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Exercise 1

Let E be a Banach space and let (xn) be a sequence such that xn ⇀ x in
the weak σ(E,E∗) topology. Set

yn =
1

n

∑
k≤n

xk.

Prove that yn ⇀ x.

Answer of exercise 1

Let T ∈ E∗. We have

T (yn) =
1

n

∑
k≤n

T (xk).

and

|T (yn)− T (x)| ≤ 1

n

∑
k≤n

|T (xn)− T (x)|.

Fro all ε > 0, there exists N such that for all n > N , |T (xn)−T (x)| < ε. Thus,

|T (yn)− T (x)| ≤ 1

n

∑
k≤N

|T (xn)− T (x)|+ ε,

and for n great enough,
|T (yn)− T (x)| ≤ 2ε.

Exercise 2

Let Ω = (0, 1).

1. Consider the sequence (fn) of functions defined by fn(x) = ne−nx. Prove
that

1. fn → 0 a.e.

2. (fn) is bounded in L1(Ω).

3. fn 6→ 0 in L1(Ω) strongly.

4. fn 6⇀ 0 weakly in σ(L1, L∞).

More precisely, there is no subsequence that converges weakly σ(L1, L∞).
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2. Let 1 < p < ∞ and consider the sequence (gn) of functions defined by
gn(x) = n1/pe−nx. Prove that

1. gn → 0 a.e.

2. (gn) is bounded in Lp(Ω).

3. gn 6→ 0 in Lp(Ω) strongly but gn → 0 in Lq(Ω) strongly for every
1 ≤ q < p.

4. gn ⇀ 0 weakly in σ(Lp, Lp
′
).

Answer of exercise 2

1. We consider fn = ne−nx. For all x ∈ (0, 1), fn(x) = e−n(x+ln(n)/n) and
converges toward 0.

‖fn‖L1(Ω)=

∫ 1

0

|fn| =
∫ 1

0

ne−nx = −
∫ 1

0

(e−nx)′ = −[e−nx]10 = 1− e−n.

Thus, fn is bounded in L1(Ω) and does not converge toward 0 in L1(Ω).
Finally, let u ∈ C1([0, 1]),∫ 1

0

fnu =

∫ 1

0

(e−nx)′u = [e−nxu]10 −
∫ 1

0

e−nxu′ → u(0).

Thus, fn does not converge toward 0 in σ(L1, L∞) (and even no subse-
quence).

2. We have defined gn by

gn(x) = n1/pe−nx,

with 1 < p < ∞. Obviously, gn(x) goes to zero for every x ∈ (0, 1).
Moreover,

‖gn‖pLp =

∫ 1

0

ne−npx =
1

p
(1− e−np).

Thus, gn is bounded in Lp(0, 1) and does not converge toward 0 in
Lp(0, 1). Now, let u ∈ C∞0 (0, 1). As gn does converge uniformly toward
0 on the support of u, we have∫ 1

0

gnu→ 0.

Let v ∈ Lp′(0, 1). For all ε > 0. there exists uε ∈ C∞0 (0, 1) such that
‖uε − v‖Lp′ (Ω) < ε. It follows that∣∣∣∣∫ 1

0

gnv

∣∣∣∣ ≤ ∣∣∣∣∫ 1

0

gn(uε − v)

∣∣∣∣+∣∣∣∣∫ 1

0

gnuε

∣∣∣∣ ≤ ‖gn‖Lp‖un−v‖Lp′+

∣∣∣∣∫ 1

0

gnuε

∣∣∣∣ .
As gn is bounded in Lp(0, 1), we get that∣∣∣∣∫ 1

0

gnv

∣∣∣∣ ≤ Cε+

∣∣∣∣∫ 1

0

gnuε

∣∣∣∣ .
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For n great enough, we obtain that∣∣∣∣∫ 1

0

gnv

∣∣∣∣ ≤ (C + 1)ε.

It follows that
∫ 1

0
gnv converges toward 0 as n goes to infinity, that is gn

converges weak toward 0 in Lp(0, 1).

Exercise 3

Assume that |Ω| < ∞. Let 1 < p < ∞. Let (fn) be a sequence in Lp(Ω)
such that

1. (fn) is bounded in Lp(Ω).

2. fn → f a.e. on Ω.

1. Prove that fn ⇀ f weakly in σ(Lp, Lp
′
).

2. Same conclusion if assumption (2) is replaced by

‖fn − f‖1 → 0.

3. Assume now (1) and (2) and |Ω| < ∞. Prove that ‖fn − f‖q → 0 for
every q with 1 ≤ q < p.

Answer of exercise 3

1. To simplify the proof, we assume that |Ω| <∞. It can be easily adapt to
the case where Ω is σ-finite. First, let us notice that that from Fatou’s
Lemma, f ∈ Lp(Ω). In a first step, we are going to prove that up to a
subsequence, fn weakly converges toward f in Lp(Ω). As fn is bounded
in Lp(Ω), it admits a weakly convergent subsequence. That is there

exists ϕ monotone map from N into N and f̃ ∈ Lp(Ω) such that fϕ(n)

weakly converges toward f̃ . Moreover, from the Egorov’s Theorem, for
all integer m > 0, there exists a measurable subset Am of Ω such that
fϕ(n) converges toward f uniformly. It follows that for all g ∈ Lp′(Ω),∫

Ω\Am

fϕ(n)g →
∫

Ω\Am

fg

and ∫
Ω\Am

fϕ(n)g →
∫

Ω\Am

f̃g.

