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The standard geometrical shape optimization method proceed by the appli-
cation of successive diffeomorphisms close to the identity starting from an initial
guessed shape. Consequently, it does not allow for the optimization of the topol-
ogy which is kept unchanged from one iteration to the other. The topological
gradient enables to determine if the inclusion of a small hole of given shape
is cost efficient. Such holes can be included at any time during the geometri-
cal shape optimization process. Moreover, as seen thereafter, the topological
gradient can be explicitly computed from the primal and adjoint states of the
optimization problem that are already computed during standard geometrical
shape optimization. Finally let us mention that level set methods can also han-
dle topological changes during the optimization process [2], possibly coupled
with the use of topological gradient [1].

1 Definition

Let J be a cost function from an admissible set Uad of the open subsets of RN
with value in R. Let ω be a bounded open subset of RN . The cost function J is
said to admit a topological gradient at Ω ∈ Uad with respect to holes of shapes
ω if there exists a function s : R+ → R+ and a function gω from Ω into R such
that for all x0 ∈ Ω,

J(Ωρ) = J(Ω) + s(ρ)gω(x0) + o(s(ρ)),

with s(ρ) = 0 if and only if ρ = 0 and Ωρ is the open set obtained after the
creation at x0 of a hole of shape ω rescaled by a factor ρ,

Ωρ := Ω \ ωρ,

ωρ :=

{
x ∈ RN :

x− x0

ρ
∈ ω

}
.

Note that the dependence of Ωρ with respect to ω and x0 is implicitly under-
stood. The function gω is called the topological gradient of J (or the topological
sensitivity). If gω(x0) is negative, for a given element x0 ∈ Ω, the creation of
a small enough hole will end up with a decrease of the cost function, and thus
lead to a more optimal shape.
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A trivial example. Let f be a continuous map from RN into R and let

J(Ω) =

∫
Ω

f(x) dx.

Then J admits a topological gradient and we have

J(Ωρ) = J(Ω) + ρN |ω|f(x0) + o(ρN ).

In most applications though, we are interested in cases where the cost function
depends on the solution of a PDE. In the following, we are going to study the
case of the Poisson equation. The complete computation of the cost function
will be given in the case of circular holes in dimension two. The present analysis
can be extended to other state equations (like the elasticity) or to the creation
of inclusions (rather than holes).

2 The case of the Poisson equation in RN

In the following, we are going to consider a cost function J of the following form

J(Ω) =

∫
Ω

F (uΩ) dx+

∫
ΓN

G(uΩ) dx, (1)

where F and G are regular functions from R into R, and uΩ is the solution of
the Poisson equation 

−∆uΩ = f in Ω,
uΩ = uD on ΓD,
∂uΩ

∂n = g on ΓN ,
∂uΩ

∂n = 0 on Γ,

(2)

where f ∈ L2(RN ), g ∈ L2(ΓN ), uD ∈ H1(RN ) and Γ = ∂Ω \ (ΓD ∪ ΓN ),
assuming that ΓN ∪ ΓD ⊂ ∂Ω for every admissible shapes Ω of Uad.

Let Ω be a given admissible set. We denote by j(ρ) = J(Ωρ) and in order to
simplify the notations, we set uρ = uΩρ . Computing the topological gradient of
J consists to determine the asymptotic development of j at ρ = 0. To this end,
we are first going to compute the gradient of j using the classical fast derivative
method of Céa. In a second step we are going to compute an approximation of
j′(ρ) for ρ small. Finally, an integration with respect to ρ will lead us to the
desired result.

Remark 1 Cost functions depending on the gradient of uΩ can also be consid-
ered, but require a more subtle analysis [5].

2.1 Geometrical derivative

We introduce the Lagrangian

L(ρ, u, p) =

∫
Ωρ

F (u) dx+

∫
ΓN

G(u) ds+

∫
Ωρ

∇u ·∇p dx−
∫

Ωρ

fp dx−
∫

ΓN

gp ds.
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Moreover, we introduce the adjoint state

pρ ∈ H1
ΓD (Ωρ) :=

{
p ∈ H1(Ωρ) such that p = 0 on ΓD

}
,

such that for all q ∈ H1
ΓD

(Ωρ) we have〈
∂L
∂u

(ρ, uρ, pρ), q

〉
= 0,

that is ∫
Ωρ

F ′(u)q dx+

∫
ΓN

G′(u)q ds+

∫
Ωρ

∇pρ · ∇q dx = 0. (3)

As for every p ∈ H1
ΓD

(RN ), we have j(ρ) = L(ρ, uρ, p), it follows that

j′(ρ) =
∂L
∂ρ

(ρ, uρ, p) +

〈
∂L
∂u

(ρ, uρ, p), u
′
ρ

〉
,

where u′ρ is the Eulerian derivative of uρ with respect to ρ. Using that ∂L/∂u(ρ, uρ, pρ) =
0, we get

j′(ρ) =
∂L
∂ρ

(ρ, uρ, pρ).

