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A FEW DEFINITIONS'

A problem of optimal design (or shape optimization) for structures is defined

by three ingredients:

[1 a model (typically a partial differential equation) to evaluate (or analyse)

the mechanical behavior of a structure,

[1 an objective function which has to be minimized or maximized, or

sometimes several objectives (also called cost functions or criteria),

[1 a set of admissible designs which precisely defines the optimization

variables, including possible constraints.
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Optimal design problems can roughly be classified in three categories from the

“easiest” ones to the “most difficult” ones:

[ parametric or sizing optimization for which designs are parametrized

by a few variables (for example, thickness or member sizes), implying that

the set of admissible designs is considerably simplified,

geometric or shape optimization for which all designs are obtained
from an initial guess by moving its boundary (without changing its

topology, i.e., its number of holes in 2-d),

topology optimization where both the shape and the topology of the
admissible designs can vary without any explicit or implicit restrictions.
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[Deﬁnition of topologyj

Two shapes share the same topology if there exists a continuous deformation
from one to the other.

In dimension 2 topology is characterized by the number of holes or of
connected components of the boundary.

In dimension 3 it is quite more complicated ! Not only the hole’s number
matters but also the number and intricacy of “handles” or “loops”.

(a ball # a ball with a hole inside # a torus # a bretzel)
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GOALS OF THE COURSE'

1. To introduce numerical algorithms for computing optimal designs in a

“systematic” way and not by “trials and errors”.

. To obtain optimality conditions (necessary and/or sufficient) which are
crucial both for the theory (characterization of optimal shapes) and for

the numerics (they are the basis for gradient-type algorithms).

. A (very) brief survey of theoretical results on existence, uniqueness, and
qualitative properties of optimal solutions ; such issues will be discussed
only when they matter for numerical purposes.

A continuous approach of shape optimization is prefered to a discrete one.
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‘Example of sizing or parametric optimization'

Thickness optimization of a membrane

Q

[0 © = mean surface of a (plane) membrane

[l h = thickness in the normal direction to the mean surface
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The membrane deformation is modeled by its vertical displacement

u(x) : 2 — R, solution of the following partial differential equation (p.d.e.),

the so-called membrane model,
—div (hVu) =f in Q
u =0 on 02,
with the thickness h, bounded by minimum and maximum values
0 < hmin < h(z) < hipas < +00.

The thickness h is the optimization variable.

It is a sizing or parametric optimal design problem because the

computational domain {2} does not change.
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The set of admissible thicknesses is

Uyg = {h(a:) Q= Rs. t. 0<hmin < h(x) < hpmaer and /
Q

h(z)dz = ho\m},

where hg is an imposed average thickness.

Possible additional “feasibility” constraints: according to the
production process of membranes, the thickness h(x) can be discontinuous, or
on the contrary continuous ; its derivative h’(x) can be uniformly bounded
(molding-type constraint) or even its second-order derivative h”(x), linked to

the curvature radius (milling-type constraint).
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The optimization criterion is linked to some mechanical property of the
membrane, evaluated through its displacement u, solution of the p.d.e.,

J(h)

where, of course, © depends on h. For example, the global rigidity of a
structure is often measured by its compliance, or work done by the load: the
smaller the work, the larger the rigidity (be careful ! compliance = - rigidity).

In such a case,
j(u) = fu.
Another example amounts to achieve (at least approximately) a target

displacement ug(z), which means

j(u) = Ju—uol*.

Those two criteria are the typical examples studied in this course.
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[Other examples of objective functions}

[0 Introducing the stress vector o(z) = h(x)Vu(x), we can minimize the

maximum stress norm

J(h) = sup |o(z)]

rel)

or more generally, for any p > 1,

J(h) = ( /Q |a|pd:r;) o

For a vibrating structure, introducing the first eigenfrequency w, defined
by

—div (hVu) = w?u  in
u =0 on O},

we consider J(h) = —w to maximize it.
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[Other examples of criteria (ctd.)]

[ Multiple loads optimization: for n given loads (f;)1<;<» the independent
displacements u; are solutions of

—div (hVu;) = f;  in Q
u; =0 on 0f),

and we introduce an aggregated criteria

jmax. (/Qj(uz-) d:c) :

[0 Multi-criteria optimization: notion of Pareto front (see next slide).
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[Multi—criteria optimization: Pareto front)
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Assume we have n objective functions J;(h).

A design h is said to dominate another design h if
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The Pareto front is the set of designs which are not dominated by any other.
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Example of geometric optimizationl

Optimization of a membrane’s shape
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A reference domain for the membrane is denoted by (2, with a boundary made
of three disjoint parts

oN=T'ul'yuUlp,

where I' is the variable part, I'p is the Dirichlet (clamped) part and 'y is the

Neumann part (loaded by g).

