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”Strategy” of the course

Computing the shape derivative of the solution of a p.d.e. is not

easy !

➳ We explain once the rigorous method for computing a shape derivative.

➳ It is a bit involved and quite calculus-intensive...

➳ At the end we shall introduce a formal simpler method which is the one to

be used in practice.

➳ This formal method is called the Lagrangian method and you should learn

how to use it !
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6.3.3. Derivation of a function depending on the shape

Let u(Ω, x) be a function defined on the domain Ω.

There exist two notions of derivative:

1) Eulerian (or shape) derivative U

u(( Id + θ)Ω0, x) = u(Ω0, x) + U(θ, x) + o(θ) , with lim
θ→0

‖o(θ)‖

‖θ‖
= 0

OK if x ∈ Ω0 ∩ ( Id + θ)Ω0 (local definition, makes no sense on the boundary).

2) Lagrangian (or material) derivative Y

We define the transported function u(θ) on Ω0 by

u(θ, x) = u ◦ ( Id + θ) = u
(

( Id + θ)Ω0, x+ θ(x)
)

∀x ∈ Ω0.

The Lagrangian derivative Y is obtained by differentiating u(θ, x)

u(θ, x) = u(0, x) + Y (θ, x) + o(θ) , with lim
θ→0

‖o(θ)‖

‖θ‖
= 0 ,
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Differentiating u = u ◦ ( Id + θ), one can check that

Y (θ, x) = U(θ, x) + θ(x) · ∇u(Ω0, x).

The Eulerian derivative, although being simpler, is very delicate to use and

often not rigorous. For example, if u ∈ H1
0 (Ω), the space of definition varies

with Ω... Equivalently what boundary condition should the derivative satisfy ?

We recommend to use the Lagrangian derivative to avoid mistakes.

Remark. Computations will be made with Y but the final result is stated

with U (which is simpler).
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✞

✝

☎

✆
Composed shape derivative

Proposition 6.28. Let Ω0 be a smooth bounded open set of IRN , and

u(Ω) ∈ L1(IRN ). We assume that the transported function u is diffrentiable at

0 from W 1,∞(IRN ; IRN ) into L1(IRN ), with derivative Y . Then

J(Ω) =

∫

Ω

u(Ω) dx

is differentiable at Ω0 and ∀θ ∈W 1,∞(IRN ; IRN )

J ′(Ω0)(θ) =

∫

Ω0

(

u(Ω0) divθ + Y (θ)
)

dx.

In other words, using the Eulerian derivative U ,

J ′(Ω0)(θ) =

∫

Ω0

(

U(θ) + div(u(Ω0)θ)
)

dx.
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Similarly, if u(θ) is differentiable at 0 as a function from W 1,∞(IRN ; IRN ) into

L1(∂Ω0), then

J(Ω) =

∫

∂Ω

u(Ω) dx

is differentiable at Ω0 and

J ′(Ω0)(θ) =

∫

∂Ω0

(

u(Ω0) ( divθ −∇θn · n) + Y (θ)
)

ds.

In other words, using the Eulerian derivative U ,

J ′(Ω0)(θ) =

∫

∂Ω0

(

U(θ) + θ · n

(

∂u(Ω0)

∂n
+Hu(Ω0)

))

dx.
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6.3.4 Shape derivation of an equation

From now on, u(Ω) is the solution of a p.d.e. in the domain Ω.

Recall that

Y (θ, x) = U(θ, x) + θ(x) · ∇u(Ω0, x).

The Eulerian derivative, although being simpler, is very delicate to use and

often not rigorous. For example, if u ∈ H1
0 (Ω), the space of definition varies

with Ω... Equivalently what boundary condition should the derivative satisfy ?

We recommend to use the Lagrangian derivative: after getting back to the

fixed reference domain Ω0 we differentiate with respect to θ. This is the safest

and most rigorous way for computing the shape derivative of u, but the

details can be tricky.

We shall later introduce a heuristic method which is simpler.

The results depend on the type of boundary conditions.

G. Allaire, Ecole Polytechnique Optimal design of structures



8

✞

✝

☎

✆
Dirichlet boundary conditions

For f ∈ L2(IRN ) we consider the boundary value problem






−∆u = f in Ω

u = 0 on ∂Ω,

which admits a unique solution u(Ω) ∈ H1
0 (Ω).