Thus, ∫
Ω\Am

(f − f̃)g = 0,
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for every g ∈ Lp′(Ω). Choosing g = sign(f− f̃), it follows that f = f̃ a.e.

in Ω \ Am. In particular, f = f̃ a.e. in Ω \ (∩mAm). As | ∩m Am| = 0,

we deduce that f = f̃ almost everywhere. It remains to prove that the
whole sequence fn weakly converges toward f in Lp(Ω). Assume this is
not the case. Then, there exists h ∈ Lp′(Ω) and ψ : N → N monotone
such that ∣∣∣∣∫

Ω

(fψ(n) − f)h

∣∣∣∣ > δ > 0.

Replacing fn by fψ(n) in the first part of the proof, we conclude that
there exists ϕ;N→ N monotone such that

fϕ◦ψ(n) ⇀ f in Lp(Ω)

and ∣∣∣∣∫
Ω

(fϕ◦ψ(n) − f)h

∣∣∣∣ > δ > 0,

what is contradictory. We conclude as the whole sequence fn weakly
converges toward f in Lp(Ω).

2. The proof is exactly the same as in the previous case. It departs only in
to establish that f̃ = f . In this case, we have immediately that∫

Ω

(f − f̃)g = 0,

for all g ∈ L∞(Ω). Choosing once again g = sign(f − f̃), we get that

f = f̃ a.e.

3. For every ε > 0, from the Egorov’s Theorem, there exists a measurable
subset A of Ω, such that |A| < ε and fn converges uniformly toward f
in Ω \A. We have∫

Ω

|fn − f |q =

∫
A

|fn − f |q +

∫
Ω\A
|fn − f |q.

From Hölder’s inequality, we have∫
A

|fn − f |q ≤
(∫

A

|fn − f |p
)q/p

|A|
p−q
p < Cε

p−q
p .

Moreover, as fn uniformly converges toward f on Ω \ A, for n great
enough, we have ∫

Ω\A
|fn − f |q < ε.

We conclude that for n great enough,∫
Ω

|fn − f |q < Cε
p−q
p + ε,

and that fn converges toward f in Lq(Ω) for all 1 ≤ q < p.
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Exercise 4

Let E be a Banach space and x0 ∈ E be fixed. Prove that there exists
T ∈ E∗ such that

T (x0) = ‖x0‖2E
and ‖T‖E∗ = ‖x0‖E .

Answer of exercise 4

Let G = Rx and T be the linear continuous map defined on G by

T (tx0) = t‖x0‖2.

From the Hahn-Banach Theorem, there exists an extension of T on E such that
‖T‖E∗ = ‖T‖G∗ = ‖x0‖E .

Exercise 5

Let E be a Banach space and let A ⊂ E be a subset that is sequentially
compact for the weak topology of E. Prove that A is bounded.

Answer of exercise 5

Let (xn) be a sequence of elements of A. As A is sequentially compact, there
exists ϕ : N→ N such that ϕ is increasing and x ∈ A, with

xϕ(n) ⇀ x.

In particular, for all T ∈ E∗, T (xϕ(n)) is bounded and, from the Banach-
Steinhauss Theorem, there exists C such that for all T ∈ E∗,

T (xϕ(n)) ≤ C‖T‖E∗ .

From the Exercise 4, there exists T such T (xϕ(n)) = ‖xϕ(n)‖2 and ‖T‖ =
‖xϕ(n)‖. It follows that

‖xϕ(n)‖ ≤ C.

If A was not bounded, we could construct a sequence xn of elements of A such
that ‖xn‖E ≥ n, what is impossible from the last inequality.

Exercise 6 Rademacher’s functions

Let 1 ≤ p ≤ ∞ and let f ∈ Lploc(R). Assume that f is T -periodic, i.e.,
f(x+ T ) = f(x), a.e. on R. Set

f = |T |−1

∫ T

0

f(t)dt.

Consider the sequence (un) in Lp(0, 1) defined by

un(x) = f(nx), x ∈ (0, 1).
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1. Prove that un ⇀ f with respect to the topology σ(Lp, Lp
′
).

2. Determine limn→∞ ‖un − f‖p.
3. Examine the following examples:

1. un(x) = sin(nx).

2. un(x) = fn(x) where f is 1-periodic and

f(x) =

{
α for x ∈ (0, 1/2),
β for x ∈ (1/2, 1).

The functions of (2) are called Rademacher’s functions.

Answer of exercise 6

1. Let 0 < a < b < 1 and v be the indicator function of (a, b) on (0, 1), that
is

v(x) =

{
1 if a < x < b,
0 if x ∈ (0, 1) \ (a, b).

We have∫ 1

0

unv =

∫ 1

0

f(nx)v(x) dx = n−1

∫ n

0

f(x)v(x/n) dx = n−1

∫ nb

na

f(x) dx.

