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ABSTRACT

This paper is concerned with optimal bounds for effective properties of
two-phase, linearly elastic, composite materials, at given volume fractions.
By convex duality applied to the well-known Hashin-Shtrikman bounds on
sums of energies, Milton and Kohn introduced the so-called trace bounds
on the effective Hooke’s law. A generalization of this trace bound is
presented here, which is related to differences (instead of sums) of energies.
This new trace bound is optimal : it is saturated for a single layering of
the two constituents.

1 Introduction

In this paper we study the effective, or homogenized, properties of composite ma-
terials which arise by mixing two linearly elastic components in given proportions.
We denote by σ1 and σ2 the fourth-order tensors of effective moduli (Hooke’s law),
and by θ1 and θ2 the prescribed volume fractions of the two phases. Throughout this
paper, the only assumption placed on σ1 and σ2 is that they are well ordered, i.e. for
any strain η (a symmetric second-order tensor) they satisfy

< σ1η, η > ≤ < σ2η, η > . (1)

The macroscopic properties of a composite material are described by its (possibly
anisotropic) Hooke’s law σ∗ which depends on the microgeometry of the mixture as
well as on the elastic properties of the components. Since the microstructure is usually
unknown, we are interested in bounding these effective properties. For example, for
any strain η, it is well-known that σ∗ must satisfy the arithmetic and harmonic mean
bounds :

< (θ1σ
−1
1 + θ2σ

−1
2 )−1η, η >≤< σ∗η, η >≤< (θ1σ1 + θ2σ2)η, η > . (2)
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However, these bounds are also known to be not optimal, i.e. for most choices of η
it is impossible to find a microstructure which saturates either inequality.

Since the pioneering work of Hashin and Shtrikman [7], optimal bounds are known
which improve 2. By optimal bounds, we mean a pair of functions f+, f− depending
on (σ1, σ2, θ1, θ2, η) such that

f− ≤< σ∗η, η >≤ f+, (3)

and such that each inequality can be saturated by a microstructure which depends
on the strain η (for details, or explicit expressions for f±, see e.g. [1]). The bounds
3 have also been extended to sums of energies for different strains η1, η2, ..., ηp

f
p
− ≤

p
∑

i=1

< σ∗ηi, ηi >≤ f
p
+. (4)

As in the case of a single energy, they are known to be optimal for a special choice
of the microstructure, namely sequential laminations of the two components [4]. By
convex duality (i.e. by applying the Fenchel, or Legendre, transform to 4), Milton
and Kohn [12] obtained the so-called trace bounds.

Let us present, in the notations of [1], the lower trace bound. For a collection
ξ1, ξ2, ..., ξp of stresses (symmetric second-order tensors too), writing M =

∑p
i=1 ξi⊗ξi,

it reads
θ2 < (σ∗ − σ1)

−1 : M >≤< (σ2 − σ1)
−1 : M > +θ1g−(M), (5)

where g−(M) is called the non-local term (a kind of two-point correlation function
of the microstructure). It is defined by

g−(M) = sup
|k|=1

< fσ1
(k) : M >, (6)

where fσ1
(k) is a degenerate Hooke’s law depending on σ1 and on a direction k (see

12, 14 below). An interesting feature of the lower trace bound 5 is that optimality
is achieved for a very simple microstructure. Indeed, a single layering of the two
components (in the direction of one of the vector k which is optimal in 6) is enough to
saturate 5. This is in contrast with the bound 4 which requires an iterative procedure
of layering for achieving optimality. Of course, a similar upper trace bound holds

θ1 < (σ2 − σ∗)−1 : M >≤< (σ2 − σ1)
−1 : M > +θ2g+(M), (7)

where g+(M) is another non-local term depending on σ2.
The goal of this paper is to give a generalization of the above trace bounds.