Its variational formulation is: find u ∈ H1
0 (Ω) such that

∫

Ω

∇u · ∇φ dx =

∫

Ω

fφ dx ∀φ ∈ H1
0 (Ω).

(Simplification with respect to the textbook since here g = 0.)

G. Allaire, Ecole Polytechnique Optimal design of structures



9

For Ω = ( Id + θ)(Ω0) we define the change of variables

x = y + θ(y) y ∈ Ω0 x ∈ Ω.

Proposition 6.30. Let u(Ω) ∈ H1
0 (Ω) be the solution and u(θ) ∈ H1

0 (Ω0) be

its transported function

u(θ)(y) = u(Ω)(x) = u
(

( Id + θ)(Ω0)
)

◦ ( Id + θ)(y).

The functional θ → u(θ), from W 1,∞(IRN ; IRN ) into H1(Ω0), is differentiable

at 0, and its derivative in the direction θ, called Lagrangian derivative is

Y = 〈u′(0), θ〉

where Y ∈ H1
0 (Ω0) is the unique solution of







−∆Y = −∆
(

θ · ∇u(Ω0)
)

in Ω0

Y = 0 on ∂Ω0.
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Proof. We perform the change of variables x = y + θ(y) with y ∈ Ω0 in the

variational formulation
∫

Ω

∇u · ∇φ dx =

∫

Ω

fφ dx ∀φ ∈ H1
0 (Ω).

Take a test function φ = ψ ◦ ( Id + θ)−1, i.e., ψ(y) = φ(x). Recall that

(

∇φ
)

◦ ( Id + θ) =
(

(I +∇θ)−1
)t
∇
(

φ ◦ ( Id + θ)
)

.

We obtain: find u ∈ H1
0 (Ω0) such that, for any ψ ∈ H1

0 (Ω0),
∫

Ω0

A(θ)∇u · ∇ψ dy =

∫

Ω0

f ◦ ( Id + θ)ψ | det( Id +∇θ)|dy

with A(θ) = | det(I +∇θ)|(I +∇θ)−1
(

(I +∇θ)−1
)t
.
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We differentiate with respect to θ at 0 the variational formulation
∫

Ω0

A(θ)∇u · ∇ψ dy =

∫

Ω0

f ◦ ( Id + θ)ψ | det( Id +∇θ)|dy

where ψ is a function which does not depend on θ.

We already checked in the proof of Proposition 6.22 that the righ hand side is

differentiable. Furthermore, the map θ → A(θ) is differentiable too because

A(θ) = (1 + divθ)I −∇θ − (∇θ)t + o(θ) with lim
θ→0

‖o(θ)‖
L∞(IRN ;IRN2

)

‖θ‖W 1,∞(IRN ;IRN )

= 0.
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Since u(θ = 0) = u(Ω0), we get
∫

Ω0

∇Y ·∇ψ dy+

∫

Ω0

(

divθ I−∇θ−(∇θ)t
)

∇u(Ω0) ·∇ψ dy =

∫

Ω0

div
(

fθ
)

ψ dy

Since u(θ) ∈ H1
0 (Ω0), its derivative Y belongs to H1

0 (Ω0) too. Thus Y is a

solution of






−∆Y = div
[(

divθ I −∇θ − (∇θ)t
)

∇u(Ω0)
]

+ div
(

fθ
)

in Ω0

Y = 0 on ∂Ω0.

Recalling that ∆u(Ω0) = −f in Ω0, and using the identity (true for any

v ∈ H1(Ω0) such that ∆v ∈ L2(Ω0))

∆ (∇v · θ) = div
(

(∆v)θ − ( divθ)∇v +
(

∇θ + (∇θ)t
)

∇v
)

,

leads to the final result. (gotcha !)
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✞

✝

☎

✆
Shape derivative U

Corollary 6.32. The Eulerian derivative U of the solution u(Ω), defined by

formula

U = Y −∇u(Ω0) · θ,

is the solution in H1(Ω0) of






−∆U = 0 in Ω0

U = −(θ · n)∂u(Ω0)
∂n

on ∂Ω0.

(Obvious proof starting from Y .)

