ECOLE POLYTECHNIQUE — Promotion 2008
Analyse Numérique et Optimisation (MAP431)
Controle classant
Lundi 28 juin 2010
Durée : 4 heures

Sujet Proposé par Francois Alouges et Habib Ammanrt

The subject is composed of two problems that are independent one from another. It
is 8 pages long. FEach problem has to be solved on paper sheets of different colors,
pink for problem 1 and green for problem 2.

Problem 1 - (Pink paper, 12 points)

Notations and recalls.
We consider Q a bounded regular open set (of class C*) of R?, and L?(f2) the space
of square integrable functions on 2. We denote by

N

< u,v >= / w(z)v(x)dz, and ||ul|p2 = (< u,u >)
Q

respectively the scalar product of two functions u and v of L?(2) and the associated
norm. We also denote by H}(£2) the clasical Sobolev space of functions admitting a
(weak) derivative in L?(£2) and whose trace vanishes on the boundary 2. We equip
H}(Q) with the scalar product

Vu,v € Hy (), a(u,v) = /QVu(a:) -Vou(x)dz,

and we denote by ||ull g} the associated norm. In the sequel, we will set AMu) =

HquQLI& = /Q |Vu(z)|* do for u € HL(RQ).



We recall that there exists a sequence of functions (¢x)ken in H () which verify

—A(Z)k = )\k(bk in Q

¢r = 0 on 052 (1)
|BkllL2) =1
for an increasing sequence of eigenvalues 0 < A} < Ao < -+ < A < Ay < -+
which tends to +o0o. The functions ¢, are called the eigenfunctions of the Laplacian.
Moreover, (¢ )ren (respectively <¢k) ) is a hilbert basis of L?() (respectively
VAL ken
of Hi(9)).
For all N € N* we will call
En =span{¢y, 1 <k < N} (2)

the N —dimensional subspace of H{(f2) generated by the first N eigenfunctions of
the Laplacian.
In all the problem, we assume that \; is simple, that is to say that

A <\, VE>2. (3

~—

For all p € N, we denote by HP(Q) the classical Sobolev space (so that H°(Q) =
L?(€2)), and we recall (theoreme 4.3.25 of the textbook) that for p > %, HP(Q)) C

C%(Q2). Here, we have denoted by C°(2) the space of continuous functions on (.
The following regularity theorem holds (for bounded regular open sets):

Théoréme 1 Let p €N, f € HP(2), and u € H}(Q) the solution of

—Au = fin Q,
u =0 on ON. (4)

then u € HPT2(Q).

Finally, the problem consists in finding solutions for an evolution partial differ-
ential equation. We will seek those solutions in the space X = C°(0,T;L*(Q)) N
L*(0,T; HY(Q)) of continuous functions from [0,7] in L?(2) which are also L? of
10, T[ with values in H}(£2). We recall that X is complete for the norm

1
T 2
lullx = sup ||u<t,->||L2+( / ||u<t,->||§,5dt) .

t€[0,T]

1. Show that Vk > 1, ¢p € C(Q) and that Vk > 1, Ay = A(dy) = / IV by,|? da .
Q

2



2.

3.1

3.2

Gronwall’s lemma. Let b € C(R") and f : RT — R a C! function which
verifies

vt >0, f(t) <b(t)f(t).
Show that

Wt >0, f(£) < £(0)exp (/Ot b(s) ds) .

One may introduce the function g defined by
t
Vit >0, g(t) = f(t)exp (—/ b(s) ds> :
0

We consider, for f € L?(2), the following problem

—Au = fin Q,
[u—Oon@Q. (5)

Recall the arguments which permit to show that (5) has a unique solution
u € HLHQ).

Let ug € L?(£2). We consider now the evolution problem

%—Au:finﬁ,

u =0 on 0, (6)
u(0,x) = ug(x),

where f is the function of the preceding question. In particular f does not
depend on time.

e Recall the result by which (6) admits a unique solution u € C°(0, T; L2(Q))N
L2(0,T; Hy (42)-

e Show that the solution w(t) of (6) converges exponentially in time in
L?() to @ which is the solution of (5).

We wish to study an evolution equation similar to the one before, whose solu-
tion converges to an eigenfunction of the Laplacian. We propose the following
equation in which ug satisfies now |[ug||2(q) = 1.



Warning: pay attention to the fact that in the preceding equation p is also an
unknown of the problem.

The remaining part of the problem consists in showing that one can construct
solutions to this equation. We show also that (in a particular case) those
solutions do indeed converge to the first eigenfunction of the Laplacian ¢1.

. A priori estimates. Let T" > 0. We assume in this question only that there
exists u solution of (7) on [0, 7], which is as smooth as desired. Show that

u(t) = Au(t)) = /Q Vul2(t,2) da (8)

Deduce that A(u(t)) > A; with equality if and only if u(t, x) = £¢1(x) Vo € Q.
Show also that A(u(t)) is a non increasing function on [0, 7.

Remark 2 Therefore, in spite of appearances, (7) is in fact a non-linear equa-
tion.

In order to show the non-linear nature of the equation, we rewrite (7) under
the variational form:

Find u € C°(0,T; L*(2)) N L2(0,T; HL(Q)) satisfying
Vo € Hi()), Vt € [0,T),

<u(t),¢ > —I—/O a(u(s),d)ds =< u(0), ¢ > +/0 AMu(s)) < u(s),¢d > ds

u(0,x) = up(x) .
(9)
We admit that this variational form is equivalent to the classical variational
formulation corresponding to the problem

— — Au = Au(t))u in Q,
u = 0 on 0f), (10)

And we will take from now on and for the rest of the problem uy € Hg(Q)
(instead of L?) satisfying |Jugl|z2(q) = 1.