The vertical displacement u is the solution of the membrane model

([ _Au=0 inQ
u=20 on I'p

g—gzg ODFN

ou 0

. n on I'

From now on the membrane thickness is fixed, equal to 1.
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The set of admissible shapes is thus

Uad:{QCRN such that I‘DUFNcﬁﬂ and /d:z::Vo},
Q

where Vj is a given volume. The geometric shape optimization problem reads

Qlé%lfad J(Q)j

with, as a criteria, the compliance

J(Q)z/ gu dz,
I'n

or a least square functional to achieve a target displacement wug(x)

J(Q):/ o — up 2da.
Q

The true optimization variable is the free boundary I.
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Example of topology optimization I

D

Not only the shape boundaries I' are allowed to move but new connected

components (holes in 2-d) of I' can appear or disappear. Topology is now

optimized too.
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[Shape optimization in the elasticity setting]

The model of linearized elasticity gives the displacement vector field
u(z) : © — RY as the solution of the system of equations

(

—div(Ae(u)) =0 in
u=~0 on I'p
(Ae(u))n =g on I'y
\ (Ae(u))n =0 on I’

with e(u) = (Vu+ (Vu)') /2, and AL = 2u& + A(tr€) Id, where 1 and X are the
Lamé coeflicients.

The domain boundary is again divided in three disjoint parts
oN=T'ul'yuUTlp,

where I' is the free boundary, the true optimization variable.
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The set of admissible shapes is again

Uad:{QCRN such that I‘DUFNcﬁﬂ and /d:z::Vo},
Q

where V) is a given imposed volume. The criteria is either the compliance

J () / g-udr,
I'n

or a least-square criteria for the target displacement ug(x)

J(Q) = / lu — up|?de.
Q
As before, the shape optimization problem reads

Qle%lfad J(Q)

Three possible approaches: parametric, geometric, topology.
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(Applications)

See the web site http://www.cmap.polytechnique.fr/~optopo (and links
therein).

Civil engineering Mechanical engineering
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Micromechanics (MEMS) Aeronautics
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Industrial examples at EADS, Airbus, Renault...
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Commercial softwares

Optistruct, Ansys DesignSpace, Genesis, MSC-Nastran, Tosca, devDept...

logy ] : i Beam &
mizalion i
Opli shel Madd
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‘Example in fluid mechanics'

[Optimization of a wing proﬁle]

Drag minimization and lift maximization.

Constant velocity at infinity Uj.
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Potential flow: simplification of Navier-Stokes equations for a perfect
incompressible and irrotational fluid in a steady state regime. The velocity U

derives from a scalar potential ¢
U=Vo.

Bernoulli’s law for the pressure

1
p=po— §\V¢\2-

in €

at infinity

on OP,
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D’Alembert paradox: zero drag, zero lift !

We choose a criteria on the pressure

J(P) /a i) ds,

where the function j is typically a least square criteria for a target pressure

](p) — ‘p - ptarget‘Q-
The geometric shape optimization problem reads

Plerzljad I(P).

A priori, there is no need of topology optimization for a wing profile...
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[Parametric optimization of a thin profile (in 2—d)]

Example on how to reduce a geometric optimization problem into a

parametric one.

Thin profile P with upper and lower boundaries (extrados and intrados)
defined by

y=fT(z) for 0<xz<L, y=f(z) for 0<z<I,

where L is the length of the profile’s chord. We assume that the velocity at
infinity Uy is aligned with the z-axis. The Neumann boundary condition for
the potential is

which, at first order, becomes

+
g_jj _ UO% on the chord [0, L].
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Parametric optimization problem with ¥ = [0, L]

p

in Q\ X
at infinity

on X

on >, .

: [0, L] — R*
: 10, L] = R~

5.6 fT(0)=f7(0)=fT(L)=f"(L)=0

The main advantage is that the domain {2 is now fixed.
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(Modeling Choicesj

Modeling is typically an engineering issue.

[1 Choice of the model: a compromise between accuracy and the CPU cost

(optimization requires many successive analyses of the model).

[1 Choice of the criterion: difficulty of measuring a qualitative property, of

combining several criteria.

[1 Choice of the admissible set: selecting the most appropriate constraints
from the point of view of the applications but also of the numerical

algorithms.

We shall not discuss this issue during the course. It is however an important

aspect of the personal projects (EA).
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(Other fields related to shape optimizationj

The technical tools in this course are also useful for the following areas:
[ Optimal control.
[1 Inverse problems.