We are going to recover formally this p.d.e. for U without using the

knowledge of Y .
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Let φ be a compactly supported test function in ω ⊂ Ω for the variational

formulation
∫

ω

∇u · ∇φ dx =

∫

ω

fφ dx.

Differentiating with respect to Ω, neither the test function, nor the domain of

integration depend on Ω. Thus it yields
∫

ω

∇U · ∇φ dx = 0 ⇔ −∆U = 0.

To find the boundary condition we formally differentiate
∫

∂Ω

u(Ω)ψ ds = 0 ∀ψ ∈ C∞(IRN )

⇒

∫

∂Ω0

Uψ ds+

∫

∂Ω0

(

∂(uψ)

∂n
+Huψ

)

θ · nds = 0

which leads to the correct result since u = 0 on ∂Ω0.

Remark. The direct computation of U is not always that easy !
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✞

✝

☎

✆
Neumann boundary conditions

For f ∈ H1(IRN ) and g ∈ H2(IRN ) we consider the boundary value problem






−∆u+ u = f in Ω

∂u
∂n

= g on ∂Ω

which admits a unique solution u(Ω) ∈ H1(Ω).

Its variational formulation is: find u ∈ H1(Ω) such that
∫

Ω

(∇u · ∇φ+ uφ) dx =

∫

Ω

fφ dx+

∫

∂Ω

gφ ds ∀φ ∈ H1(Ω).
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Proposition 6.34. For Ω = ( Id + θ)(Ω0) we define the change of variables

x = y + θ(y) y ∈ Ω0 x ∈ Ω.

Let u(Ω) ∈ H1(Ω) be the solution and u(θ) ∈ H1(Ω0) be its transported

function

u(θ)(y) = u(Ω)(x) = u
(

( Id + θ)(Ω0)
)

◦ ( Id + θ)(y).

The functional θ → u(θ), from W 1,∞(IRN ; IRN ) into H1(Ω0), is differentiable

at 0, and its derivative in the direction θ, called Lagrangian derivative is

Y = 〈u′(0), θ〉

where Y ∈ H1(Ω0) is the unique solution of














−∆Y + Y = −∆(∇u(Ω0) · θ) +∇u(Ω0) · θ in Ω0

∂Y

∂n
= (∇θ + (∇θ)t)∇u(Ω0) · n+∇g · θ − g(∇θn · n) on ∂Ω0.
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Proof. We perform the change of variables x = y + θ(y) with y ∈ Ω0 in the

variational formulation. Take a test function φ = ψ ◦ ( Id + θ)−1, i.e.,

ψ(y) = φ(x). We get
∫

Ω0

A(θ)∇u · ∇ψ dy +

∫

Ω0

uψ| det(I +∇θ)|dy

=

∫

Ω0

f ◦ ( Id + θ)ψ| det(I +∇θ)|dy

+

∫

∂Ω0

g ◦ ( Id + θ)ψ| det(I +∇θ)| | (I +∇θ)−tn | ds

with A(θ) = | det(I +∇θ)|(I +∇θ)−1
(

(I +∇θ)−1
)t
.

We differentiate with respect to θ at 0.

The only new term is the boundary integral which can be differentiated like in

Proposition 6.24.
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Defining Y = 〈u′(0), θ〉 we deduce
∫

Ω0

(∇Y · ∇ψ + Y ψ) dy+

∫

Ω0

(

divθ I −∇θ − (∇θ)t
)

∇u · ∇ψ dy

+

∫

Ω0

uψ divθ dy =

∫

Ω0

div(fθ)ψ dy

+

∫

∂Ω0

(

∇g · θ + g
(

divθ −∇θn · n
))

ψds

Then we recall that u(0) = u(Ω0) = u, ∆u = u− f in Ω0 and ∂u
∂n

= g on ∂Ω0,

and the identity

∆ (∇v · θ) = div
(

(∆v)θ − ( divθ)∇v + (∇θ + (∇θ)t)∇v
)

,

to get the result. Simple in principle but computationally intensive...
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Corollary 6.36. The Eulerian derivative U of the solution u(Ω), defined by

U = Y −∇u(Ω0) · θ,

is a solution in H1(Ω0) of

−∆U + U = 0 in Ω0.

and satisfies the boundary condition

∂U

∂n
= θ · n

(

∂g

∂n
−
∂2u(Ω0)

∂n2

)

+∇t(θ · n) · ∇tu(Ω0) on ∂Ω0,

where ∇tφ = ∇φ− (∇φ · n)n denotes the tangential gradient on the boundary.