. Construction of particular solutions. In this question, we suppose that
ug € Eny and we will write ug = ZZ]\LI V;.



5.1

5.2

6.1

6.2

e Show that there exists 7% > 0 and a unique solution u of (9) satisfying
u(t,.) € Ey, ¥Vt € [0,T*[. (Write u(t,z) = SN | a;(t)¢i(z), show that
AMu(t)) = Zfil Arag(t)? and write the differential system satisfied by
(i(t)hr<i<n-

e Show that [|u(t,-)[|3, = Zf;l(ai(t))Q = 1 and deduce that the solution
is actually global in time, that is to say T = +o0.

e Show also that u € C*°([0, +00[x(2).

We suppose here that of > 0. Show that A(u(t)) is a non increasing function
of time which converges to A\; when ¢ tends to +oo. Show that a4 (t) is a non
decreasing function of time which converges to 1 as t tends to 4o00.

Construction of solutions in the general case. We take now ug € Hg(Q)
and we assume that

/ uo(z) ¢1(x) dx > 0.
Q

Show that there exists a sequence (u))’)y>1 such that

VN > 1, u) € Ey,

YN > 1, [[uf]| 2@ =1,

VYN > 1, [qul(z)¢i(z)dz >0,
ud — up when N — +oo in H}(Q),
()\(uév))N>1 is bounded.

For all N > 1, we construct, thanks to question 5. a solution u™ (¢, ) of (9)
with initial data «2’. Show that one has

N M
Ld (N —uM)? dx—i—/ IV (u —uM)? dx = A?) +Aw™) /(uN—uM)2 dx .

b+d
(You can use the identity ab — cd = (a ; C> (b—d)+ <—'2—> (a—c)).

Deduce that there exist two constants C7 > 0 and Cy > 0 independent of N
and M but possibly depending on 7" such that

vt € 10,71, /Q(UN(t, z) —uM(t,x))* de < Oy /Q(uév(x) —udl(x))? dz,

and

T
/ / |V(uN(t,a:) — uM(t,x))\2 dx dt < Cy / (uév(x) — uéw(a:))2 dz .
0 Q Q



6.3 Deduce that (u"),>1 is a Cauchy sequence in C°(0, T'; L2(Q2))NL2(0, T; HL(2))
which converges. We call u> € C°(0,T; L?(2)) N L2(0,T; HE(Q)) its limit.

Show finally that (A(u"))n>1 converges in L1(0,T) to A = A(u>) and that
A% is a non increasing function.

Show that [[u®(t)||.2 = 1, V¢ € [0, T].

6.4 Show that u™ is a solution of (9) with initial data uyg.



Problem 2 - Weyl’s inequality (Green paper, 8 points)
The aim of the problem is to show a result (inequality (12)) which can be interpreted

in quantum physics as the Heisenberg’s uncertainty principle.
We call X the space of functions :

X = {:v(t) € C*(R,) with real values : /0 o [a:Q(t)th?:c?(t)Jr(‘Z)?(t)] dt < —i—oo}.

1) Show that if 2 € X then tz%(t) tends to 0 when ¢ tends to +oo.
Indication : Integrate by parts

/ () () dr

oo dx 2
/0 (a +tﬂ§) dt

and integrating by parts, show that for all z € X,

/Om(f;’)?(t) dt > /0+°o(1 — 2)22(t) (11)

2) By developing

3) Substituting y(t/a) to z(t) in (11) , show that there holds Yy € X

—+oc0 dy +o0 +o0
/ (52)%(r) dr — a2/ y2 (1) dr + a4/ 2y} (r)dr >0, Ya>0.
0 dr 0 0

4) Deduce the inequality

vz € X, /0+°° 22(8) dt < c</0+°o 222(1) dt) 1/2</0+°°(‘$)2(t) dt) L

with C = 2.
We now want to show that C' = 2 is the smallest constant for which (12) holds.
We consider the minimization problem over X

400 T
inf/o (%)Q(t)dt (13)

under the so-called isoperimetric equality constraint

+oo
/ (12 — 1) 22(t) dt = —1. (14)
0



In order to find its solution, we introduce the Lagrangian

+oo Ao 400
L@;»::A C;f@yﬁ+A{A (t? — 1) 2%(t) dt + 1.

5) For h € X compactly supported in [0, +oc[, compute the derivative of the La-
grangian £ at x applied to h, that is to say the quantity
L(x+eh,\) — L(x,\)

lim .
e—0 IS

6) Show that the necessary optimality conditions are given by the Euler-Lagrange
equation
d’x
a2
and the transversality condition

+ At = 1)z =0 (15)

0y = 0. (16)

7) We recall that

and

l/+mt%29dt:'¢ﬂ
0 4

2

/i e /2 satisfies (15) for A = 1, the transverslity condition
7r

+00
(16) and the isoperimetric constraint (14). Compute / (

Verify that xo(t) =

dzo

i )2(t) dt, and show

that z is a solution of the minimization problem (13)-(14).
8) Show that the smallest constant C' is equal to 2.
Indication : One can show for instance using (11) that if Copy is the smallest

constant, then
1 1 [T d
<y Chra
Coot — 4 Jo dt

for all y € X which satisfies the isoperimetric constraint (14).



