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Exercise 1 Duality in `p

Let 1 < p <∞ and p′ such that 1/p+ 1/p′ = 1.

1. (Young’s inequality) Prove using the concavity of the ln that for every
a, b > 0,

ab ≤ 1

p
ap +

1

p′
bp
′
.

2. Prove that for every x ∈ `p and y ∈ `p′ , xy ∈ `1 and that

‖xy‖`1 ≤
1

p
‖x‖p`p +

1

p′
‖y‖p

′

`p′

3. Prove that for every x ∈ `p and y ∈ `p′ ,
∞∑
n=0

xnyn ≤ ‖x‖`p‖y‖`p′

4. Prove that for every y ∈ `p′ the map

x→
∞∑
n=0

xnyn,

is correctly defined, linear and continuous on `p.

5. Let L ∈ (`p)∗ prove that there exists y ∈ `p′ such that for every x ∈ `p,

L(x) =

∞∑
n=0

ynxn.

Moreover, show that
‖y‖`p′ = ‖L‖(`p)∗

Answer of exercise 1

1. As ln is concave, for all a, b > 0, we have

ln(ab) =
1

p
ln(ap) +

1

p′
ln(bp

′
) ≤ ln

(
1

p
ap +

1

p′
bp
′
)
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Taking the exponential of this inequality leads to

ab ≤ 1

p
ap +

1

p′
ap
′
.

2. Let x ∈ `p and y ∈ `p′ . We have, from the Young’s inequality∑
n

|xn||yn| ≤
1

p

∑
n

|xn|p +
1

p′

∑
n

|yn|p
′
.

3. We already now that
∑
xnyn is absolutely convergent. Moreover, apply-

ing the previous inequality to x/‖x‖`p and y/‖y‖`p′ instead of x and y
leads to

‖x‖−1`p ‖y‖
−1
`p′

∑
n

|xn||yn| ≤
1

p
+

1

p′
= 1.

4. Firstly, the sum
∑
xnyn is convergent as already mentioned. Moreover

the map x 7→
∑
xnyn is obviously linear and as∑

xnyn ≤ ‖y‖`p′‖x‖`p ,

it is continuous.

5. Let (en) be a basis of `p defined by enk = δnk . Let us set y ∈ RN, defined
by yn = L(en). For all xn ∈ `p(Ω),∑

n

ynxn = L(x) ≤ ‖L‖(`p)∗‖x‖`p

Choosing xn = |yn|p
′−2yn, we get

‖y‖p
′

`p′
=

∑
n

|yn|p
′
≤ ‖L‖(`p)∗

(∑
n

|yn|p(p
′−1)

)1/p

= ‖L‖(`p)∗
(∑

n

|yn|p
′

)1/p

= ‖L‖(`p)∗‖y‖
p′/p

`p′

and thus
‖y‖`p′=‖y‖

p′−p′/p
`p′

≤ ‖L‖(`p)∗ .

We have thus obtained that y ∈ `p′ and

‖L‖(`p)∗ ≥ ‖y‖`p′ .

As we already have proven the converse inequality, we get

‖L‖(`p)∗ = ‖y‖`p′ .
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Exercise 2 Decomposition in Banach spaces

Let E be a Banach space. Assume that F and G are closed subspaces of
E such that F + G is closed. Then there exists C > 0 such that for every
z ∈ F +G, there exists x ∈ F and y ∈ G such that

z = x+ y

and
‖x‖ ≤ C‖z‖ and ‖y‖ ≤ C‖z‖.