Proof. Easy but tedious computation.
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6.4 Gradient and optimality condition

We consider the shape optimization problem

inf
Ω∈Uad

J(Ω),

with Uad =
{

Ω = ( Id + θ)(Ω0) and
∫

Ω
dx = V0

}

. The cost function J(Ω) is

either the compliance, or a least square criterion for a target displacement

u0(x) ∈ L2(IRN )

J(Ω) =

∫

Ω

fu dx+

∫

∂Ω

gu ds or J(Ω) =

∫

Ω

|u− u0|
2dx.

The function u(Ω) is the solution in H1(Ω) of






−∆u+ u = f in Ω

∂u
∂n

= g on ∂Ω,

with f ∈ H1(IRN ) and g ∈ H2(IRN ).
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✞

✝

☎

✆
Gradient and optimality condition

Theorem 6.38. The functional J(Ω) =
∫

Ω
|u− u0|

2dx is shape differentiable

J ′(Ω0)(θ) =

∫

∂Ω0

θ · n

(

|u− u0|
2 +∇u · ∇p+ p(u− f)−

∂(gp)

∂n
−Hgp

)

ds,

where p is the adjoint state, unique solution in H1(Ω0) of






−∆p+ p = −2 (u− u0) in Ω0

∂p
∂n

= 0 on ∂Ω0,

We recover the fact that the shape derivative depends only on the normal

trace of θ on the boundary.
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Proof. Applying Proposition 6.28 to the cost function yields

J ′(Ω0)(θ) =

∫

Ω0

(

|u(Ω0)− u0|
2 divθ + 2(u(Ω0)− u0)(Y −∇u0 · θ)

)

dx,

or equivalently, with U = Y −∇u(Ω0) · θ,

J ′(Ω0)(θ) =

∫

Ω0

[

div
(

θ|u(Ω0)− u0|
2
)

+ 2(u(Ω0)− u0)U
]

dx.

Multiplying the adjoint equation by U
∫

Ω0

(∇p · ∇U + pU) dy = −2

∫

Ω0

(u(Ω0)− u0)U dy,

then the equation for U by p
∫

Ω0

(∇p · ∇U + pU) dy =
∫

∂Ω0

θ · n

(

−∇u(Ω0) · ∇p− p∆u(Ω0) +
∂(gp)

∂n
+Hgp

)

ds,

we deduce the result by comparison of the two equalities.
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✞

✝

☎

✆
The compliance case (self-adjoint)

Theorem 6.40. The functional J(Ω) =

∫

Ω

fu dx+

∫

∂Ω

gu ds is

shape-differentiable

J ′(Ω0)(θ) =

∫

∂Ω0

θ · n
(

−|∇u(Ω0)|
2 − |u(Ω0)|

2 + 2u(Ω0)f
)

ds

+

∫

∂Ω0

θ · n

(

2
∂(gu(Ω0))

∂n
+ 2Hgu(Ω0)

)

ds,

Interpretation: assume f = 0 and g = 0 where θ · n 6= 0. The formula

simplifies in

J ′(Ω0)(θ) = −

∫

∂Ω0

θ · n
(

|∇u|2 + u2
)

ds ≤ 0

It is always advantageous to increase the domain (i.e., θ · n > 0) for

decreasing the compliance.
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Proof. Applying Proposition 6.28 to the cost function yields

J ′(Ω0)(θ) =

∫

Ω0

(fu divθ + uθ · ∇f + fY ) dx

+

∫

∂Ω0

(gu ( divθ −∇θn · n) + uθ · ∇g + gY ) ds,

or equivalently, with U = Y −∇u · θ,

J ′(Ω0)(θ) =

∫

Ω0

( div(fuθ) + fU) dx+

∫

∂Ω0

(

θ · n

(

∂(gu)

∂n
+Hgu

)

+ gU

)

ds.

Multiplying the equation for u by U and that for U by u, then comparing,

leads to the result.

