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1 Parametric optimization: 12 points

1. Because of the Dirichlet boundary conditions we choose the Sobolev
space H{(Q). The variational formulation is: find u™ € H}(£2) such
that, for any test function ¢" € H}(Q),

/ (u"q" + hAtVU" - V") dx = / (u"flq" + Atf"q") da.
Q Q

2. The Lagrangian is the sum of the objective function and of the vari-
ational formulations for each u™ (with, of course, different test func-
tions). As usual, u" denotes the solution of the state equation and,
in the Lagrangian, we replace it by the dummy function v™. Thus it
reads

N
n ) = (v () dx i (v (2)) dx
C(h (0"} {q })—;At/ﬂm (x))d +/Q;2< (x))d

(v"_lq” + Atf”q”) dx) )
Q

N
+ Z </Q (v"¢" + hAtVY" - Vq") dx — /
n=1

3. The partial derivative of the Lagrangian with respect to v" is, for

1<n<N-1,
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Equating it to 0 and taking the value v™ = u” yields the variational
formulation for the adjoint p™ € H}(£2) such that, for any test function
v € Hy(Q),

/Q (Yp"™ 4+ hAtVY - Vp™)de = / (pp™ 1 — At (u™)Y) da

Q



when 1 <n < N — 1, while for n = N the variational formulation is:
find p¥ € H}(Q2) such that, for any test function v € HZ(Q),

/Q (¢pN + hAtV - VpN) dr = —/Q (jé(uN) + Atjy (uN)¢) dx.

Disintegrating by parts yields the boundary value problem satisfied by
ptifor1<n<N -1,

P2 div (hVp") =~ (u") i,
p" =0 on 052,

and for p

p" — Atdiv (hVpY) = —Atji(u) — jh(uY)  in Q,
pN=0 on 0f2.

To compute p", for 1 < n < N — 1, we need to know p"*t! and, on
the other hand, p" depends solely on uV. Thus, the adjoints p™ have
to be computed backward in time, namely in decreasing order from
n=Nupton=1.

. The formal derivative of Ja¢(h) is given by the formula

(T, k) = (O (h, ™), (") )

Thus a simple computation (because the Lagrangian depends linearly
on h'!) yields

N
/ Thi(h) kde =" / kAtVu™ - Vp'da
Q =/

or equivalently
N
The(h) =D AtV Vp".
n=1

. The boundary value problem for p™, 1 < n < N — 1, is obviously a
time discretization of the evolution equation

—% —div (hVp) = —ji(u) in (0,T) x Q,
p=0 on (0,7) x 0.

Note the minus sign in front of the time derivative ! This parabolic
equation must be complemented by an “initial” condition. However, in



the present case it is a final condition at time ¢ = T'. Indeed, formally
when At goes to 0, the limit of the equation for p'V is just

p(T,z) = —j) <u(T,x)) in Q.

Thus the evolution equation for p has to be solved backward in time.
It is a well-posed problem because by changing the time variable and
introducing p(t,z) = p(T — t,xz) we obtain the standard (and well-
posed) parabolic equation

& — div(hVh) = —ji(u(T =) in (0,T) x 2,
F=0 on (0,7) x 01,

ﬁ(O,w) = _]é <U,(T,$)) in Qa
where the sign in front of the time derivative is the “right” one.

Clearly, the previous derivative of Ja.(h) is a discretization of the
following time integral

T
/ Vu(t,z) - Vp(t, x) dt.
0

Remark. The statement of the present question was very cautious
by saying that “p™ has possibly to be multiplied by a suitable coeffi-
cient”. No such coefficient was necessary for the above definition of the
Lagragian but remember that the variational formulation of u™ could
have been multiplied by any coefficient (typically by 1/At) without
changing the definition of u” but, of course, implying a change in the
Lagrangian and in the definition of p”...

6. The state w appears in the right hand side of the equation for the
adjoint p. In the present time-dependent case, the difficulty is that p
has to be computed backward, i.e., starting from the final time 7" and
going back to the initial time 0. This is not a serious problem since, by
the above change of variables p(t,z) = p(T — t, z), the equation for p
is well-posed, except for the fact that the state u has to be stored on
the entire time interval (0,7) before it can be put (backward) in the
right hand side of the equation for p. If the number of time steps IV is
large, this storage process requires an enormous memory capacity and
is the main computational bottle-neck for large applications.

2 Topology optimization: 8 points

1. Following a computation of the course (see Lemma 7.9 in the lecture
notes) we compute the solutions of the cell problem

{ —div, (ax(y) (e: + Vywl-(y))) =0 inY=(0,1)
y — wi(y) Y -periodic



with ay(y) = aax1(y1) + cex2(y1) + asxs(yi). Since the coefficient
a, depends only on the first component of the space variable yi, the
solutions are simply w; = 0, for 2 < i < N, and wi(y) = w(y1),
the 1-d solution for ¢ = 1. Then, using the following formula for the
homogenized tensor A*

Ay = [ ay) e+ Vywiw) - e+ Vyuito) d
Y

a simple computation (see again Lemma 7.9 in the lecture notes) yields
that

Ay . 0
A* = g
+
0 A
3 0\ 3
where A\, = ( 1o is the harmonic mean and )\;' = i Oicy

is the arithmetic mean of the phases conductivities.

. Allowing only rotations of the previous simple laminate, i.e.,
A*(x) = R(z) A" (61(x), 65(x),03(x)) RT (x),
the relaxed state equation is just the homogenized equation

—div (A*Vu) = f in Q,
u=20 on 0,

and the relaxed objective function does not change its expression
J(0,R) = —/ f(z)u(z)dx.
Q

. By the energy minimization principle, the relaxed objective function
can be written

J(0,R) = min / (A*(x)Vv - Vv — 2fv) dx.
veHl(9) Jo

Taking into account that
A*(z)Vv-Vv = A* (61(z), 02(x), 03(x)) (RT(x)Vv(x))-(RT(x)Vv(m)) ,

the minimization with respect to the rotation matrix R(x) must align
(pointwise) the lamination direction and the gradient of v so that only
the smallest eigenvalue of A* (61, 62, 603) plays a role. In other words

min A*(z)Vov - Vo = X

AIIES
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Thus the relaxed formulation is equivalent to

oeur,,

. * _ — 2
inf (Q){J (9,1})—/9()\9|Vv| 2fv) dm},

veH&

where the set of admissible densities is

3
od = {‘9 = (01,02,03),0 <0; <1, > 0; = 1,/ 0i(z)dz = cM}-
0

i=1
. By Lemma 5.8 in the lecture notes the function
(h§) € RT X RY — F(h,) = h™ ¢

is convex. By composition with a linear function, we deduce that the
function

3
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is convex too. Indeed, an easy but tedious computation shows that
the Hessian matrices satisfy

VVG(H,6)A- A= VVF(h,Ep- >0

for any A € R3N and uw e RN such that w1 = Zg’:l Ajo; and
fi = A2 for i > 2. Furthermore G(6,&) is infinite at infinity on the
admissible set /7, which features only linear equality and inequality
constraints (which are clearly qualified). Thus, by Theorem 3.7 of
the lecture notes, the relaxed formulation admits at least one optimal
solution.



