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The evaluation procedure will pay attention to the quality of the dissertation and
most particularly to the clarity and readability in the proposed argumentation.
As usual the subscript # denotes spaces of periodic functions. Throughout the
problem C denotes a positive constant which does not depend on ǫ.

The goal of this problem is to study a model of reactive transport in porous
media. We denote by Ω a smooth bounded open set in R

N which represents
a porous medium. The domain Ω is tiled by a square periodic tiling of size ǫ.
The cubes of this tiling (Y ǫ

p )1≤p≤n(ǫ), with n(ǫ) ≈ |Ω|ǫ−N , are all equal, up to a

translation, to [0, ǫ]N . Thus, after translation each cube is homothetic of ratio
ǫ to the unit cell Y = [0, 1]N which is decomposed in a fluid part Yf and a solid
part Ys, separated by an interface Γ, with Y = Yf ∪Ys. Using the same notation
in each cube, Y ǫ

p = Y ǫ
f,p∪Y ǫ

s,p, the fluid part of the porous medium Ωǫ (assumed
to be smooth and connected) is defined by

Ωǫ = Ω \
(

∪n(ǫ)
p=1Y

ǫ
s,p

)

.

The interface Γǫ between the fluid and solid parts of the porous medium is
defined by

Γǫ = ∂Ωǫ \ ∂Ω.
The fluid part Ωǫ (as indicated by its name) is filled with an incompressible fluid
with a given velocity b

(

x
ǫ

)

where b(y) ∈ C1
#(Yf )

N is a smooth periodic vector
field satisfying

divyb(y) = 0 in Yf , b(y) = 0 on Γ.

The molecular diffusion tensor in the fluid is A
(

x
ǫ

)

where A(y) ∈ L∞
# (Yf )

N×N

is a periodic coercive symmetric matrix satisfying, for 0 < α ≤ β,

α|ξ|2 ≤ A(y)ξ · ξ ≤ β|ξ|2, for any ξ ∈ R
N , y ∈ Yf .

A chemical species is dissolved in the fluid and can react with the solid walls by
absorption/desorption. Its concentration in the fluid is denoted by uǫ(t, x) while
its concentration on the fluid/solid interface is denoted by vǫ(t, x). The initial
concentrations are uin(x) and vin(x), respectively, which belong to H1

0 (Ω).
Denoting by k > 0 and K > 0 two positive chemical constants and by n

the unit exterior normal to Ωǫ, the model is a system of evolution equations for
these concentrations:
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∂uǫ
∂t

+ b
(x

ǫ

)

· ∇uǫ − div
(

A
(x

ǫ

)

∇uǫ
)

= 0 in Ωǫ × (0, T ),

−A
(x

ǫ

)

∇uǫ · n = ǫ
∂vǫ
∂t

on Γǫ × (0, T ),

∂vǫ
∂t

=
k

ǫ2

(

uǫ −
vǫ
K

)

on Γǫ × (0, T ),

uǫ = 0 on ∂Ω× (0, T ),

uǫ(x, 0) = uin(x) in Ωǫ,

vǫ(x, 0) = vin(x) on Γǫ.

(1)

In system (1) the second line is a boundary condition expressing the conservation
of mass of the species at the fluid/solid interface, while the third line is an
ordinary differential equation governing the evolution of the concentration on
the solid walls.

Part I

In this part the method of formal two-scale asymptotic expansions is applied
in order to find the homogenized problem for (1). It is thus assumed that the
solution (uǫ, vǫ) can be written as a series

uǫ(t, x) =
+∞
∑

i=0

ǫiui(t, x,
x

ǫ
), vǫ(t, x) =

+∞
∑

i=0

ǫivi(t, x,
x

ǫ
)

with ui(t, x, y) and vi(t, x, y) Y -periodic functions with respect to the variable
y ∈ Y .

1. Write the equations in the cell Yf and the boundary conditions on the
solid wall Γ satisfied by u0, v0, u1, v1, and u2, v2. Show in particular that
each vi, for 0 ≤ i ≤ 2, can be explicitly computed in terms of the uj’s
with 0 ≤ j ≤ i.

2. Let g(y) ∈ L2
#(Yf ) and h(y) ∈ L2(Γ). Prove that the following problem

admits a unique solution in H1
#(Yf )/R







−divy (A(y)∇yw) = g in Yf
A(y)∇yw · n = h on Γ
y → w(y) Y -periodic

(2)

if and only if the data satisfy the compatibility condition

∫

Yf

g(y)dy +

∫

Γ

h(y)ds = 0.
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3. Deduce that u0(t, x, y) does not depend on y, and that u1(t, x, y) can be
written in terms of the gradient of u0 multiplied by solutions of a family
of cell problems which should precisely be defined.

4. Write the necessary and sufficient compatibility condition for solving for
u2(t, x, y). Deduce from it the homogenized equation as well as the bound-
ary condition on ∂Ω (it is not required to find the initial condition).

Part II

This part is devoted to the proof of a priori estimates for (1). We denote by Vǫ
the subspace of H1(Ωǫ) made of functions vanishing on ∂Ω. In the sequel we
shall assume that there exists a linear continuous extension operator from Vǫ
into H1

0 (Ω), denoted by Xǫ such that, for any φ ∈ Vǫ

Xǫφ = φ in Ωǫ, and ‖∇(Xǫφ)‖L2(Ω)N ≤ C‖∇φ‖L2(Ωǫ)N .

By a slight abuse of notations any function φ will be identified with its extension
Xǫφ.