Answer of exercise 2

Let T : F ×G→ F +G defined by T (x, y) = x+ y. The map T is a linear
continuous map between Banach space. Moreover, it is onto. Thus, from the
open mapping Theorem, there exists r > 0 such that

{z ∈ F +G such that ‖z‖F+G < r}
⊂ T ({(x, y) ∈ F ×G such that ‖x‖F < 1 and ‖y‖G < 1})

Note, that all the spaces F , G and F + G are all endowed with the norm of
E. It follow that, for every z ∈ F + G, let z̃ = αz, with α = r/(2‖z‖). We
have ‖z̃‖ < r and from the inclusion given by the open mapping Theorem, there
exists x̃ ∈ F and ỹ ∈ G such that

z̃ = x̃+ ỹ

and ‖x̃‖ < 1, ‖ỹ‖ < 1. Setting x = x̃/α and y = ỹ/α, we get

z = x+ y

with
‖x‖ ≤ α−1 = 2‖z‖/r

and
‖y‖ ≤ α−1 = 2‖z‖/r.

Exercise 3 Sum of two closed subspaces

We want to prove that the assumption F + G closed in Exercise 2 is not
trivial (meaning that it is not a consequence of the other assumptions) and is
necessary.

1. Find E Banach space and F and G closed subspaces of E such that the
subspace F +G of E is not closed.
[Hint: Let E = `1, F = {(xn)n∈N ∈ `1;x2n = 0,∀n ∈ N} and
G = {(xn)n∈N ∈ `1;x2n−1 = nx2n,∀n ∈ N}. Prove that F + G is dense
in E but F +G 6= E. ]

2. Using the example found, prove that there is no constant C such that for
all z ∈ F +G, there exists x ∈ F and y ∈ G such that z = x+ y whereas
‖x‖ ≤ C‖z‖ and ‖y‖ ≤ C‖z‖.
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Answer of exercise 3

Write the answer for E = `1.

Exercise 4

Let X ⊂ L1(Ω) be a closed vector space in L1(Ω). Assume that

X ⊂
⋃

1<q≤∞

Lq(Ω).

1. Prove that there exists some p > 1 such that X ⊂ Lp(Ω). [Hint: For
every integer n ≥ 1 consider the set

Xn =
{
f ∈ X ∩ L1+1/n(Ω); ‖f‖1+1/n ≤ n

}
]

2. Prove that there is a constant C such that

‖f‖p ≤ C‖f‖1, ∀f ∈ X.

Answer of exercise 4

The set Xn are closed subsets of X. Indeed, let fk ∈ Xn such that fk → f in
L1(Ω), without lost of generality, we can assume that fk does converge almost
everywhere. Then, from Beppo - Levi’s Theorem,

‖f‖1+1/n ≤ lim inf
k
‖fk‖1+1/n ≤ n.

Moreover, X ⊂ ∪nXn. Indeed, for all f ∈ X, there exists q > 1 such that
f ∈ L1(Ω) ∩ Lq(Ω) and for every 1 ≤ r ≤ q f ∈ Lr(Ω) with

‖f‖r ≤ ‖f‖α1 ‖f‖q1− α,

with

α+
1− α
q

=
1

r
.

It follows that for every every 1 ≤ r ≤ q,

‖f‖r ≤ max(1, ‖f‖1) max(‖f‖q, 1) = C(f).

For n great enough, 1 + 1/n ≤ q and C(f) ≤ n, so that

‖f‖r ≤ n,

with r = 1 + 1/n and f ∈ Xn as claimed.
We thus have X = ∪nXn, and as X is a Banach space and Xn is a sequence

of closed subset of X, from the Baire’s Lemma, there exists n such that the
interior of Xn in X is not void. There exists g ∈ Xn and β > 0, such that

{h ∈ X : ‖h− g‖1 ≤ β} ⊂ Xn
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Thus, for every f ∈ X, let h = g + βf/‖f‖1, we have ‖h− g‖1 ≤ β and

‖g + βf/‖f‖1‖1+1/n = ‖h‖1+1/n ≤ n.

We conclude that

β
‖f‖1+1/n

‖f‖1
≤ n+ ‖g‖1+1/n

and
‖f‖1+1/n ≤ (n+ ‖g‖1+1/n)/β <∞.
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