Remark. Same type of result for a Dirichlet boundary condition (but

different formulas).
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✞

✝

☎

✆
6.4.3 Fast derivation: the Lagrangian method

➵ The previous computations are quite tedious... but there is a simpler and

faster (albeit formal) method, called the Lagrangian method (proposed in

this context by J. Céa).

➵ The Lagrangian allows us to find the correct definition of the adjoint state

too.

➵ It is easy for Neumann boundary conditions, a little more involved for

Dirichlet ones.

➵ That is the method to be known !
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✞

✝

☎

✆
Fast derivation for Neumann boundary conditions

If the objective function is

J(Ω) =

∫

Ω

j(u(Ω)) dx,

the Lagrangian is defined as the sum of J and of the variational formulation

of the state equation

L(Ω, v, q) =

∫

Ω

j(v) dx+

∫

Ω

(

∇v · ∇q + vq − fq
)

dx−

∫

∂Ω

gq ds,

with v and q ∈ H1(IRN ). It is important to notice that the space H1(IRN )

does not depend on Ω and thus the three variables in L are clearly

independent.
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The partial derivative of L with respect to q in the direction φ ∈ H1(IRN ) is

〈
∂L

∂q
(Ω, v, q), φ〉 =

∫

Ω

(

∇v · ∇φ+ vφ− fφ
)

dx−

∫

∂Ω

gφ ds,

which, upon equating to 0, gives the variational formulation of the state.

The partial derivative of L with respect to v in the direction φ ∈ H1(IRN ) is

〈
∂L

∂v
(Ω, v, q), φ〉 =

∫

Ω

j′(v)φ dx+

∫

Ω

(

∇φ · ∇q + φq
)

dx,

which, upon equating to 0, gives the variational formulation of the adjoint.

The partial derivative of L with respect to Ω in the direction θ is

∂L

∂Ω
(Ω0, v, q)(θ) =

∫

∂Ω

θ · n

(

j(v) +∇v · ∇q + vq − fq −
∂(gq)

∂n
−Hgq

)

ds.

When evaluating this derivative with the state u(Ω0) and the adjoint p(Ω0),

we precisely find the derivative of the objective function

∂L

∂Ω

(

Ω0, u(Ω0), p(Ω0)
)

(θ) = J ′(Ω0)(θ)
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Indeed, if we differentiate the equality

L(Ω, u(Ω), q) = J(Ω) ∀ q ∈ H1(IRN ),

the chain rule lemma yields

J ′(Ω0)(θ) =
∂L

∂Ω
(Ω0, u(Ω0), q)(θ) + 〈

∂L

∂v
(Ω0, u(Ω0), q), u

′(Ω0)(θ)〉

Taking q = p(Ω0), the last term cancels since p(Ω0) is the solution of the

adjoint equation.

Thanks to this computation, the “correct” result can be guessed for J ′(Ω0)

without using the notions of shape or material derivatives.

Nevertheless, in full rigor, this “fast” computation of the shape derivative

J ′(Ω0) is valid only if we know that u is shape differentiable.
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✞

✝

☎

✆
Fast derivation for Dirichlet boundary conditions

It is more involved ! Let u ∈ H1
0 (Ω) be the solution of

∫

Ω

∇u · ∇φ dx =

∫

Ω

fφ dx ∀φ ∈ H1
0 (Ω).

The “usual” Lagrangian is

L(Ω, v, q) =

∫

Ω

j(v) dx+

∫

Ω

(

∇v · ∇q − fq
)

dx,

for v, q ∈ H1
0 (Ω). The variables (Ω, v, q) are not independent !

Indeed, the functions v and q satisfy

v = q = 0 on ∂Ω.

Another Lagrangian has to be introduced.
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✞

✝

☎

✆
Lagrangian for Dirichlet boundary conditions

The Dirichlet boundary condition is penalized

L(Ω, v, q, λ) =

∫

Ω

j(v) dx−

∫

Ω

(∆v + f)q dx+

∫

∂Ω

λv ds

where λ is the Lagrange multiplier for the boundary condition. It is now

possible to differentiate since the 4 variables v, q, λ ∈ H1(IRN ) are

independent.