[1 Sensitivity analysis of parameters.
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[Boundary value problems]

JQy

0Q

D

Membrane model. f = bulk force, g = surtace load.

(

—Au=f in Q,

n = unit normal vector,
u =0 on 0f1p,

an: du .
notation: oy = Vu-n.

\g—z:g on 0y
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[ Key idea which must be mastered:)

The variational approach
Boundary value problem = p.d.e. + boundary condition

It is proved that a boundary value problem is equivalent to its variational

formulation.

From a mechanical point of view, the variational formulation is just the

principle of virtual work.

Any variational formulation can be written as

find w € V' such that a(u,v) = L(v) Vv eV,

This approach gives an existence theory for solutions and yields numerical

methods such as finite elements for computing them.

It is also a key tool for shape optimization.
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( Technical ingredients]

Green’s formula:

/ Au(x)v(x)dr = —/ Vu(zx) - Vu(z) dx + %(az)v(:{;) ds
Q Q

1o 871

Sobolev spaces (functions with finite energy):

we HY(Q) < /Q (IVa(@)? + Ju(@)]?) de < +oo

uw € Hy(Q) & ue H(Q) and u = 0 on 99
[0 The Hilbert space V is usually a Sobolev space.
[0 To find a and L, the p.d.e. is multiplied by a test function.
[1 Integrate by parts using Green’s formula.

[1 Use the boundary conditions for simplifying the boundary integrals.
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How to remember Green’s formula 7 It is enough to know the simple formula

ng (x)dx = LQ w(x)n; ds

with n;(x), the i-th component of the exterior unit normal vector to 9€2 (to
remember that it is the exterior normal, think about the 1-d formula !). All
type of Green’s formulas are deduced from this one.

As an example, take w = vg;, and sum w.r.t. ¢ to get

ou

. %(az)’u(:{;) ds

/Q Au(z)v(z) dz = — /Q Vu(z) - Volz) dz +
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[Variational formulation]

Integration by parts yields

/fvda:=—/Auvd:v=/Vu-vadaz—/ %vds
Q Q Q oq On

[1 The Dirichlet B.C. is imposed to the test functions.
[1 The Neumann B.C. is just put into the variational formulation.

Adequate choice of the Sobolev space:
V=A{ve H'() such that v = 0 on O0p |}

After simplification we get: Find u € V such that

/Vu-Vvd:U:/ffud:BJr/ guvds YvelV.
Q Q 0N

variational formulation (V.F.) < boundary value problem (B.V.P.)

Lax-Milgram Theorem =- existence and uniqueness of u € V
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[Checking the equivalence V.F < B.V.P. j

We already saw that u solution of B.V.P. = u solution of V.F.

Let us check that u solution of V.F. = u solution of B.V.P.
Let u € V = {v € H*(Q) such that v =0 on 9Qp } satisty

/VU'VUdZC:/fUdZC+/ guvds YvelV.
Q Q 0N

Integrating by parts (backwards) yields

—/Auvdaer @vdSZ/f’Udaer/ gvds YvelV,
Q oq On Q 00N

Taking first v with compact support in 2 leads to

—Au = f in (.
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Taking into account this first equality, the V.F. becomes

/ %vds:/ guvds YvelV,
o0 On 0N

In a second step, v is any function with a trace on 0€2n. Thus

%:g on 0f)y.
on

The Dirichlet B.C. ©w = 0 on 0f)p is recovered because u € V.

Eventually, u is a (weak) solution of the B.V.P.

’

—Au=f in (Q,
u =20 on 0€1p,

\ g—gzg on 0.
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Remark: if 9Qp = () (no clamping), then a necessary and sufficient condition

of existence is the force equilibrium:

/fdx—l—/ gds =10
Q o0

Furthermore, uniqueness is obtained up to an additive constant, i.e., up to a

rigid displacement.
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[Linearized elasticity System]

—dive = f in ()
with o = 2ue(u) + Atr(e(u))Id
u=20 on 0S2p

| on=y on 0€)y,

6’uz~ ou j

1 1
e(u) = = (Vu+ (Vu)') = = ( + )
2 ( ) 2 (933]' (9337, 1<i,j<N

V ={ve H' ()" such that v =0 on dQp }

Variational formulation: find v € V such that

/2,ue( )oe(v)daj—l—/)\divudivvdx:/f'vdx—l—/ g-vdsVoveV.
Q Q Q 0N
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FINITE ELEMENT METHOD (F.E.M.)