Let X(ρ, y) = ρy + x0, we have

ωρ = X(ρ, ω).

Derivating X with respect to ρ, we obtain the velocity of the interface ∂ω, we
have for every y ∈ ∂ω,

Ẋ(ρ, y) = y.

For all x ∈ ∂ωρ, the velocity of the interface is equal to Ẋ(ρ, y), with x = X(ρ, y)
that is y = (x− x0)/ρ. It follows that

j′(ρ) = −
∫
∂ωρ

(F (uρ) +∇uρ · ∇pρ − fpρ)
(x− x0)

ρ
· nds, (4)

n being the outward normal to ωρ.

2.2 Approximation of uρ and pρ

Let us introduce the map v(ρ) from RN \ ω into R defined by

v(ρ)(y) =

(
uρ − u0

ρ

)
(ρy + x0).

Note that v(ρ) is not strictly speaking defined for all y in the set RN \ ω.
Nevertheless for such a given y, it is correctly defined for ρ small enough. It is
easily seen that

∇v(ρ)(y) = ∇(uρ − u0)(ρy + x0),
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and that {
−∆v(ρ) = 0 in RN \ ω,
∂v(ρ)
∂n (y) = −∇u0(ρy + x0) · n on ∂ω,

Passing formally to the limit in those equations we obtain that

v(ρ)→ v0,

where {
−∆v0 = 0 in RN \ ω,
∂v0

∂n (y) = ∇u0(x0) · n on ∂ω,

Finally, as the perturbations generated by the inclusion of a hole at x0 are small
far from the hole, we should have

v0(y)→ 0 as y →∞.

We do not give the rigorous proof of this convergence result, which is too techni-
cal to be developed here (we do not even precise in which sense the convergence
do hold).

Note that the function v depends linearly on ∇u0(x0). More precisely, de-
noting by wi the solutions of the problems

−∆wi = 0 in RN \ ω
∂wi
∂n = −ni on ∂ω
wi(y)→ 0 as y → +∞,

(5)

We have v0 = W∇u0(x0), where W = (w1, · · · , wN ). A similar analysis can be
carried out for the adjoint state and we get that

q(ρ)(y) =

(
pρ − p0

ρ

)
(ρy + x0)

converges toward q0 = W∇p0(x0).

2.3 Approximation of the shape gradient

We recall that from formula (4),

j′(ρ) = −
∫
∂ωρ

(
F (uρ)

(x− x0)

ρ
· n+∇uρ · ∇pρ

(x− x0)

ρ
· n− fpρ

)
(x− x0)

ρ
·nds.

Performing the change of variable y = (x− x0)/ρ, we get

j′(ρ) = −ρN−1

∫
∂ω

(
F (uρ(ρy + x0))

+(∇v(ρ)(y)+∇u0(ρy+x0))·(∇q(ρ)(y)+∇p0(ρy+x0))−f(ρy+x0)pρ(ρy+x0)

)
(y·n) ds
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As uρ converges toward u0, the first term of this expression can be approximated
by ∫

∂ω

F (uρ(ρy + x0)(y · n) ds = F (u0)

∫
∂ω

(y · n) ds+ r1(ρ)

= F (u0)

∫
ω

(∇ · y) dy + r1(ρ)

= N |ω|F (u0) + r1(ρ),

where r1(ρ) is a small correction. The same analysis can be performed for the
third term of the expression of j′(ρ) and we get∫

∂ω

f(ρy + x0)pρ(ρy + x0)(y · n) ds = N |ω|f(x0)p0(x0) + r3(ρ).

Moreover, as v(ρ) is close to v0 = W∇u0 for ρ small, ∇v(ρ) is close to ∇W∇u0,
where ∇W stands for the matrix (∇w1, · · · ,∇wN ). It follows that∫

∂ω

(∇v(ρ)(y) +∇u0(ρy + x0)) · (∇q(ρ)(y) +∇p0(ρy + x0))(y · n) ds =∫
∂ω

((∇W + Id)∇u0) · ((∇W + Id)∇p0)(y · n) ds+ r2(ρ),

where r2(ρ) is a small correction. Setting

M = N−1|ω|−1

∫
∂ω

(∇W + Id)T (∇W + Id)(y · n) ds, (6)

we get∫
∂ω

(∇v(ρ)(y)+∇u0(ρy+x0))·(∇q(ρ)(y)+∇p0(ρy+x0))(y·n) ds = N |ω|∇uT0 M∇p0+r2(ρ).