Denoting by (ξ−1 , ξ
−
2 , ..., ξ

−
p−), and (ξ+1 , ξ

+
2 , ..., ξ

+
p+), two collections of stresses, and

writing M− =
∑p−

i=1 ξ
−
i ⊗ ξ−i and M+ =

∑p+

i=1 ξ
+
i ⊗ ξ+i , our main result reads

θ22 < (σ∗ − σ1)
−1 : M− > +θ21 < (σ2 − σ∗)−1 : M+ >≤

< (σ2 − σ1)
−1 : (θ1M

+ + θ2M
−) > + θ1θ2g(M

−,M+), (8)
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where g(M−,M+) is the non-local term defined in terms of the degenerate Hooke’s
law fσ1

(k) and fσ2
(k) by

g(M−,M+) = sup
|k|=1

(

< fσ1
(k) : M− > − < fσ2

(k) : M+ >
)

. (9)

Optimality is also achieved in the trace bound 8 by a single layering of the two
components. It is worth noticing that 8 degenerates in one of the previous trace
bounds 5 or 7 when M− = 0 or M+ = 0. However, for most choices of M−,M+ it is
not a trivial bound in the sense that it is not a linear combination of 5 and 7.

The proof of 8 is given in section 2, where, by convex duality, a bound, similar
to 4, is derived for differences of energies. However, optimality of this latter bound
is unknown (we believe it is usually not optimal). Finally in section 3, we discuss
various motivation of the trace bounds, including the Hashin-Shtrikman bounds on
the moduli of an isotropic composite material, the G-closure problem, and the relax-
ation of optimal design problems. Unfortunately, we must acknowledge that the new
bound 8 yields little progress in these areas.

A final word of caution about our notations : we denote by < ., . >, and <

. : . >, the inner product between second order tensors, and fourth order tensors,
respectively. Let us remark that the inner product between M1 and M2 is also the
trace of the product M1M2 :

< M1 : M2 >= Tr(M1M2) =
N
∑

i,j,k,l=1

M1
ijklM

2
ijkl, (10)

where the trace of a fourth-order tensor is defined by Tr(M) =
∑N

i,j=1Mijij. This
explains why Milton and Kohn called the bounds 5 and 7 trace bounds.

2 Derivation of the trace bound

The new trace bound 8 is derived by means of the well-known Hashin-Shtrikman
variational principle. Throughout this section, we follow the notations of [1] to which
we refer for any further details. To make life easier, we establish it in the special case
of single energies M+ = ξ+ ⊗ ξ+ and M− = ξ− ⊗ ξ− (the generalization to sums of
energies is straightforward albeit tedious).

We begin by introducing the so-called degenerate Hooke’s laws fσi
(k) which play

an important role in the definition of the non-local term in trace bounds. Let V (k)
be the space of Fourier transform of strains at frequency k :

V (k) = {k ⊗ v + v ⊗ k withv ∈ ℜN}. (11)

For any tensor ξ, we denote by ΠV ξ the orthogonal projection of ξ on a linear subspace
V . Then, for a given frequency k and Hooke’s law σi, the symmetric fourth-order
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tensor fσi
(k) is defined by the quadratic form

< fσi
(k) ξ, ξ >= | Π

σ
1/2
i V (k)

σ
−1/2
i ξ |2 . (12)

In the case of an isotropic Hooke’s law σi, i.e.

σiξ = 2µiξ + λi(trξ)I2 (13)

where µi, λi are the Lamé coefficients of the material σi, and I2 is the second-order
identity tensor, the degenerate Hooke’s laws fσi

(k) can be explicitely computed (see
e.g. Lemma 4.2 in [8]) :

fσi
(k) ξ =

1

µi

((ξk)⊗ k− < ξk, k > k ⊗ k) +
1

2µi + λi

< ξk, k > k ⊗ k. (14)

We are now equiped to state a first bound on a difference of two energies.

