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1 Parametric optimization: 12 points

1. Writing v = u− u0 the problem becomes
{

−div (h∇v) = f + div (h∇u0) in Ω,
v = 0 on ∂Ω.

The corresponding variational formulation is: find v ∈ H1
0 (Ω) such

that, for any test function q ∈ H1
0 (Ω),

∫

Ω

h∇v · ∇q dx =

∫

Ω

fq dx−

∫

Ω

h∇u0 · ∇q dx.

Replacing v by u− u0 we get: find u ∈ A such that
∫

Ω

h∇u · ∇φdx =

∫

Ω

fφ dx ∀φ ∈ H1
0 (Ω),

where

A = {ψ ∈ H1(Ω) such that ψ = u0 + φ with φ ∈ H1
0 (Ω)}.

2. The Lagrangian is the sum of the objective function and of the varia-
tional formulation

L(h,w, q) =

∫

Ω

j(w(x)) dx +

∫

Ω

(h∇w · ∇q − fq) dx,

where w ∈ A and q ∈ H1
0
(Ω). For any ψ ∈ H1

0
(Ω) the sum w + ψ

belongs to A, so the partial derivative of the Lagrangian with respect
to w is, for any ψ ∈ H1

0
(Ω),

〈
∂L

∂w
,ψ〉 =

∫

Ω

j′(w)ψ dx+

∫

Ω

h∇ψ · ∇q dx.

Equating it to 0 and taking the value w = u yields the variational
formulation for the adjoint p ∈ H1

0 (Ω) where ψ ∈ H1
0 (Ω) is any test

function. Disintegrating by parts yields the boundary value problem
satisfied by p

{

−div (h∇p) = −j′(u) in Ω,
p = 0 on ∂Ω.
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3. The formal derivative of J(h) is given by the formula

〈J ′(h), θ〉 = 〈
∂L

∂h
(h, u, p), θ〉.

Thus a simple computation (because the Lagrangian depends linearly
on h !) yields

∫

Ω

J ′(h) θ dx =

∫

∂Ω

θ∇u · ∇p ds,

or equivalently
J ′(h) = ∇u · ∇p in Ω.

4. When j(v) = fv, we find that p 6= ±u because they don’t satisfy the
same boundary condition since u0 6= 0.

5. For the new objective function

J(h) =

∫

Ω

j(h, u,∇u) dx,

the Lagrangian is

L(h,w, q) =

∫

Ω

j(h,w,∇w) dx +

∫

Ω

(h∇w · ∇q − fq)dx,

where w ∈ A and q ∈ H1
0 (Ω). The new adjoint p is thus a solution of

the variational formulation in H1
0 (Ω)

∫

Ω

(

∂j

∂w
(h, u,∇u)ψ +

∂j

∂ζ
(h, u,∇u) · ∇ψ

)

dx+

∫

Ω

h∇ψ · ∇p dx = 0

for any test function ψ ∈ H1
0 (Ω). Disintegrating by parts yields the

boundary value problem satisfied by p

{

−div (h∇p) = − ∂j
∂w

(h, u,∇u) + div
(

∂j
∂ζ
(h, u,∇u)

)

in Ω,

p = 0 on ∂Ω.

6. For the specific example

J(h) =

∫

Ω

(

f u−
1

2
h∇u · ∇u

)

dx

we have

∂j

∂w
(h, u,∇u) = f and

∂j

∂ζ
(h, u,∇u) = h∇u,

so that the right hand side of the state equation is zero which implies
p = 0.

2



As usual we have

〈J ′(h), θ〉 = 〈
∂L

∂h
(h, u, p), θ〉,

which implies that

〈J ′(h), θ〉 =

∫

Ω

∂j

∂h
(h, u,∇u) θ dx+

∫

Ω

θ∇u · ∇p dx.

Since p = 0 we deduce

〈J ′(h), θ〉 = −
1

2

∫

Ω

θ∇u · ∇u dx,

which is the ”usual” formula for the derivative of compliance mini-
mization problem.

To minimize the objective function we should choose to increase the
thickness since −1

2
∇u · ∇u ≤ 0.

Eventually, when u0 = 0, we recover the standard case of compliance
minimization with homogeneous Dirichlet boundary condition. We
simply defined in an equivalent way the compliance

J(h) =

∫

Ω

(

f u−
1

2
h∇u · ∇u

)

dx =
1

2

∫

Ω

f u dx.

2 Geometric optimization: 8 points

1. For Dirichlet boundary conditions we introduce two Lagrange multi-
pliers: q for the p.d.e. and λ for the boundary condition. For any
functions v, q, λ ∈ H1(RN ) we define the Lagrangian

L(Ω, v, q, λ) =
1

2

∫

Ω

|v−u0|
2 dx+

∫

Ω

(V ·∇v−ν∆v−f) q dx+

∫

∂Ω

v λ ds.

Clearly we have

max
q,λ

L(Ω, v, q, λ) =

{

1

2

∫

Ω
|u− u0|

2 dx if v = u is the state,
+∞ otherwise.

2. Two successive integrations by parts yield

L(Ω, v, q, λ) =
1

2

∫

Ω

|v − u0|
2 dx+

∫

Ω

(−V · ∇q − ν∆q) v dx−

∫

Ω

f q dx

+

∫

∂Ω

(V · n v − ν∂nv)q ds+

∫

∂Ω

ν∂nq v ds+

∫

∂Ω

v λ ds.

3



To get the adjoint problem we differentiate the Lagrangian with re-
spect to v and set this partial derivative equal to 0

〈
∂L

∂v
(Ω, v, q, λ), φ〉 =

∫

Ω

(v − u0)φdx+

∫

Ω

(−V · ∇q − ν∆q)φdx

+

∫

∂Ω

(V · nφ− ν∂nφ)q ds+

∫

∂Ω

ν∂nq φ ds+

∫

∂Ω

φλds.

We first take a test function φ with compact support in Ω, so we
deduce that the optimal value of q, the adjoint p, satisfies

−V · ∇p− ν∆p = −(u− u0) in Ω.

Next, we take φ = 0 on ∂Ω but ∂nφ can be any function on ∂Ω. It
yields p = 0 on ∂Ω. Finally, taking a general test function such that
its trace φ on ∂Ω is any function, we get the optimal value of λ

λ = −ν∂np on ∂Ω.

The adjoint problem is thus

{

−V · ∇p− ν∆p = −(u− u0) in Ω,
p = 0 on ∂Ω.

The differential operator of the adjoint equation is different from the
one of the state equation: the sign of the velocity is changed in the
convective term.

3. Formally we know that the shape derivative is given by

J ′(Ω)(θ) =
∂L

∂Ω
(Ω, u, p, λ)(θ).

We compute

∂L

∂Ω
(Ω, v, q, λ)(θ) =

1

2

∫

∂Ω

|v − u0|
2 θ · n ds

+

∫

∂Ω

(V · ∇v − ν∆v − f) q θ · n ds+

∫

∂Ω

(

H v λ+
∂

∂n
(vλ)

)

ds,

where H is the mean curvature. Replacing v by u, q by p and λ by its
optimal value (−V · n p − ν∂np), and noticing that u = p = 0 on ∂Ω,
we deduce

J ′(Ω)(θ) =
1

2

∫

∂Ω

|u0|
2 θ · n ds− ν

∫

∂Ω

∂u

∂n

∂p

∂n
θ · n ds.
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