Note that M is a positive symmetric positive matrix that does only depend on
the shape ω of the hole. Finally, we obtain that

j′(ρ) = NρN−1|ω|(f(x0)p0(x0)−M∇u0(x0) · ∇p0(x0)− F (u0(x0))) + o(ρN−1).
(7)

2.4 Expression of the topological sensitivity

By integration of (7) with respect to ρ, we get

j(ρ) = j(0) + ρN |ω| (fp0 −M∇u0 · ∇p0 − F (u0)) (x0) + o(ρN ). (8)

3 Explicit expression of the shape gradient

If ω is the unit ball in RN (N = 2, 3), the solutions of the elementary problems
(5) – and thus the matrix M – can be computed explicitly. We propose to
perform the computations in the two dimensional case and give the result in the
three dimensional case (without proof).
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3.1 The two dimensional case

In order to compute the solutions (wi)i=1,2 of (5) in the case N = 2, it is
convenient to use polar coordinates. It can be easily seen that w2(θ, r) = w1(θ−
π/2, r). Consequently, we only have to determine w1, which we will denote w
in the following. For all r ≥ 1, the function θ → w(θ, r) is periodic and thus
admits a Fourier decomposition of coefficients ak(r) depending on r,

w(θ, r) =
∑
k∈Z

ak(r)eikθ.

In order to determine the coefficients ak(r) of this decomposition, we first have
to express the Laplacian in polar coordinates. For all regular map ϕ of R2, we
have

∇ϕ =
∂ϕ

∂r
er +

1

r

∂ϕ

∂θ
eθ,

where er = x/|x| and (er, eθ) is a local orthonormal base.

∆ϕ = ∇
(
∂ϕ

∂r

)
· er +

∂ϕ

∂r
∇ · er +∇

(
1

r

∂ϕ

∂θ

)
· eθ +

1

r

∂ϕ

∂θ
∇ · eθ.

We have

∇·er = ∇·(x/|x|) = |x|−1(∇·x)+x·∇((|x|2)−1/2) = 2|x|−1−(|x|2)−3/2x·x = 1/r.

and ∇ · eθ = 0, leading us to

∆ϕ =
∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
+

1

r2

∂2ϕ

∂θ2
.

From ∆w = 0, we deduce that∑
k

(a′′k + r−1a′k − r−2ak)eikθ = 0,

and that for every k ∈ Z,

a′′k + r−1a′k − r−2ak = 0.

We seek for elementary solutions of the form rα. We get α(α− 1) + α− 1 = 0,
that is α = ±1. Due the to limit condition w(r, θ)→ 0 as r → 0, we obtain that
ak(r, θ) = bkr

−1, where bk ∈ R. From the limit condition on ∂ω, we get∑
k∈Z

a′ke
iθ = −x1 = − cos(θ) = −(eiθ + e−iθ)/2.

It follows that bk = 0 for every k ∈ Z such that |k| 6= 1 and bk = 1/2 for k = ±1,
hence

w(r, θ) = r−1 cos(θ) = r−2x1.
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Finally, for i = 1, 2, wi = |x|−2xi, and

∇wi = |x|−2ei − 2|x|−4xix.

In particular, for any x ∈ ∂ω, we have

∇wi = ei − 2xix.

It follows, from the definition of M , that

Mij = (2π)−1

∫
∂ω

(ei +∇wi) · (ej +∇wj) ds

= 2π−1

∫
∂ω

(ei − xix) · (ej − xjx) ds

= 2π−1

∫
∂ω

(ei · ej − xixj) ds.

If i 6= j, we have Mij = 0. And for i = j,

Mij = 2π−1

∫ 2π

0

(1− cos(θ)2) dθ = 2.

From (8), we get the expression of the topological gradient

j(ρ) = j(0) + ρ2π (f(x0)p0(x0)− 2∇u0(x0) · ∇p0(x0)− F (u0(x0))) + o(ρ2).

3.2 The three dimensional case

In the three dimensional case, the topological gradient where ω is the unit ball
can still be computed explicitly. Once again, M is proportional to the identity
matrix and we have M = 3/2 Id . We referee the reader to [3].

4 Applications

We consider two applications. We begin by considering the minimization of the
compliance. In a second step, we study the problem consisting into reaching a
target state.