(Variational approximation)

Exact variational formulation:
Find v € V such that a(u,v) = L(v) Vv e V.
Approximate variational formulation:
Find up € Vj such that a(up,vn) = L(vy) Yo € Vy

where V), C V is a finite-dimensional subspace.

The finite element method amounts to properly define simple subspaces V},,

linked to the notion of mesh of the domain f2.
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Introducing a basis (¢;)1<;<n, of Vi, we define

The approximate V.F. is equivalent to

Np,
Find U, € R™" such that a | Y ujé;, ¢; | = L(¢;) V1<i< N,

j=1
which is nothing but a linear system

KnUn =by with  (Kp)ij = al(@j,¢4),  (bn)i = L(¢s).

Remark: the coerciveness of a(u,v) implies that the rigidity matrix Ky, is
positive definite. On the same token, the symmetry of a(u,v) implies that of

Kh,.
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(Lagrange [P, finite elements in NV =1 dimension)

Uniform mesh with nodes (or vertices) (z; = jh)o<j<nt1 Where h = —

A

—
X=0 X1 X i Xnp-1 Xn Xner=l

V3, = space of piecewise affine and globally continuous functions

1 —|z| if |z| <1,
0 if |z| > 1.

ZC—ZCj

EE) with (o) =
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[Resulting linear system)

We have to solve the linear system /C;,Uj;, = b;, where K, is the rigidity matrix

Zuquj with Up, = (ug, ..., un, ) € RV

A straightforward calculatlon shows that ICj, is tridiagonal

(2 0 )
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(Resulting linear system (Ctd.)]

To make explicit the right hand side b, we have to compute integrals

(bp): = /xvz+1 f(x)pi(x)dxr for 1<i<n.

1—1

For that purpose one uses quadrature formulas (or numerical integration). For
example, the “trapezoidal rule”

1

Lit1 — Ly

[ v de s 5 @) + 0.

7
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[Convergence of the FEMJ

Theorem. Let u € H}(0,1) and uy, € Vo, be the exact and approximate
solutions, respectively. The Py finite element method converges in the sense
that

lim lw —unllm1(0,1) = 0.

Furthermore, if uw € H*(0,1) (which is true as soon as f € L?(0,1)), then
there exists a constant C, which does not depend on A, such that

Ju — unllm10,1) < Chllu"||12(0,1) = Ch| fllL2(0,1)-

Remark. One advantage of the V.F. is that the F.E. basis functions need not

to be twice differentiable but merely once.
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F.E.M. IN HIGHER DIMENSIONS N > 2'

(Lagrange P, finite elementsj

The domain is meshed by triangles in dimension N = 2 or tetrahedra in

dimension N = 3 with vertices denoted by (a;)1<;j<n+1 in RN,

We shall use FreeFem-++ http://www.freefem.org
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Lemma Let K be a triangle or a tetrahedron with vertices (a;)i1<j<n+1. Any

affine function or polynomial p € P; can be written as

where (\;(z))1<j<n+1 are the barycentric coordinates of z € RY defined by

Z;V;ll a;jNj =x; forl<e< N
SN =1

j=1

In other words, any P; function is uniquely characterized by its
(nodal) values at the vertices or nodes of the mesh.
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The Lagrange P; finite element method (triangular F.E. of order 1)
associated to a mesh 7 is defined by

Vi, = {v € C(Q) such that v |k, € Py for any K; € Tp, } .
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(Resulting linear system]

We have to solve the linear system KU = b, where Kp is the rigidity matrix

/chz(/wj-widx) ,bhz(/mdaz) ,
2 1<?,7<nqi Q 1<i<ngq;

_ Volume(K)
/K plz)de~ —5 +1
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ZRectangular finite elements Ql]

A N-rectangle K in RY is defined as Hfll[li, L;] with —oco < [; < L; < 400.

Its vertices are (a;);<;j<an.
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The set Q; is made of polynomials of degree less or equal to 1 with respect
to each variable (# P;)

Q1 = {p(iﬂ) = Z Qi inT1 TN avec T = (1, ...,:I:N)}
0<ii<1,...,0<iy <1

In other words, Q; is defined as the tensor product of 1 — d affine polynomials

in each variable.

Any Q; polynomial is uniquely characterized by its values at the vertices

(aj)1<j<on of a N-rectangle.
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The Lagrange Q; finite element method (quadrangular F.E. of order 1)
associated to a mesh 7 is defined by

Vi, = {v € C(Q) such that v |k, € Q; for any K; € Tp, } .

Basis function of V}, associated to one node or vertex of the mesh.
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(Section 2.2.2: Dual or complementary energy]

Very important for the sequel... but we shall see that next week !
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