Theorem 2.1 Assume that σ1 ≤ σ2. Let σ∗ be the effective Hooke’s law of a com-
posite made from σ1 and σ2, in volume fractions θ1 and θ2 respectively. Then, for
any symetric second order tensors η+ and η−, we have

< σ∗η+, η+ > − < σ∗η−, η− >≥ < σ1η
+, η+ > − < σ2η

−, η− > (15)

+ supξ+,ξ−

(

2θ2 < η+, ξ+ > +2θ1 < η−, ξ− >

− θ2 < (σ2 − σ1)
−1ξ+, ξ+ > −θ1 < (σ2 − σ1)

−1ξ−, ξ− >

− θ1θ2g(ξ
−, ξ+)

)

,

where the non-local term g(ξ−, ξ+) is defined by

g(ξ−, ξ+) = sup
|k|=1

(

< fσ1
(k)ξ−, ξ− > − < fσ2

(k)ξ+, ξ+ >
)

. (16)

Remark 2.1 The function of ξ+ and ξ− which is maximized in the right hand side of
15 is concave (and even strictly concave if σ1 < σ2). Thus, this maximum is always
attained and the bound 15 makes sense. However, we do not know if it is optimal.
Actually, we believe it is not for most choices of η+ and η−.

Proof : As is well known, there is no loss of generality in considering only periodic
composite materials. Let σ∗ be obtained by mixing materials 1 and 2 with charac-
teristic functions χ1(y) and χ2(y) in the unit period Q. By definition, it satisfies

< σ∗η+, η+ >= inf
φ(y)

∫

Q
< (χ1(y)σ1 + χ2(y)σ2)(η

+ + e(φ)), (η+ + e(φ)) > dy. (17)

By adding and substracting a reference energy in σ1, we obtain

< σ∗η+, η+ >= inf
φ(y)

(

∫

Q < χ2(y)(σ2 − σ1)(η
+ + e(φ)), (η+ + e(φ)) > dy

+
∫

Q < σ1(η
+ + e(φ)), (η+ + e(φ)) > dy

)

. (18)
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Using the positivity of σ2−σ1 and convex duality, the first integral in the right hand
side of 18 is rewriten

sup
ξ+(y)

∫

Q

(

2 < ξ+(y), η+ + e(φ) > − < (σ2 − σ1)
−1ξ+(y), ξ+(y) >

)

χ2(y) dy. (19)

One can get a lower bound of 19 by specializing to constant tensors ξ+ :

sup
ξ+(y)

≥ 2θ2 < η+, ξ+ > −θ2 < (σ2−σ1)
−1ξ+, ξ+ > +

∫

Q
2χ2(y) < ξ+, e(φ) > dy. (20)

Substitution in 18 yields after some simplification

< σ∗η+, η+ >≥< σ1η
+, η+ > +2θ2 < η+, ξ+ > −θ2 < (σ2 − σ1)

−1ξ+, ξ+ > (21)

+ inf
φ(y)

∫

Q

(

< σ1e(φ), e(φ) > +2χ2 < ξ+, e(φ) >
)

dy.

The above infimum in φ (the last term in the right hand side of 21) is easily computed
by Fourier analysis (see e.g. Proposition 2.1 in [1]). Denoting by χ̂2(k) the Fourier
component at frequency k of the characteristic function χ2(y), it is exactly equal to

−
∑

k 6=0

| χ̂2(k) |
2| Π

σ
1/2
1

V (k)
σ
−1/2
1 ξ+ |2 . (22)

Combined with 21, it gives

< σ∗η+, η+ >≥< σ1η
+, η+ > +2θ2 < η+, ξ+ > −θ2 < (σ2 − σ1)

−1ξ+, ξ+ > (23)

−
∑

k 6=0

| χ̂2(k) |
2| Π

σ
1/2
1

V (k)
σ
−1/2
1 ξ+ |2 .

By a similar argument (using material 2 as the reference material), for the same
composite σ∗, but for a different tensor η−, we obtain a converse inequality

< σ∗η−, η− >≤< σ2η
−, η− > −2θ1 < η−, ξ− > +θ1 < (σ2 − σ1)

−1ξ−, ξ− > (24)

−
∑

k 6=0

| χ̂2(k) |
2| Π

σ
1/2
2

V (k)
σ
−1/2
2 ξ− |2 .