4.1 Compliance

The compliance, defined by

J(Ω) =

∫
Ω

fuΩ dx+

∫
ΓN

guΩ ds,

corresponds to the case F (u) = fu and G(u) = gu in (1). From (3), p0 ∈
H1

ΓD
(Ω) is such that for all q ∈ H1

ΓD
(Ω)∫

Ωρ

∇p0 · ∇q dx = −
∫

Ω

fq dx−
∫

Γ

gq ds,
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and the expression of the topological gradient (8) is given by

J(Ωρ) = J(Ω) + ρ2|ω| (fp0 −M∇u0 · ∇p0 − fu0) (x0) + o(ρ2).

In particular, for homogeneous boundary Dirichlet conditions, that is uD = 0,
we have p0 = −u0 and

J(Ωρ) = J(Ω) + ρ2|ω| (M∇u0 · ∇u0 − 2fu0) (x0) + o(ρ2).

Note that if f = 0, then the topological gradient is always negative, and the
creation of holes will always lead to an increase of the cost function. Moreover,
if ω is the unit disk, we recall that M = 2 and |ω| = π.

4.2 Target state

We consider in this section the cost function

J(Ω) =
1

2

∫
Ω

|uΩ − ut|2 dx,

where ut is the target state. The adjoint state is the element p0 ∈ H1
ΓD

(Ω) such
that for all q ∈ H1

ΓD
(Ω),∫

Ωρ

∇p0 · ∇q dx = −
∫

Ω

(u− ut)q ds.

The topological gradient is then given by

J(Ωρ) = J(Ω) + ρ2|ω| (fp0 −M∇u0 · ∇p0 − fu0) (x0) + o(ρ2).

Once again, if ω is the unit ball, we have M = 2 and |ω| = π.

5 The elasticity case

The same analysis can be carried out when the state equation is the solution of
linear elasticity. The state uΩ in this section is assumed to be the displacement
of a homogeneous elastic body of Hooke law A. In other words uΩ ∈ H1(Ω)N

is thus that for all test functions v ∈ H1
ΓD

(Ω)N , we have∫
Ω

Ae(uΩ) : e(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds

with u = uD on ΓD. In this case, f and g are prescribed volume and surface
loads applied to the body and uD a given displacement on part of the boundary.
We consider a similar cost function that for the Laplacian case, that is

J(Ω) =

∫
Ω

F (uΩ) dx+

∫
ΓN

G(uΩ) ds.
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5.1 Topological Gradient

We introduce also the adjoint state pΩ ∈ H1
ΓD

(Ω)N such that for all q ∈
H1

ΓD
(Ω)N ,∫

Ω

Ae(pΩ) : e(q) dx = −
∫

Ω

∇F (u) · q dx−
∫

Γ

∇G(u) · q ds. (9)

Then J admits a topological gradient of the form

J(Ωρ) = J(Ω) + ρN |ω|
(
f · pΩ −Me(uΩ) : e(pΩ)− F (uΩ)

)
(x0) + o(ρN ).

The operator M is defined as follows. Let wij we the solution of the PDE −∇ · e(w
ij) = 0 in RN \ ω

e(wij) · n = Eij · n on ∂ω
wij(y)→ 0 as y → 0.

where Eij is the symmetric matrix defined by Eijkl = δikδ
j
l . We then have

v = lim
ρ→0

uρ − u0

ρ
(ρ · −x0) = We(u0)(x0),

where W is the operator that maps any symmetric matrix ξij to the element of
H1(Ω \ ω)N defined by

Wξ =
∑
i,j

wijξij .

The symmetric bilinear for M on the space of N × N symmetric matrices is
defined by

Mξ : ξ = N−1|ω|−1

∫
∂ω

A(ξ + e(Wξ)) : (ξ + e(Wξ)) ds.

5.2 Case of spherical holes

As in the Laplacian case, the operator M can be explicitly compute when ω is
the unit ball (see [4, 1]) in the case of linear isotropic elasticity, that is

Aξ : ξ = 2µξ : ξ + λTr(ξ)2.

We have in the case N = 2,

Mξ : ξ =
2µ(λ+ 2µ)

λ+ µ
ξ : ξ +

λ+ 2µ

2

(
(λ+ µ)2 − 2µ2

µ(λ+ µ)

)
Tr(ξ)2.

and in the case N = 3,

Mξ : ξ = |ω|−1 5π(2µ+ λ)

14µ+ 9λ

(
4µξ : ξ − (2µ+ 7λ− 5ν(2µ+ λ))

(2 + 5ν)
Tr(ξ)2

)
with

ν =
λ

2(λ+ µ)
.
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