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1 Parametric optimization: 14 points

1. Writing v = 〈u′(h), k〉, Λ = 〈λ′(h), k〉 and differentiating problem (1)
yields

{

−div (h∇v)− div (k∇u) = λ ρh v + λ ρ k u+ Λ ρ hu in Ω,
v = 0 on ∂Ω.

Differentiating the normalization condition
∫

Ω
ρhu2dx = 1 we obtain

∫

Ω

ρ u(2hv + ku) dx = 0.

2. Multiplying the above problem for v by u and integrating by parts
leads to
∫

Ω

(h∇v · ∇u+ k∇u · ∇u) dx =

∫

Ω

(

λ ρh v u+ λ ρ k u2 + Λ ρ hu2
)

dx.

From the equation for u we know that

∫

Ω

h∇v · ∇u dx =

∫

Ω

λ ρh v u dx.

Therefore, from the normalization
∫

Ω
ρhu2dx = 1, we deduce

Λ =

∫

Ω

k
(

|∇u|2 − λ ρu2
)

dx.

In other words, we found λ′(h) = |∇u|2 − λ ρu2 which is a function in
L1(Ω).

3. From the previous question and since, by assumption, ∇u 6= 0 on ∂Ω
and u = 0 on ∂Ω, we find λ′(h) > 0 on ∂Ω (and thus by continuity on a
neighborhood of ∂Ω). Therefore, for an optimal thickness h, the lower
constraint h ≥ hmin must be saturated in this region, i.e., h = hmin

near ∂Ω. On the contrary, at the point where u is maximum, we have
∇u = 0 and u > 0, thus λ′(h) < 0. It implies that, in the vicinity of
the maximum of u, we must have h = hmax.
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4. The objective function is

J(h) =

∫

Ω

j

(

u(h)

‖u(h)‖

)

dx.

It is clear that, since j is even, i.e., j(−w) = j(w), we have for any
t 6= 0

j

(

tu(h)

‖tu(h)‖

)

= j

(

u(h)

‖u(h)‖

)

,

so that the objective function is independent from the normalization
of the eigenfunction.

For h ∈ Uad, λ̂ ∈ R, û ∈ H1
0 (Ω) and p̂ ∈ H1

0 (Ω) we define the La-
grangian

L(h, λ̂, û, p̂) =

∫

Ω

j

(

û

‖û‖

)

dx+

∫

Ω

(

h∇û · ∇p̂− λ̂ρhûp̂
)

dx.

5. For û ∈ L2(Ω) we define

F (û) =

∫

Ω

j

(

û

‖û‖

)

dx.

By the chain rule lemma, since the derivative of ‖û‖ in the direction
of φ is 〈û, φ〉/‖û‖ with the notation 〈û, φ〉 =

∫

Ω
û φ dx, we obtain

〈F ′(û), φ〉 =

∫

Ω

F ′(û)φdx =

∫

Ω

j′
(

û

‖û‖

)(

φ

‖û‖
−

〈û, φ〉

‖û‖3
û

)

dx.

Clearly we find 〈F ′(û), û〉 = 0. Equivalently,

∫

Ω

F ′(û)φdx =

∫

Ω

j′
(

û

‖û‖

)

φ

‖û‖
dx−

(
∫

Ω

j′
(

û

‖û‖

)

û

‖û‖3
dx

)
∫

Ω

û φ dx

which implies

F ′(û) =
1

‖û‖
j′
(

û

‖û‖

)

−

(
∫

Ω

j′
(

û

‖û‖

)

û

‖û‖3
dx

)

û .

6. The variational formulation of the adjoint equation is, by definition,

〈
L

∂û
(h, λ, u, p), φ〉 = 0 ∀φ ∈ H1

0 (Ω).

