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1 Parametric optimization: 12 points

1. Writing v = u — ug the problem becomes

—div (hVv) = f +div (hVup) in Q,
v=20 on 0f2.

The corresponding variational formulation is: find v € H{(Q) such
that, for any test function ¢ € H}(9Q),

/th-qu:E:/fqdaj—/hVuo-qu:L".
Q Q Q

Replacing v by u — ug we get: find u € A such that

/hVu~V¢dw:/f¢dx Vo e HH(Q),
Q Q
where

A= {p € H(Q) such that 1) = up + ¢ with ¢ € H}(Q)}.

2. The Lagrangian is the sum of the objective function and of the varia-
tional formulation

L) = [

Jj(w(zx))de + / (hVw -Vq — fq) dx,
Q

Q

where w € A and ¢ € H}(Q). For any ¢ € H}(Q) the sum w + ¢
belongs to A, so the partial derivative of the Lagrangian with respect
to w is, for any ¢ € H} (),

oc ,
<%7¢>Z/Qj(w)zbda:Jr/Qthb-quaz.

Equating it to 0 and taking the value w = wu yields the variational
formulation for the adjoint p € H}(Q) where 1 € H}() is any test
function. Disintegrating by parts yields the boundary value problem
satisfied by p

—div (hVp) = —j'(u) in Q,
p=20 on 0f2.



3. The formal derivative of J(h) is given by the formula

oL

(J'(R),0) = (5;-(h u, p), 0).

Thus a simple computation (because the Lagrangian depends linearly
on h!) yields

J' (h)0dx = OVu - Vpds,
Q o0

or equivalently
J'(h)y =Vu-Vp in Q.

4. When j(v) = fuv, we find that p # +u because they don’t satisfy the
same boundary condition since ug # 0.

5. For the new objective function

J(h) = /Q i(hyu, V) da,

the Lagrangian is

L(h,w,q) = / j(h,w, Vw) dz +/ (hVw -Vq — fq)dz,
Q 0

where w € A and ¢ € H}(2). The new adjoint p is thus a solution of
the variational formulation in HE ()

o) ) _
| (Ftu v+ Zinu 0 0) do+ [ 190 Tpdo =0

for any test function ¢ € H} (). Disintegrating by parts yields the
boundary value problem satisfied by p

—div (hVp) = — 2L (h, u, Vu) + div (g_g(h,u, Vu)> in Q,
p=0 on Of).

6. For the specific example

J(h) = /Q (fu— %hVu-Vu) do

we have

0j B
a—w(h,u, Vu) = f and

93
o¢
so that the right hand side of the state equation is zero which implies
p=0.

(h,u,Vu) = hVu,



As usual we have

(' (1),8) = (5 (), ),

which implies that
(T (), 0) = / 93 (b, Vu) 0 da +/ 0V - Vpdz.
o Oh Q
Since p = 0 we deduce
(J'(h),0) = ! / OVu - Vudz,
2 Jo

which is the ”usual” formula for the derivative of compliance mini-
mization problem.

To minimize the objective function we should choose to increase the
thickness since —%Vu -Vu <0.

Eventually, when ug = 0, we recover the standard case of compliance
minimization with homogeneous Dirichlet boundary condition. We
simply defined in an equivalent way the compliance

J(h):/Q<fu—%hVu'Vu>d:E:%/qud:E.

2 Geometric optimization: 8 points

1. For Dirichlet boundary conditions we introduce two Lagrange multi-
pliers: ¢ for the p.d.e. and A for the boundary condition. For any
functions v, ¢, A € H'(R™) we define the Lagrangian

1
L(Qv,q,\) = —/ |v—u0|2d:n—|—/(V-Vv—uAv—f)qd:E—l—/ v ds.
2 Jo Q o0
Clearly we have

max L(Q,v,q,\) =

{ 2 folu—uol?dz  if v =uis the state,
4

400 otherwise.
2. Two successive integrations by parts yield
1
L(Qv,q,\) = —/ |v —u0]2da:+/(—V -Vq—vAq)vdx — / fqdx
2 Ja Q 0

+/ (V-nv—u@nv)qu—i—/ V@nqus—l—/ vAds.
o0 o0 o0



To get the adjoint problem we differentiate the Lagrangian with re-
spect to v and set this partial derivative equal to 0

(v—ug)pdr + /Q(—V -Vq—vAq) ¢pdx

<8_(97U7Q7 )‘)7 ¢> = /

Q
+/ (V-nqS—V@ngb)qu—i—/ vOnq ¢ ds + P Nds.
0N o oN

We first take a test function ¢ with compact support in 2, so we
deduce that the optimal value of ¢, the adjoint p, satisfies

-V -Vp—vAp=—(u—wuy) in .

Next, we take ¢ = 0 on 02 but 9,¢ can be any function on 0. It
yields p = 0 on 0f). Finally, taking a general test function such that
its trace ¢ on 0f) is any function, we get the optimal value of A

A= —v0O,p on 0N.

The adjoint problem is thus

-V -Vp—vAp=—(u—wug) in Q,
p=20 on Of).

The differential operator of the adjoint equation is different from the
one of the state equation: the sign of the velocity is changed in the
convective term.

. Formally we know that the shape derivative is given by

oL

T(2)(6) = 5o

Q,u,p, A)(0).

We compute

oL

@ oan® =3 [ o-ulo-nds

—I-/ (V-Vv—uAv—f)qH-ndS—l—/ <Hv)\—|—i(v)\)> ds,
0 0 on

where H is the mean curvature. Replacing v by w, ¢ by p and A by its
optimal value (—=V - np — v9,p), and noticing that u = p = 0 on 012,
we deduce

1

J'(ﬂ)(@):—/{)ﬂyuoee.nds_y Ou Op
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