Of course, we recover

sup
q,λ

L(Ω, v, q, λ) =







∫

Ω

j(u) dx = J(Ω) if v ≡ u,

+∞ otherwise.
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By definition of the Lagrangian:

the partial derivative of L with respect to q in the direction φ ∈ H1(IRN ) is

〈
∂L

∂q
(Ω, v, q, λ), φ〉 = −

∫

Ω

φ
(

∆v + f
)

dx,

which, upon equating to 0, gives the state equation,

the partial derivative of L with respect to λ in the direction φ ∈ H1(IRN ) is

〈
∂L

∂λ
(Ω, v, q, λ), φ〉 =

∫

∂Ω

φv dx,

which, upon equating to 0, gives the Dirichlet boundary condition for the

state equation.
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To compute the partial derivative of L with respect to v, we perform a first

integration by parts

L(Ω, v, q, λ) =

∫

Ω

j(v) dx+

∫

Ω

(∇v · ∇q − fq) dx+

∫

∂Ω

(

λv −
∂v

∂n
q

)

ds,

then a second integration by parts

L(Ω, v, q, λ) =

∫

Ω

j(v) dx−

∫

Ω

(v∆q − fq) dx+

∫

∂Ω

(

λv −
∂v

∂n
q +

∂q

∂n
v

)

ds.

We now can differentiate in the direction φ ∈ H1(IRN )

〈
∂L

∂v
(Ω, v, q), φ〉 =

∫

Ω

j′(v)φ dx−

∫

Ω

φ∆q dx+

∫

∂Ω

(

−q
∂φ

∂n
+ φ

(

λ+
∂q

∂n

))

ds

which, upon equating to 0, gives three relationships, the two first ones being

the adjoint problem.
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1. If φ has compact support in Ω0, we get

−∆p = −j′(u) dans Ω0.

2. If φ = 0 on ∂Ω0 with any value of ∂φ
∂n

in L2(∂Ω0), we deduce

p = 0 sur ∂Ω0.

3. If φ is now varying in the full H1(Ω0), we find

∂p

∂n
+ λ = 0 sur ∂Ω0.

The adjoint problem has actually been recovered but furthermore the optimal

Lagrange multiplier λ has been characterized.
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Eventually, the shape partial derivative is

∂L

∂Ω
(Ω0, u, p, λ)(θ) =

∫

∂Ω0

θ · n
(

j(u)− (∆u+ f)p+
∂(uλ)

∂n
+Huλ

)

ds

Knowing that u = p = 0 on ∂Ω0 and λ = − ∂p
∂n

we deduce

∂L

∂Ω
(Ω0, u, p, λ)(θ) =

∫

∂Ω0

θ · n
(

j(0)−
∂u

∂n

∂p

∂n

)

ds = J ′(Ω0)(θ)
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J ′(Ω0)(θ) =
∂L

∂Ω

(

Ω0, u(Ω0), p(Ω0)
)

(θ)

This formula is not a surprise because differentiating

L(Ω, u(Ω), q, λ) = J(Ω) ∀q, λ

yields

J ′(Ω0)(θ) =
∂L

∂Ω
(Ω0, u(Ω0), q, λ)(θ) + 〈

∂L

∂v
(Ω0, u(Ω0), q, λ), u

′(Ω0)(θ)〉.

Then, taking q = p(Ω0) (the adjoint state) and λ = − ∂p
∂n

(Ω0), the last term

cancels and we obtain the desired formula.
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✞

✝

☎

✆
Application to compliance minimization

We minimize J(Ω) =

∫

Ω

fu dx with u ∈ H1
0 (Ω) solution of

∫

Ω

∇u · ∇φ dx =

∫

Ω

fφ dx ∀φ ∈ H1
0 (Ω).

The adjoint state is just p = −u. The shape derivative is

J ′(Ω0)(θ) =

∫

∂Ω0

θ · n
(

fu−
∂u

∂n

∂p

∂n

)

ds =

∫

∂Ω0

θ · n

(

∂u

∂n

)2

ds ≤ 0

It is always advantageous to shrink the domain (i.e., θ · n < 0) to decrease the

compliance.

