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Important:The evaluation procedure will pay attention to the quality of the
dissertation and most particularly to the clarity and readability of the proposed
argumentation. The subject is composed of 3 Parts. Questions II.5 to II.9
must ONLY be treated by students from mathematics and NOT by those from
mechanics (M4S). We are aware of the length and difficulty of the subject.
An indicative number of points is provided which simply reflects the relative
difficulty of the different parts.

As usual the subscript # denotes spaces of periodic functions. Throughout
the problem C denotes a positive constant which does not depend on ε.

The goal of this problem is to study the influence of a zero-order term in the
homogenization process of a diffusion equation. Such a zero-order term models
a reaction or absorption process. Three different scalings are studied.

Let Ω be a smooth bounded open set of RN which represents a periodic
porous medium. Let ε > 0 be the small parameter which defines the periodicity
of the coefficients. Let Y = [0, 1]N be the unit cell. The diffusion tensor is A

(
x
ε

)
where A(y) ∈ L∞# (Y )N×N is a periodic coercive symmetric matrix satisfying,
for 0 < α ≤ β,

α|ξ|2 ≤ A(y)ξ · ξ ≤ β|ξ|2, for any ξ ∈ RN , y ∈ Y.

A chemical species is diffused in the domain and can react with the underlying
medium by absorption/desorption. The reaction coefficient is c

(
x
ε

)
where c(y) ∈

L∞# (Y ) is a periodic bounded coefficient (with no specific sign). The species con-
centration is denoted by uε(t, x). The initial concentration is uin(x) ∈ H1

0 (Ω).
The model is an evolution equation for this concentration:

∂uε
∂t

+
1
εγ
c
(x
ε

)
uε − div

(
A
(x
ε

)
∇uε

)
= 0 in Ω× (0, T ),

uε = 0 on ∂Ω× (0, T ),
uε(x, 0) = uin(x) in Ω,

(1)

where γ = 0, 1, 2 is an integer which will change its values in the three different
parts of the present exam.

Part I (4 points)

In this part, which is a straightforward application of what has been seen in
class, we study the simplest case, γ = 0, of model (1). We apply the method
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of formal two-scale asymptotic expansions to find the homogenized problem for
(1). It is thus assumed that the solution uε can be written as a series

uε(t, x) =
+∞∑
i=0

εiui(t, x,
x

ε
) (2)

with Y -periodic functions y → ui(t, x, y).

1. Write the equations in the cell Y satisfied by u0, u1, and u2.

2. Recall the so-called Fredholm alternative or compatibility condition on the
source term g(y) ∈ L2

#(Y ) for the existence and uniqueness of a solution
w ∈ H1

#(Y )/R (up to an additive constant) of{
−divy (A(y)∇yw) = g in Y
y → w(y) Y -periodic. (3)

3. Deduce that u0(t, x, y) does not depend on y, and that u1(t, x, y) can be
written in terms of the gradient of u0 multiplied by solutions of a family
of cell problems which should precisely be defined.

4. Write the necessary and sufficient compatibility condition for solving for
u2(t, x, y). Deduce from it the homogenized equation. What is the bound-
ary condition on ∂Ω and the initial condition ?

Part II
(II.1 to II.4:10 points
II.5 to II.9: 8 points)

In this part we consider the case, γ = 1, of model (1) with the additional
assumption ∫

Y

c(y) dy = 0. (4)

We again use the formal method of two-scale asymptotic expansions, i.e., we
assume that the solution uε can be written as the series (2).

1. Write the equations in the cell Y satisfied by u0, u1, and u2.

2. Deduce that u0(t, x, y) does not depend on y, and that u1(t, x, y) can be
written as

u1(t, x, y) = w0(y)u0(t, x) +
N∑
k=1

wk(y)
∂u0

∂xk
(t, x)

where the (wk)1≤k≤N are the solutions of the usual cell problems and w0

is the solution of a new cell problem which should precisely be defined.
Show that condition (4) is necessary for solving in w0.

2



3. Discuss the numerical approximation of w0 with a P 1 finite element tech-
nique on the unit cell Y . In particular, assuming h is the space step
of a family of meshes of Y , give the exact and approximate variational
formulations, and the error estimate between the exact solution w0 and
approximate one w0,h with respect to h. For this question one can assume
that A ∈ C∞(Y ).

4. Write the necessary and sufficient compatibility condition for solving for
u2(t, x, y). Show that the homogenized equation is of the type

∂u0

∂t
+ c∗u0 + b∗ · ∇xu0 − divx (A∗∇xu0) = 0 in Ω× (0, T ),

with precise formulas for c∗, b∗ and A∗. By using the cell equations, prove
that b∗ = 0 and c∗ ≤ 0 (it shows in particular, that there is no convective
term in the homogenized equation).

The rest of Part II must NOT be treated by students from M4S
(mechanics). They must skip directly to Part III.

5. We now turn to the rigorous justification of the homogenization process.
To simplify the analysis, we first apply the Laplace transform to (1). For
a positive parameter p > 0 we define

ûε(x) =
∫ +∞

0

e−ptuε(t, x) dt,

and we assume that, for sufficiently large p, the limit as t goes to +∞ of
e−ptuε(t, x) is zero in H1

0 (Ω). Prove that (1) yields p ûε +
1
ε
c
(x
ε

)
ûε − div

(
A
(x
ε

)
∇ûε

)
= uin in Ω,

ûε = 0 on ∂Ω.
(5)

We shall merely justify the homogenization of (5) and not that of (1).

6. Prove that there exists a vector field b(y) ∈ L∞# (Y )N such that{
−divyb(y) = c(y) in Y
y → b(y) Y -periodic. (6)

(Hint: look for b = ∇yφ.)