Substracting 24 to 23, the desired result 15 is obtained by bounding from below the
Fourier series

−
∑

k 6=0

| χ̂2(k) |
2
(

| Π
σ
1/2
1

V (k)
σ
−1/2
1 ξ+ |2 − | Π

σ
1/2
2

V (k)
σ
−1/2
2 ξ− |2

)

≥ −θ1θ2g(ξ
−, ξ+),

(25)
where we have used the identity

∑

k 6=0 | χ̂2(k) |
2= θ1θ2. Let us remark that the right

hand side of 24 is convex in ξ− since its last term is always larger than −θ1θ2 <

σ2ξ
−, ξ− >. Thus, the right hand side of the difference between 23 and 24 is concave

in ξ−, ξ−, as claimed in Remark 2.1.
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Theorem 2.2 Under the same assumptions as for Theorem 2.1, and for any sym-
metric second order tensors ξ+ and ξ−, we have the following optimal trace bound

θ22 < (σ∗ − σ1)
−1ξ−, ξ− > +θ21 < (σ2 − σ∗)−1ξ+, ξ+ >≤

θ1 < (σ2 − σ1)
−1ξ+, ξ+ > +θ2 < (σ2 − σ1)

−1ξ−, ξ− > +θ1θ2g(ξ
−, ξ+). (26)

Remark 2.2 The above trace bound 26 is optimal in the sense that, for any couple
(ξ+, ξ−), there exists a least one composite material σ∗ which achieves equality in the
bound. An example of such an optimal composite is obtained by a single lamination
of materials 1 and 2 (in proportions θ1 and θ2) in a direction k0 which achieves the
maximum in the definition 16 of the non-local term g(ξ−, ξ+).

Proof : By convex duality, the first line of 25 is exactly

sup
ζ+,ζ−

(

2 < ζ+, ξ+ > +2 < ζ−, ξ− > (27)

−θ−2
2 < (σ∗ − σ1)ζ

+, ζ+ > −θ−2
1 < (σ2 − σ∗)ζ−, ζ− >

)

.

Replacing θ−1
2 ζ+ by η+, and θ−1

1 ζ− by η−, we can use Theorem 2.1 to get an upper
bound of 27

sup
η+,η−

inf
ξ′+,ξ′−

(

2θ2 < η+, (ξ+ − ξ′+) > +2θ1 < η−, (ξ− − ξ′−) > (28)

+θ1 < (σ2 − σ1)
−1ξ′+, ξ′+ > +θ2 < (σ2 − σ1)

−1ξ′−, ξ′− > +θ1θ2g(ξ
′−, ξ′+)

)

.

The above functional is linear in (η+, η−) and convex in (ξ′+, ξ′−), thus we can inter-
change the order of minimization and maximization. The computation of this saddle
point is now obvious : ξ′ must be equal ξ, and 28 coincides with the upper bound in
26.

To prove the optimality of the trace bound 26, we re-do the proof of Theorem 2.1
for a single lamination of materials 1 and 2 in a given direction k0, i.e. for a periodic
composite material whose phases have characteristic functions χ1(y.k0) and χ2(y.k0)
in the unit period Q. The computation proceeds exactly as above, and we point out
the only two differences. First, when specializing to constant tensors ξ+ in 20, we
don’t obtain an inequality, but an equality, since the true field e(φ)(y) is known to be
constant in each phase for this special microstructure. Second, the lower bound 25
can be improved in an equality, since all frequencies, but k0, contribute to nothing :

−
∑

k 6=0

| χ̂2(k) |
2
(

| Π
σ
1/2
1

V (k)
σ
−1/2
1 ξ− |2 − | Π

σ
1/2
2

V (k)
σ
−1/2
2 ξ+ |2

)

= (29)

−θ1θ2
(

| Π
σ
1/2
1

V (k0)
σ
−1/2
1 ξ+ |2 − | Π

σ
1/2
2

V (k0)
σ
−1/2
2 ξ− |2

)

.
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Thus, for this simple laminated microstructure we obtain the equality

< σ∗η+, η+ > − < σ∗η−, η− >= < σ1η
+, η+ > − < σ2η

−, η− > (30)

+ supξ+,ξ−

(

2θ2 < η+, ξ+ > +2θ1 < η−, ξ− >

− θ2 < (σ2 − σ1)
−1ξ+, ξ+ > −θ1 < (σ2 − σ1)

−1ξ−, ξ− >

− θ1θ2( | Πσ
1/2
1

V (k0)
σ
−1/2
1 ξ− |2 − | Π

σ
1/2
2

V (k0)
σ
−1/2
2 ξ+ |2 )

)

.