This is the opposite conclusion compared to Neumann b.c., but it is logical !
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✞

✝

☎

✆
Another example: the drum

We optimize the shape of a drum (an elastic membrane) in order it produces

the lowest possible tune. Let λ(Ω) be the eigenvalue (the square of the

eigenfrequency) and u(x) be the eigenmode






−∆u = λ(Ω)u in Ω,

u = 0 on ∂Ω.

The fundamental mode is the smallest eigenvalue which is also characterized

by

λ(Ω) = min
u∈H1

0
(Ω),u6=0

∫

Ω
|∇u|2dx
∫

Ω
u2dx

.

Thus we study

inf
Ω⊂IR2

(

λ(Ω) + ℓ

∫

Ω

dx

)

,

where ℓ ≥ 0 is a given Lagrange multiplier for a constraint on the membrane

area.
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✄

✂

�

✁Eulerian derivation

For a test function φ with compact support ω ⊂ Ω we derive
∫

ω

∇u · ∇φ dx = λ(Ω)

∫

ω

uφ dx

⇒

∫

ω

∇U · ∇φ dx = λ(Ω)

∫

ω

Uφdx+ Λ

∫

ω

uφ dx,

where Λ = λ′(Ω)(θ) is the derivative of the eigenvalue (assumed to be simple).

⇒ −∆U − λ(Ω)U = Λu in Ω.

To deduce the boundary condition for U we derive
∫

∂Ω

uψ ds = 0 ∀ψ ∈ C∞(IR2).

⇒

∫

∂Ω

(

Uψ + θ · n

(

∂(uψ)

∂n
+Huψ

))

ds = 0,

which yields U = − ∂u
∂n
θ · n since u = 0 on ∂Ω.
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Multiplying the equation for U by u and integrating by parts leads to
∫

Ω

∇U · ∇u dx = λ

∫

Ω

Uudx+ Λ

∫

Ω

u2 dx.

Multiplying the equation for u by U and integrating by parts leads to
∫

Ω

∇U · ∇u dx = λ

∫

Ω

Uudx+

∫

∂Ω

∂u

∂n
U ds.

Thus, we deduce

Λ

∫

Ω

u2dx =

∫

∂Ω

∂u

∂n
U ds = −

∫

∂Ω

(

∂u

∂n

)2

θ · nds.

The derivative of the objective function is (self-adjoint problem)

J ′(Ω)(θ) = Λ + ℓ

∫

∂Ω

θ · nds =

∫

∂Ω

(

ℓ−

(

∂u
∂n

)2

∫

Ω
u2dx

)

θ · nds.

If ℓ = 0 we have J ′(Ω)(θ) ≤ 0 as soon as θ · n ≥ 0, i.e., we minimze J(Ω) if the

domain Ω is enlarged.

G. Allaire, Ecole Polytechnique Optimal design of structures



40

✞

✝

☎

✆
Lagrangian method

For µ ∈ IR, v, q, z ∈ H1(IRN ), we introduce the Lagrangian

L(Ω, µ, v, q, z) = µ−

∫

Ω

(∆v + µv)q dx+

∫

∂Ω

zv ds

where z is the Lagrange multiplier for the boundary condition. Since the 5

variables are independent it is possible to differentiate.

The partial derivative ∂L
∂q

= 0 gives the state equation.

The partial derivative ∂L
∂z

= 0 gives the Dirichlet boundary condition for the

state.

The partial derivative ∂L
∂v

= 0 gives three relationships including the adjoint:

−∆p = λp in Ω, p = 0 on ∂Ω,
∂p

∂n
+ z = 0 on ∂Ω.
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The partial derivative ∂L
∂µ

= 0 yields

∫

Ω

up dx = 1

Since the eigenvalue λ is simple, p is a multiple of u. Thus

p =
u

∫

Ω
u2dx

.

Eventually, the shape partial derivative is

∂L

∂Ω
(Ω, λ, u, p, z)(θ) =

∫

∂Ω

θ · n
(

p∆u+ λpu+
∂(uz)

∂n
+Huz

)

ds

Knowing that u = p = 0 on ∂Ω and z = − ∂p
∂n

we deduce

∂L

∂Ω
(Ω, λ, u, p, z)(θ) =

∫

∂Ω

θ · n
(

−
∂u

∂n

∂p

∂n

)

ds = J ′(Ω)(θ)
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