7. Prove that, for p > 0 sufficiently large, there exists a unique solution of
(5) in H1

0 (Ω) and that the sequence ûε(x) is uniformly bounded in H1
0 (Ω).

(Hint: Use Lax-Milgram lemma.)
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8. Apply the two-scale convergence method to (5) and prove that the se-
quence ûε converges (in a sense to be made precise) to a limit û0 which is
the solution of the homogenized problem{

p û0 + c∗û0 − divx (A∗∇xû0) = uin in Ω,

û0 = 0 on ∂Ω,

with the same coefficients c∗ and A∗ as in question II.3.

9. We now consider for u ∈ H1
0 (Ω)

Eε(u) =
1
2

∫
Ω

(
pu2(x) +

1
ε
c
(x
ε

)
u2(x)

)
dx+

1
2

∫
Ω

A
(x
ε

)
∇u(x) · ∇(x) dx

and

E0(u) =
1
2

∫
Ω

(p+ c∗)u2(x) dx+
1
2

∫
Ω

A∗∇u(x) · ∇(x) dx.

We also consider the minimization problems

(Pε) min
u∈H1

0 (Ω)
Eε(u) ,

and
(P0) min

u∈H1
0 (Ω)
E0(u) ,

The aim of the next questions is to show that the family of minimization
problems (Pε)ε Γ−converges to P0 in H1(Ω) for the weak H1 convergence.

(a) Show that a family (uε)ε of H1
0 (Ω) maps, which is such that Eε(uε) <

C is bounded in H1(Ω). (Hint: use c = −divb and integrate by parts
the corresponding term.)

(b) Let u0 ∈ H1
0 (Ω)∩H2(Ω) and (uε)ε a family of H1

0 (Ω) maps which is
such that

uε ⇀ u0 weakly in H1(Ω) .

Show that
lim inf
ε→0

Eε(uε) ≥ E0(u0).

(c) Conversely, build a family (vε)ε a family of H1
0 (Ω) maps which is such

that
vε ⇀ u0 weakly in H1(Ω)

and which satisfies
lim
ε→0
Eε(uε) = E0(u0).

(d) Conclude.
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Part III
(III.1 to III.3:6 points

III.4 to III.5: optional 4 points)

In this part we consider the case, γ = 2, of model (1) with no assumption on
the coefficient c(y). We again use the formal method of two-scale asymptotic
expansions but with a different ansatz which is

uε(t, x) = e−ε
−2λt

+∞∑
i=0

εiui(t, x,
x

ε
) (7)

where λ ∈ R is a parameter to be determined and with Y -periodic functions
y → ui(t, x, y).

1. Show that λ and u0 must satisfy{
c(y)u0 − divy (A(y)∇yu0) = λu0 in Y
y → u0(t, x, y) Y -periodic. (8)

System (8) is interpreted as a spectral problem: λ is an eigenvalue and
u0 is a (non-zero) corresponding eigenfunction (or eigenvector). As usual
(t, x) are just parameters in (8) where the only meaningfull variable is
y ∈ Y .

We now recall some basic results on spectral problems that we shall admit
in the sequel. System (8) admits an infinite number of independent so-
lutions, eigenvalues λi ∈ R and eigenfunctions ψi(y) ∈ H1

#(Y ) (as usual,
eigenfunctions are defined up to a multiplicative constant), labeled in in-
creasing order

λ1 ≤ λ2 ≤ λ3 ≤ ...

We normalize the eigenfunctions so that ‖ψi‖L2(Y ) = 1. Furthermore,
the first eigenfunction ψ1(y) (corresponding to the smallest eigenvalue
λ1) is the only one which is positive in the unit cell Y (with a suitable
multiplicative constant). From a physical point of view, if we interpret the
eigenfunctions ψi(y) as concentrations (which obviously take non-negative
values), only the first one makes physical sense. Therefore, from now on,
we admit that the solution of (8) is precisely

λ = λ1, u0(t, x, y) = u(t, x)ψ1(y),

where u(t, x) is the (so far unknown) multiplicative constant of the eigen-
function (constant in y but not in the other variables).

2. For g(y) ∈ L2
#(Y ) we consider the following problem{

c(y)w − divy (A(y)∇yw)− λ1 w = g in Y
y → w(y) Y -periodic. (9)
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Show that if w ∈ H1
#(Y ) is a solution, then w + Cψ1 is a solution too,

whatever the constant C. Prove that a necessary condition for the exis-
tence of a solution of (9) is that∫

Y

g(y)ψ1(y) dy = 0. (10)

(Hint: multiply the equation by ψ1 and integrate by parts.)

From now on, we admit that (10) is a sufficient and necessary condition
for the existence of a solution w ∈ H1

#(Y ) of (9), which is unique up to the
addition of a multiple of ψ1 (this is again called Fredholm alternative).

3. Coming back to the ansatz (7) show that, for i = 1 and 2, ui must satisfy{
c(y)ui − divy (A(y)∇yui)− λ1 ui = gi in Y
y → ui(t, x, y) Y -periodic, (11)

with source terms given by

g1 = divy(A(y)∇xu0) + divx(A(y)∇yu0)

and

g2 = −∂u0

∂t
+ divx (A(y)(∇xu0 +∇yu1)) + divy(A(y)∇xu1).

The last two questions of this part are optional.

4. Check that g1 satisfies the compatibility condition (10) and show that

u1(t, x, y) =
N∑
k=1

zk(y)
∂u

∂xk
(t, x)

where the (zk)1≤k≤N are the solutions of some new cell problems which
should precisely be defined.

5. Write the necessary and sufficient compatibility condition for g2 and de-
duce that the homogenized equation is of the type

∂u

∂t
− divx (A∗∇xu) = 0 in Ω× (0, T ),

with a precise formula for A∗ depending on the (zk).
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