We set k and l to be the integers such that

(k − 1)T < na ≤ kT, lT < nb ≤ (l + 1)T.

We have∫ 1

0

unv =
1

n

∫ kT

na

f +
∑

k≤i≤l−1

∫ (i+1)T

iT

f +

∫ nb

lT

f


=

1

n

 ∑
k≤i≤l−1

∫ T

0

f

+
1

n

[∫ kT

na

f +

∫ nb

lT

f

]

=
l − k
n

∫ T

0

f +
1

n

[∫ kT

na

f +

∫ nb

lT

f

]
.

From the definition of k and l, we have

l − k
n
≤ b− a

T
≤ l − k + 2

n
.

Thus, (l − k)/n→ (b− a)/T . Moreover,

1

n

∣∣∣∣∣
∫ kT

na

f +

∫ nb

lT

f

∣∣∣∣∣ ≤ 2

n
‖f‖L1(0,T ) → 0.
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It follows that ∫ 1

0

unv → f(b− a),

as n goes to infinity. We deduce that for any step function v, we have∫ 1

0

unv → f

∫ 1

0

v.

As the set of step functions is dense in Lp
′
(0, 1), with 1 ≤ p′ < ∞, we

deduce that if f ∈ Lploc(0, T ), with 1 < p ≤ ∞, un does converge toward

f in σ(Lp, Lp
′
). Indeed, for every v ∈ Lp′(0, 1) and for every ε > 0, there

exists a step function w such that ‖v − w‖Lp′ (0,1) ≤ ε. We then have∣∣∣∣∫ 1

0

unv − f
∫ 1

0

v

∣∣∣∣ ≤ ∣∣∣∣∫ 1

0

unw − f
∫ 1

0

w

∣∣∣∣+∫ 1

0

|un||v−w|+|f |
∫ 1

0

|v−w|.

From Hölder inequality,∫ 1

0

|un||v − w| ≤ ‖un‖Lp(0,1)‖v − w‖Lp′ (0,1)

and

|f |
∫ 1

0

|v − w| ≤ |f |‖v − w‖Lp′ (0,1).

Moreover, from the previous analysis, we have

‖un‖pLp(0,1) =

∫ 1

0

upn dx→ T−1

∫ T

0

fp.

In particular, un is bounded in Lp(0, 1). We have obtained that∣∣∣∣∫ 1

0

unv − f
∫ 1

0

v

∣∣∣∣ ≤ ∣∣∣∣∫ 1

0

unw − f
∫ 1

0

w

∣∣∣∣+ C‖v − w‖Lp′ (0,1).

Finally, has w is a step function, for n great enough,∣∣∣∣∫ 1

0

unw − f
∫ 1

0

w

∣∣∣∣ ≤ ε
and ∣∣∣∣∫ 1

0

unv − f
∫ 1

0

v

∣∣∣∣ ≤ (1 + C)ε.

It remains to consider the case p = 1 and f ∈ L1
loc(R). For every ε > 0,

there exists a T periodic function, g ∈ L∞ such that

T−1‖f − g‖L1(0,T ) ≤ ε
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For every v ∈ L∞(0, 1), we have from the previous analysis,∫ 1

0

g(nx)v(x) dx→ g

∫ 1

0

v.

On the hand, we have∣∣∣∣∫ 1

0

unv − f
∫ 1

0

v

∣∣∣∣ ≤ ‖f(nx)−g(nx)‖L1(0,1)‖v‖∞+

∣∣∣∣∫ 1

0

g(nx)v − f
∫ 1

0

v

∣∣∣∣
We have

‖f(nx)− g(nx)‖L1(0,1) →
1

T

∫ T

0

|f − g| ≤ ε.

Thus, for n great enough, we have

‖f(nx)− g(n(x)‖L1(0,1) ≤ 2ε

and ∣∣∣∣∫ 1

0

g(nx)v − f
∫ 1

0

v

∣∣∣∣ ≤ ε+ |f − g|‖v‖L1(0,1).

Furthermore

|f − g| ≤ T−1

∫ T

0

|f − g| ≤ ε.

We thus have proved that for n great enough∣∣∣∣∫ 1

0

unv − f
∫ 1

0

v

∣∣∣∣ ≤ 2ε‖v‖∞ + ε+ ε‖v‖1,

and that
∫
unv → f

∫
v as claimed.

2. We set g(s) = |f(s) − f |p. As g is T -periodic ans g ∈ L1
loc(R), we have

from the previous question ∫ 1

0

g(nx) dx→ g,

that is

lim ‖un − f‖p =
1

|T |2

∫ T

0

∣∣∣∣∣
∫ T

0

(f(s)− f(t)) ds

∣∣∣∣∣
p

dt.

3. 1. un = sin(nx). We have un ⇀ 0 weakly-* in L∞,

2. un = f(nx) where f is one periodic and

f(x) =

{
α if x ∈ (0, 1/2)
β if x ∈ (1/2, 1).

Then un ⇀ (α+ β)/2 for the weak-* topology of L∞(0, 1).
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