R] x Rescaling it, for x E (r~ -1 P - T) and for any space
dimension, we define

Let (qi, wi) be the unique solution of the local problem (2.4) in Section 2. We

define a linear combination of those solutions:

converges weakly to in

Furthermore we have

REMARK 3.2. In order to compare the solutions of (1.4) and (2.4), we
rescale the unit cell, involved in (1.4), to size so that in both case the
obstacle has the same fixed size. In (3.2) we also need to rescale the matrix
A(q) in order to obtain M-1 as its limit. As we expected it, the permeability
A(q) increases (and even goes to infinity) as q tends to zero, i.e., as the volume
of the obstacles decreases.

A striking aspect of (3.2) is that both A and M are the energies of some-
local problems (see formulae (1.3) and (2.7)), but A actually converges to the
inverse of M. On the same token, let us emphasize that the rescaled solutions
of the cell problem (1.4) do not converge to the solutions of the local problem
(2.4), but rather to a linear combination of them. This can be explained in
the light of the associated corrector results for the velocity. Such a result is

usually of the form: if the sequence ue converges weakly to its limit u, then

there exist some functions . such that converges strongly

to zero (where uk is the kth component of u). The functions which
are equal to zero on the obstacles, are interpreted as the boundary layers around
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them. For example, in Theorem 1.2.3 and Remark 2.1.5 of [3] the solutions
of (2.4) (rescaled to size a,) are used as boundary layers. On the contrary
in Theorem 1.3, we do not introduce the solutions of the cell problem (1.4),
but rather a linear combination of them. Actually, in the setting of Section 1, the

exact boundary layers are and not the

themselves. Thus, although both local problems are used to define the test

functions in the proof of the convergence, their solutions do not have the same
meaning. Only the solutions of (2.4) are boundary layers, while the solutions
of (1.4) are the periodic flows under a unit constant force.

REMARK 3.3. Theorem 3.1 has already been stated, in a slightly different
form, by E. Sanchez-Palencia [18], but proved only in the 3-D case. However,
the convergence (3.2) of the permeability tensor is new. For a periodic
distribution of spherical obstacles, the low-volume fraction limit has been

investigated by H. Hasimoto [9], and A.S. Sangani and A. Acrivos [21]. Their
method is different of ours: first, they construct an explicit fundamental solution
of the Stokes problem, and second, they do an asymptotic expansion in q of
it. Consequently, they also obtain an asymptotic expansion of A(r¡) (which is a
scalar matrix in that case), not restricted to the first term as in Theorem 3.1.

Unfortunately, their method works only for spherical obstacles.
Before proving Theorem 3.1, we give a Poincar6 inequality in P - qT.

LEMMA 3.4. There exists a constant C, which depends only on T, such
that, for any v E satisfying v = 0 on the boundary a(r¡T), we
have 

_

The proof of this lemma is elementary, so we skip it (see Lemma 4.1 of E.
Sanchez-Palencia [18], or adapt the ideas of Lemma 3.4.1 in [3]).

PROOF OF THEOREM 3.1. Let us first obtain some a priori estimates for
the solutions of the cell problem (1.4). Taking two solutions vk and vi of (1.4),
and integrating by parts leads to

Using Lemma 3.4, we deduce from (3.3)
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Besides, with the help of Lemma 2.2.4 in [3], it is not difficult to obtain the

following estimate for the pressure

Now, we rescale the unit cell in order to work in a domain
where the obstacle T has a fixed size. Let us recall the definition (3.1 ) of the
rescaled solutions of (1.4)

and

The functions (PZ, v") are solutions of the following Stokes system

The problem is now to find the limit of (PZ, v7). For that purpose, we separate
in two cases, according to the space dimension.

1) N &#x3E; 3.

Rescaling the estimates (3.4) and (3.5) yields

From (3.7) we easily deduce that there exists (pk, vk) in

such that, up to a subsequence, we get

Moreover, multiplying equations (3.6) by a smooth function with compact
support in then passing to the limit as q goes to zero, we check that

satisfies the following system

In order to identify the limit %k), we have to find what type of boundary
condition is satisfied by f)k at infinity.
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Let us recall the following Sobolev inequality with critical exponent

where, for a matter of simplicity, vZ denotes both the original function defined
in r¡-1 P - T, and its extension by zero in T. The key point in inequality (3.9)
is that the constant C does not depend on ?7, because the Sobolev inequality
with exactly the critical exponent 2N/(N - 2) is invariant under dilatation. On
the other hand, with the help of (3.4), we have

Thus, by possibly extracting a subsequence, there exists a constant vector

Ck E such that 
- -

From inequality (3.9) and estimate (3.7), we deduce that for any bounded set
w in I1~N

Passing to the limit in (3.10), and using the weak lower semi-continuity of the
L2N/(N-2) norm, yields

where C does not depend on w. Hence, vk - ck belongs to 
From (3.7) we also know that belongs to [L2(I1~N)]N2. Thus, using Lemma
2.4, we deduce that Vk is a function of [D 1,2(RIV)]N. In other words, the boundary
condition associated with (3.8) is

(3.11) Vk = Ck at infinity.