1. Show that (1) admits the variational formulation

∫

Ωǫ

∂uǫ
∂t

φ dx+
ǫ

K

∫

Γǫ

∂vǫ
∂t

ψ ds+ a
(

(uǫ, vǫ), (φ, ψ)
)

= 0 (3)

for any test function (φ, ψ) ∈ L2((0, T );Vǫ) × L2((0, T ) × Γǫ), with the
bilinear form

a
(

(uǫ, vǫ), (φ, ψ)
)

=

∫

Ωǫ

(

b
(x

ǫ

)

· ∇uǫφ+A
(x

ǫ

)

∇uǫ · ∇φ
)

dx

+
k

ǫ

∫

Γǫ

(

uǫ −
vǫ
K

)

(

φ− ψ

K

)

ds.

(4)

2. Prove that, for a fixed ǫ, the bilinear form (4), integrated in time from 0
to T , is coercive on the space L2((0, T );Vǫ) × L2((0, T ) × Γǫ). We shall
assume that it is enough to prove that (1) admits a unique solution (uǫ, vǫ)
in

{

L2((0, T );Vǫ) ∩C([0, T ];L2(Ωǫ))
}

× C([0, T ];L2(Γǫ)).

3. Prove the existence of C > 0 such that, for any w ∈ Vǫ,

‖w‖L2(Ωǫ) ≤ C
(

ǫ‖∇w‖L2(Ωǫ) +
√
ǫ‖w‖L2(Γǫ)

)

,

and √
ǫ‖w‖L2(Γǫ) ≤ C

(

‖w‖L2(Ωǫ) + ǫ‖∇w‖L2(Ωǫ)

)

.
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4. Integrating in time (3) with (φ, ψ) = (uǫ, vǫ), prove the existence of C > 0
such that

‖uǫ‖L∞((0,T );L2(Ωǫ)) +
√
ǫ‖vǫ‖L∞((0,T );L2(Γǫ)) + ‖∇uǫ‖L2((0,T )×Ωǫ)

+
√
ǫ‖ǫ−1(uǫ − vǫ

K
)‖L2((0,T )×Γǫ) ≤ C

(

‖uin‖L2(Ω) + ‖vin‖H1(Ω)

)

.
(5)

5. Assuming uǫ to be given, write explicitly the solution vǫ of the ordinary
differential equation on the third line of (1). Deduce from this formula,
since vin ∈ H1

0 (Ω) and uǫ ∈ L2((0, T );Vǫ), that vǫ has a natural extension
in L2((0, T );Vǫ) which satisfies

‖vǫ‖L2((0,T )×Ωǫ) ≤ C
(

‖uǫ‖L∞((0,T );L2(Ωǫ)) + ǫ‖vin‖L2(Ω)

)

,

and

ǫ‖∇vǫ‖L2((0,T )×Ωǫ) ≤ C
(

‖∇uǫ‖L2((0,T )×Ωǫ) + ǫ‖vin‖H1
0 (Ω)

)

.

Hint: rely on the fact that

∫ t

0

ǫ−2e
2k(s−t)

Kǫ2 ds ≤ C.

Part III

In this part a rigorous convergence theorem is proved by using the method
of two-scale convergence. In the present unsteady context we recall the main
results of two-scale convergence: for any sequence zǫ(t, x), uniformly bounded in
L2((0, T )×Ωǫ), there exist a subsequence ǫ and a limit z0(t, x, y) ∈ L2((0, T )×
Ω× Yf ) such that

lim
ǫ→0

∫ T

0

∫

Ωǫ

zǫ(t, x)φ
(

t, x,
x

ǫ

)

dt dx =

∫ T

0

∫

Ω

∫

Yf

z0(t, x, y)φ (t, x, y) dt dx dy

for any smooth test function φ(t, x, y) which is Y -periodic in y. We also recall
the notion of two-scale convergence for sequences of functions defined on the
boundary Γǫ: let ζǫ(t, x) be a sequence satisfying

√
ǫ‖ζǫ‖L2((0,T )×Γǫ) ≤ C,

there exist a subsequence ǫ and a limit ζ0(t, x, y) ∈ L2((0, T )×Ω×Γ) such that

lim
ǫ→0

ǫ

∫ T

0

∫

Γǫ

ζǫ(t, x)φ
(

t, x,
x

ǫ

)

dt dx =

∫ T

0

∫

Ω

∫

Γ

ζ0(t, x, y)φ (t, x, y) dt dx dy

for any smooth test function φ(t, x, y) which is Y -periodic in y.
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1. Recall the results of the course on the structure of the two-scale lim-
its of a sequence zǫ and its gradient when zǫ is uniformly bounded in
L2((0, T );Vǫ). Same question for a sequence ζǫ such that

‖ζǫ‖L2((0,T )×Ωǫ) + ǫ‖∇ζǫ‖L2((0,T )×Ωǫ) +
√
ǫ‖ζǫ‖L2((0,T )×Γǫ) ≤ C.

In each case one should make the connection between the limits obtained
by the two types of convergence defined above.

2. Deduce from (5) (and more precisely from the estimate on ǫ−1(uǫ − vǫ
K
))

that the two-scale limits of uǫ and vǫ coincide on Γ.

3. Multiplying the equation for uǫ in (1) by a test function φ(t, x)+ǫφ1(t, x,
x
ǫ
),

find the two-scale homogenized problem (under its variational form).

4. Deduce from the previous question the cell problem and show that it ad-
mits a unique solution in a functional space independent of time. Deduce
the homogenized problem as well, the initial condition of which has to be
clearly recovered. Prove that the homogenized problem is well-posed, i.e.,
indicate why the homogenized diffusion tensor is coercive. What can be
said on the convergence of the entire sequence ?
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