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1 Parametric optimization: 10 points

1. The variational formulation is: find u € H'(Q) such that, for any test
function ¢ € H'(),

/Vu-quac+/ k:uqu:/fqu.
Q a0 Q

The Lagrangian is the sum of the objective function and of the varia-
tional formulation

L(h,v,q) = / Jj(v(z))dz + / (Vv -Vq— fq)dx +/ kvqds.
Q Q o0
2. The partial derivative of the Lagrangian with respect to v is

oL
2=y = [ i (v)d Vqd knpq ds.
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Equating it to 0 and taking the value v = u yields the variational
formulation for the adjoint p € H'(2) where ¢ € H(f) is any test
function. Disintegrating by parts yields the boundary value problem
satisfied by p

_Ap = _j,(u) in Q’
% +kp=20 on 0.

3. The formal derivative of J(k) is given by the formula

oL

(T'(k),0) = (5 (K, u:p), 0).-

Thus a simple computation (because the Lagrangian depends linearly
on k!) yields
/ J (k)0 dx = / Oup ds,
Q oN

J' (k) =up on O0.

or equivalently



4. When j(v) = —fov, we find p = u so J'(k) = v > 0. Since the
derivative is always non-negative, the optimality condition is satisfied
for the minimal value of k, namely k(z) = kpn on 9. Therefore,
we expect this value to be the minimum of the objective function

J(k)=— fQ f(z)u(z)de.

To make the proof rigorous, we rewrite J(k) as the minimum of the
(primal) energy

—/f(:v)u(x)d:c: min /|Vv|2d:v—i—/ k:v2ds—2/fvdx.
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The optimal design problem is thus equivalent to a double minimiza-

tion
min /|Vv|2dx+/ k:v2d5—2/fvdac.
(kv)EUaa x HH(Q) J a9 Q

For any fixed v, the minimal value is clearly attained by k(z) = kpip-
Thus k() = kmin is a global minimizer of the optimal design problem.
(It may be not unique at those points x € 92 where u(x) = 0.)

2 Geometric optimization: 7 points
1. By the chain rule lemma, the shape derivative of Mq(f) is, for any
vector field § € W1 (R?; R?),
1 1
Ma(f)(0) = = f@-nds——/ H-nds/fx dz,
DO A8 Ju ' ST
which simplifies as
1
Ma(f)(0) = q [ (f=Malf))0-nds.
€2 Joq

Clearly, the derivative is zero (for any 0) if and only if f = Mq(f) on
0.

2. We rewrite the function J(2) as

J(©) = ﬁ /Q F2 () di — (Ma(f)?.

We deduce from the previous question that

1
1€ Joo
Recombining terms yields

1
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(f2 — Ma(f?) 0-nds—2Ma(f)= | (f — Ma(f))0-nds.

J(Q)(0) ] oo

T ()(0) ((f = Ma(f))* + (Ma(f))* = Ma(f?)) 8 - nds.



By Cauchy-Schwartz inequality we have (Mq(f))? < Mgq(f?) and
the inequality is strict if f is not constant on 2. Therefore, if f is not
constant and f = Mgq(f) on 99, we deduce that J'(Q2)(#) < 0 if the
domain increases, namely when 6 - n > 0 on 9. Thus, if Q is such
that J(Q2) < e, for a small enough 6 satisfying 6 -n > 0 on 0f2, we still
have J((Id + 0)Q2) < € while the volume increases, |(Id + 0)Q| > ||
In other words, (Id + 0)2 is a better admissible design.

3. If the constraint is inactive, i.e., J(2) < ¢, for a maximizer €2 with finite
volume, then we can slightly increase its volume while keeping the
constraint satisfied, therefore contradicting the assumption that 2 was
a maximizer. Thus, for a finite-volume maximizer, the constraint must
be active, i.e., J(2) = e. In such a case, there existe a non-negative
Lagrange multiplier A > 0 such that, for any § € W1 (R?; R?),

A
12 Jaa

In other words, the optimality condition is

((f = Ma(f)* + Ma(f)* = Ma(f?)) 0-n d5+/aQ f-nds = 0.

A

a7 ((f = Malf)) + (Mal))? = Ma(s) +1=0  on 0.

3 Homogenization: 3 points
In space dimension N = 2, for an isotropic homogenized tensor A* = a*Id,
the Hashin-Shtrikman upper bound reduces to

2 < 1 n 1
B—a* " f-A ﬁ—)\;

~1
with A\, = <g+%> and Ajz&a—l—(l—@)ﬁ. Taking o = 0 yields
2 1
f—a*— 3 605
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A simple calculation gives the result a* <