Now, taking the Legendre transform of equation 30 we obtain an equality similar to
the trace bound 26, except that the non-local term is specified at frequency k0. If we
choose k0 as one of the maximizer of the non-local term, this implies that this single
lamination in direction k0 saturates the trace bound.

Remark 2.3 The optimality of the trace bound 26 can also be checked very easily
by comparison with the explicit formula for a layered composite materials (see e.g.
Theorem 4.1 in [6]).

Remark 2.4 Our new trace bound 26 is not implied by the previous upper and lower
trace bounds 5 and 7. Indeed by summing 5 and 7, with weights θ2 and θ1 respectively,
we obtain an upper bound which is always worse than 26 since we can easily check
that

θ1θ2g(M
−,M+) ≤ θ1θ2

(

g−(M
−) + g+(M

+)
)

. (31)

For some choices of M−,M+ (for example M− = M+ = I2 ⊗ I2), 31 could be an
equality, but usually it is a strict inequality, as one can be convinced by inspection of
the explicit formula for g− and g+ in the case of one energy and isotropic constituents
(see section 7 in [1]).

Remark 2.5 Throughout this paper we assume that the two component materials
σ1 and σ2 are well-ordered. If they were isotropic, but non well-ordered, the usual
trace bounds would still hold in a slightly different form involving a mixed reference
material (see [2] for details). Of course, Theorem 2.2 could also be generalized to this
case.

3 Motivation and discussion of the trace bounds

This section is concerned with various motivations and applications of the trace
bounds. A first important application is the derivation of optimal bounds on effective
moduli of isotropic composites. Before discussing the potential applications of our
new trace bound, and for the sake of completeness, we recall how Milton and Kohn
[12] obtained, from the trace bounds, the celebrated Hashin-Shtrikman bounds on
the bulk and shear moduli κ∗, µ∗.
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We consider an isotropic elastic composite made of two isotropic constituents with
moduli (κi, µi)i=1,2 (thus λi = κi −

2µi

N
), i.e. their Hooke’s law σi is given by

σi = 2µiΛs +NκiΛh (32)

where Λs and Λh are the orthogonal projections on shear and hydrostatic tensors,
respectively, defined by

Λs = I4 −
1

N
I2 ⊗ I2, Λh =

1

N
I2 ⊗ I2 (33)

where N is the spatial dimension, and I4, I2 the fourth, and second, order identity
tensors. Since Λs and Λh are projections on rotationnaly invariant subspaces, one
can easily check that, for any vector k

< fσi
(k) : Λs >=

N(N − 1)(2µi + κi)

2µi(2(N − 1)µi +Nκi)
, (34)

and

< fσi
(k) : Λh >=

1

2(N − 1)µi +Nκi
. (35)

Thus, by choosing M equal to Λh or Λs, the computation of the non-local term g±(M)
is obvious since there is no need to optimize in k, thanks to the relations 34 and 35.
This special choice of M in the usual lower and upper trace bounds 5 and 7 yields the
Hashin-Shtrikman lower and upper bounds on κ∗, µ∗. For example, the lower bounds
read as

θ2
1

2(µ∗ − µ1)
≤

(N − 1)(N + 2)

4(µ2 − µ1)
+ θ1

N(N − 1)(2µ1 + κ1)

2µ1(2(N − 1)µ1 +Nκ1)
, (36)

and

θ2
1

N(κ∗ − κ1)
≤

1

N(κ2 − κ1)
+ θ1

1

2(N − 1)µ1 +Nκ1
. (37)

Furthermore, these bounds are known to be optimal, since equality is attained in 36
and 37 for sequentially laminated composites (see [6]).