We compute

〈
L

∂û
(h, λ, u, p), φ〉 =

∫

Ω

F ′(u)φdx+

∫

Ω

(h∇φ · ∇p− λρhφp) dx.
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7. By integration by parts we find that the adjoint p is a solution of
{

−div (h∇p)− λ ρh p = − 1

‖u‖j
′
(

u
‖u‖

)

+ αu in Ω,

p = 0 on ∂Ω,

with

α =

(
∫

Ω

j′
(

u

‖u‖

)

u

‖u‖3
dx

)

We check that the right hand side is orthogonal to u since

∫

Ω

u

‖u‖
j′
(

u

‖u‖

)

dx = α

∫

Ω

u2 dx = α‖u‖2.

Clearly, if p is a solution, then p+Cu is another possible solution. To
determine the value of the constant C we use

L

∂λ̂
(h, λ, u, p) = −

∫

Ω

ρhup dx = 0

which implies that C = −
∫

Ω
ρhup dx.

8. The derivative satisfies

〈J ′(h), k〉 = 〈
∂L

∂h
(h, λ, u, p), k〉.

We compute

〈
∂L

∂h
(h, λ, u, p), k〉 =

∫

Ω

(k∇u · ∇p− λρkup) dx,

which implies
J ′(h) = ∇u · ∇p− λρup.

2 Geometric optimization: 6 points

1. To define the Lagrangian we introduce two Lagrange multipliers q ∈
H1(RN ) and µ ∈ H1(RN ), which, together with v ∈ H1(RN ), are the
arguments of L

L(Ω, v, q, µ) =

∫

Ω

j(v) dx +

∫

Ω

(∆v + f)q dx+

∫

∂Ω

(v − g)µds.

2. To get the adjoint problem we differentiate the Lagrangian with re-
spect to v and set this partial derivative equal to 0. Before that we
perform two successive integration by parts

L(Ω, v, q, µ) =

∫

Ω

j(v) dx+

∫

Ω

(fq−∇q·∇v) dx+

∫

∂Ω

(

∂v

∂n
q + (v − g)µ

)

ds
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L(Ω, v, q, µ) =

∫

Ω

j(v) dx+

∫

Ω

(fq+∆qv) dx+

∫

∂Ω

(

∂v

∂n
q −

∂q

∂n
v + (v − g)µ

)

ds

For any φ ∈ H1(RN ) we have

〈
∂L

∂v
(Ω, v, q, µ), φ〉 =

∫

Ω

j′(v)φdx +

∫

Ω

∆qφ dx (1)

+

∫

∂Ω

(

∂φ

∂n
q −

∂q

∂n
φ+ φµ

)

ds

We first take a test function φ with compact support in Ω, so we
deduce that the optimal value of q, the adjoint p, satisfies

−∆p = j′(u) in Ω.

Then we take φ = 0 on ∂Ω but with no restriction on the value of ∂φ
∂n

on ∂Ω, so that
p = 0 on ∂Ω.

This yields the adjoint problem
{

−∆p = j′(u) in Ω,
p = 0 on ∂Ω.

Eventually, varying the trace of φ on ∂Ω gives the optimal value of the
Lagrange multiplier

λ =
∂p

∂n
on ∂Ω.

3. Formally we know that the shape derivative is given by

J ′(Ω)(θ) =
∂L

∂Ω
(Ω, u, p)(θ).

We compute the partial derivative

∂L

∂Ω
(Ω, v, q, µ)(θ) =

∫

∂Ω

(

j(v) + fq −∇q · ∇v
)

θ · n ds+

∫

∂Ω

(∂h

∂n
+Hh

)

θ · n ds,

with h = ∂v
∂n

q+(v− g)µ. Taking into account p = 0 and u = g on ∂Ω,
we deduce

J ′(Ω)(θ) =

∫

∂Ω

(

j(u)−∇p·∇u
)

θ·n ds+

∫

∂Ω

(∂u

∂n

∂p

∂n
+µ

∂(u− g)

∂n

)

θ·n ds.

Since λ = ∂p
∂n

on ∂Ω and ∇tp = 0 on ∂Ω, it leads to

J ′(Ω)(θ) =

∫

∂Ω

(

j(u) +
∂p

∂n

∂(u− g)

∂n

)

θ · n ds.
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