But the constant ck is still unknown. In order to find its value, we compute
the drag force corresponding to the Stokes problem (3.8) and (3.11). Let 0 be
a smooth function with compact support in the unit ball, and identically equal
to 1 on the set T. Let us multiply equation (3.6) by Øei
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Passing to the limit in (3.12), and integrating by parts yields

On the other hand, thanks to the periodic boundary condition, integrating the
equation (3.6) gives

Finally we obtain the value of the drag force

Using formula (2.7), it is easy to see that, for a given drag force, there exists
a unique solution of the Stokes problem (3.8) in the space T) x
~D1,2(~N _ T)]~. Thus, we can identify the solution CPk, Vk) with the following
sum of solutions (qi, wi) of the local problem (2.6)

Hence the constant Ck is equal to The limit (Pk, Vk) is uniquely

determined in thus the entire sequence converges
to that limit. Finally, the permeability tensor A(r¡) is given by formula (1.3)

Then, we obtain

which is the desired result.

As we have already seen it in Lemma 2.3, the two-dimensional case
is completely different from the other ones; for example, we cannot deduce
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uniform a priori estimates like (3.7) for Note that, we could have done
so, if we had further rescaled, and worked with
instead. Unfortunately, it turns out that the sequence log r~ ~ 1~2 converges
to zero! Consequently, we follow the ideas of Lemma 2.3 (see also [4]), and
we decompose the solution of (3.6) in two terms. The first one is the
solution of the following Stokes problem in the ball of radius

We can explicitely compute

with

where

and

It is easy to see that a(q) converges to 1, as 77 goes to zero, and therefore, that
the solutions of (3.13) converge pointwise (and even uniformly in any
compact subset of 11~2) to the functions (qo, wo) given in (2.10). Furthermore, an
easy computation shows that
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Now, the second term is the difference defined by

The underlying idea of this decomposition in two terms is that we can obtain
uniform a priori estimates for those "difference" functions. Let bB, (resp. bB~_, )
be the unit mass measure concentrated on the boundary of the ball B1 (resp.
B-i ). The "difference" functions are solutions of the following Stokes system

Let us prove that the solution (p~ , v~ ) of (3.17) converges to i
(q’, wk) is the solution of (2.11). We define two measures by

where

Thanks to (3.16), it is obvious that the sequence is compactly supported on
aB1, and converges strongly to frekDBI in [H-1 (B2)]2, and that the sequence V,7
has mean value zero in 7y~P. An integration by parts in (3.17) leads to

Using the fact that is a bounded sequence of measures supported on aB1,
and Poincar6 inequality in B, - T, we bound the first term in the right-hand
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side of (3.18)

The second term is more tricky. First we need to rescale it to size 1

where the measure v is defined by

and the function v~ is given by Now we bound (3.19) using

Poincare-Wirtinger inequality in P and the fact that the measure v is bounded
independently of q

In two dimensions, we have thus

Finally, we get from (3.18)

Since is a bounded sequence in we extract a subsequence which
converges to some limit With the help of Lemma 2.2.4 in [3], it is easy to
obtain a similar result for the pressure p"7 which is bounded in and

converges, up to a subsequence, to some limit q[ /7r. To see which equations are
satisfied by those limit, we multiply (3.17) by a smooth function with compact
support, and we pass to the limit as q goes to zero. Therefore we obtain

Furthermore, we know that and and

if we prove that belongs to then w~ belongs to

according to Lemma 2.4, Fortunately, because v"7 is equal to
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zero on aT, and satisfies periodic boundary condition it is easy to

adapt a lemma of O.A. Ladyzhenskaya (see Section 1.4 in Chapter 1 of [11]),
and to show that

Both (3.20) and (3.22) implies that, passing to the limit, w~ belongs to

is identified as the unique solution in
of the Stokes system (2.11) (cf. Lemma 2.3).

Finally, we conclude that the sequence (pZ, vZ) of solutions of (3.6) is
the sum of two terms which converge respectively to (qO/7r, (particular
solution given in (2.10)), and to (q’/7r,w/7r) (solution of (3.21)). In other

words, the entire sequence converges to (qk/7r, wk/7r) unique solutionk k 
, ,

of (2.4). It remains to check that A(q) converges to Id. From

the definition (1.3) of the permeability tensor A(,q), we obtain

Thanks to (3.20), the last term of (3.23) is bounded, while the second and the
third ones are easily shown to grow at most in log r~~’~Z when q goes to zero.
An integration by parts gives for the first one

This yields

which is the desired result.
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