The Hashin-Shtrikman bounds defines a rectangle of ”admissible” isotropic ef-
fective Hooke’s law in the (κ, µ) plane. However, it is known that not all points of
that rectangle are attained. To sharpen these bounds, one can try to obtain coupled
bounds on κ∗, µ∗ which cut a smaller ”admissible” domain in this rectangle (see, e.g.
[5], [13]). Theoretically, our new trace bound can furnish such coupled estimates since
it can be viewed as, both, an upper and a lower bound on σ∗. However in practice,
obvious choices of M+ and M−, as Λh or Λs, yield linear combinations of the previ-
ous Hashin-Shtrikman bounds. This is due to the fact that the non-local term, being
constant for all k, doesn’t couple the two energies M±. Of course, one can hope that
this is not the case for more general choices of M±, but then the computation of the
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non-local term is tedious, or even out of reach. We must acknowledge that we have
not succeeded in our quest of new bounds for effective moduli of isotropic composites
starting from the trace bound established in Theorem 2.2.

Another motivation for the study of trace bounds is the so-called G-closure prob-
lem, i.e. the determination of the set of all possible effective Hooke’s law obtained by
mixing two materials in prescribed proportions. It is well-known that for the conduc-
tivity problem, the trace bounds are enough to characterize this set (see the original
papers of Murat and Tartar [14]-[15], and [12] for an interpretation of their result in
terms of trace bounds). It is also the case for incompressible elasticity in 2-D [9].
However, the picture is not so bright for the general elasticity where we only have a
partial knowledge of the G-closure. Milton has given a geometrical interpretation of
the trace bounds as tangent planes to some transformation of the G-closure set in the
space of fourth order tensors (see section 14 in [11]). The convex hull of this G-closure
set would be completly characterized if we could use any tensor M in the usual trace
bounds 5 and 7. However, this is not the case since we are restricted to positive
tensors M . Our new trace bound 8 doesn’t remove this obstacle, but it improves
a little the situation. Let us explain briefly why. Our new trace bound is indeed a
coupled lower and upper bound on σ∗. Thus, we can ”turn around” the G-closure
set, passing continuously from a view from below to a view from above. However, we
have not been able to obtain any quantitative results from this qualitative picture !

Finally, let us briefly discuss the relationship between optimal bounds and optimal
design. We consider an example taken from our previous work [3] : the problem is
to find the most rigid shape of an elastic body with prescribed weight. In other
words, we seek the best arrangement of a given elastic material which minimizes
its compliance (which plays the role of the cost function). This problem is known
to be not well-posed, and needs to be relaxed. Actually, minimizing sequences are
created by very fine perforations of the original material, and the effective behavior
of the resulting design is that of a composite material. Consequently, the problem is
relaxed by allowing perforated composite materials as admissible designs. This new
relaxed formulation involves the minimization of the compliance over all possible
effective Hooke’s law. A priori, this requires the knowledge of the G-closure, which,
unfortunately, is unknown. However, this problem can be reduced to a much simpler
one by remarking that the compliance is equal to the complementary energy. Then,
the minimization of the relaxed cost function is just the computation of an optimal
lower bound on complementary energy (which has been studied in great details, see
e.g. [1]).

In some sense, the crucial, and fortunate, point in the analysis of [3] is the choice
of the compliance as cost function. A different cost function may require the knowl-
edge of the entire G-closure, which is out of reach right now. As a simple example, let
us consider the L2-norm of the displacement. By introducing an adjoint state equa-
tion, one can check that this cost function is equal to the difference of two elastic
energies. (Such problems are called non self-adjoint optimization problems by Lurie

9



who studied them in the conductivity case [10].) Thus, to relax this problem requires
an optimal lower bound on a difference of energies. Theorem 2.1 provides a bound
of this type, but unfortunately it is not optimal. Again, this was a motivation for
our new trace bound 8, but we haven’t quite succeeded ! To conclude this paper, we
hope that this little discussion of potential applications will motivate new research
in the field of optimal bounds for effective properties of composite materials.
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