Functional analysis and applications
MASTER ”Mathematical Modelling”
Ecole Polytechnique and Université Pierre et Marie Curie
October 5th, 2015

See also the course webpage:
http://www.cmap.polytechnique.fr/~allaire /master /course-funct-analysis.html

Exercise 1
Let E = L?(0,1). Given u € E, set

Tu(z) = /0 ") dt.

—_

. Prove that T € K(FE). [Hint: Use Ascoli-Arzela Theorem ]
2. Determine the set EV(T) of eigenvalues of T'.

3. Determine 7.

Answer of exercise [I]

1. Let (u,) be a bounded sequence in L?(0,1). Let 0 <y < x < 1. We
want to prove that Tu, is compact in E. From Hoélder inequality, we

have for all u € F,
T z 1/2
[ utsyds| < la=y ( / |u|2) < le—y"2|ule.
Yy Yy

It follows that the sequence T'u,, is uniformly equicontinuous and from
Ascoli-Arzela Theorem, there exists a subsequence T,y (where ¢ is
an increasing map from N into N) converging in C([0, 1]). In particular,
it converges in L%(0,1) (for the strong topology).

2. Let A € EV(T), there exists u % 0 in E such that

(Tu(e)~Tu(y)| =

x
/ u(s) ds = du(z)
0
a.e. in ). Not that Tu admits a weak derivative and that
(Tu)" = u.
It follows that
w= .

The solution of this equation are u = Ce®/*. But, a u(0) = 0 we get
that u = 0 is the only possible solution. Thus, VP(T) = (. Finally, as
T is compact, we have o(T) \ {0} = VP(T) \ {0} and 0 € o(T'). Thus,
o(T)=0.
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. Let w,v € B, (u,T*v) = ftl v(z)dz.

Exercise 2

. Let —o00 < a <b<ooand T € D'((a,b)™) such that ;T = 0 for all
i € {1,---,n}. Prove that there exists a constant C € R such that
T=C.

. Extend the previous result to the distribution D’(£2), where  is an open
and connected subset of R™.

Answer of exercise [2]

. We will only treat the case a = —oo and b = oo (in fact, the proof is
exactly the same for every interval). Let us first consider the case n = 1.
Let T be a distribution such that 7" = 0. We have for all ¢ € C§°(R),

(T, 01) = 0.
Let 0 € C§°(R) such that [ =1 Let ¢ € C§°(R). We set
va) = [ ols) = Col)ds,

We have 1) € C*°(R) and ¢’ = ¢ + C8. We are going to choose C for
to be of compact support. To this end, it suffices to have

/30—0920,

that is
C= /gp.
Then,
(T,9y") =0,
that is
<Ta Y = 09> = Oa
and
<T7 90> = C<T7 9>a
and finally

(T, ) = (T,0) / 0.

Thus, T is the constant distribution (T, 0).
Let us now tackle the general case. Assume that the result as been proven
in R"7L. Let p € C§°(R™). We set for every x = (7, z,) € R",

vle) = [ ol - E@0) ds,

— 00



where

5@ = [ o(@a) da,

It is easy to check that ¢ € C§°(R™). Moreover, d,(z) = p(z) —
?(2)0(xy,). Tt follows that

(T, @) = (T, p(2)0(xn))-

Let S € D'(R""!) be defined by

(8.9) = (T.9(@)0(z0))-
We have for alli € {1,--- ,n — 1},

(008, 8) = —(0i8, 0:) = —(T, 0,((@))0(wn)) = (T, 0, (%(@)0(wn))) = 0.

From the recursive assumption, we S there exists C' such that

(S.0)=C .

Rn—1

Thus,

(T.g) = @@mm%»:@@:c/ 7

Rn—1

= C /cp(f,xn)dxndsz/go.
Rr-1 JR

2. Let T € D'(Q) such that 9;T = 0foralli € {1,--- ,n}. From the previous
question, we know that the restriction of T to any cube (with edged
parallel to the axes) included in Q can be identified to a constant. Next
let z be an element of ) belonging to two cubes Q)7 and ()2 included in
Q. There exists a small cube @' centered at = included in the intersection
of Q1 and Q3. Let T; we the restriction of T to Q; (¢ = 1,2). We know
that T and T5 are equal to constants (denoted C; and Cs respectively).
Obviously we have

Ci = T1|Q’ = T|Q’ = TQ‘Q’ = (s

Thus, we can define for all z €  a real C(xz) = C, where C' = T|Q, Q
being any cube included in 2 centered at X. The map C' : Q@ — R is
continuous (it is constant on open cubes) and as 2 is connected, it is a
constant map.

Exercise 3
Let I = (0,1).



. Prove that for every 1 < p < oo, WHP(I) is included in L>°(I) with
continuous injection.

. Assume that (u,) is a bounded sequence in WP (I) with 1 < p < oo.
Show that there exists a subsequence (uy(,)) and u € WHP(I) such that

||7-"<,a(n) — uHoo — 0.
Moreover, u’w(n) — v weakly in LP(I) if 1 < p < cc.

. Construct a bounded sequence (u,) in W(I) that does not admit any
subsequence converging in L (I).

Answer of exercise [3

. If p = oo, the inclusion is obvious. Let 1 < p < co. Let v € C*°(]0, 1]),
we have for very z,y € I,

thus, . )
v(z) —v v VPP = |1,
)=o)l < [ W< WP = e,
Then
lv(@)] < [v(@) —v(y)|+ |v(y)]
and

o(z)] < /lv(f) — o)l + o)l dy < 2[v]1,p-
As the set of C°°([0,1]) is dense in W1P(I), it follows that the injection
of WLP(I) into L*°(I) is continuous.

. Let 1 < p < oo, and v € WHP(I), we have

o) o) = [ ds < ([ o ( | |v'|p)1/p < le— g7 o]l

In the case p = 0o, we have

v(@) = v(y) < |z = ylllv]le-
It follows that any bounded sequence in W1P(I) (1 < p << oo) is
bounded and equicontinuous in C([0,1]) and thus admits a converging
subsequence in C([0,1]) from the Ascoly-Arzela Theorem.
. Let u,, € WH1(I) be a sequence defined by

( ){ nifr<1/n

Tl 0ifz>1/n

and u,(0) = 0. Assume that it admits a converging subsequence in
L°°(I) toward an element u € L*(I). The only possible limit is u = 1
but

[l — 1o = 1.



Exercise 4

Let I = (0,1). For every u € L”(I), we denote @ the extension of u € LP(R)
outside I by 0.
1. Prove that if 1 < p < oo, then u € Wy *(I) = 7 € W'P(R).
2. Conversely, let u € LP(I) (with 1 < p < o). Prove that w € WP (1) =
we WyP(I).
3. Let u € LP(I) (with 1 < p < o0). Show that u € W, P(I) iff there exists
a constant C' such that for every ¢ € C3(R),

1
\ / w" < Cllolm

Answer of exercise [

1. Let u € WHO(I), then there exists a sequence (u,) in C§°(I) that con-
verges toward u in W1P(I). Obviously, u, is a Cauchy sequence in
WLP(R). Thus, it is converging in W1P(R) and € WHP(R).

2. Let u € WHP(I) such that w € WHP(I). For every integer n, there exits
Xn € C§°(I) such that

Xn(z) =1 for every x € (1/n,1 —1/n),

and
[Xn| < nC,

where C' is a constant that does not depend on n. We have

10 =l < [Ixqally + 1Ot — D lp-

Moreover,

1/n Lp 1 1.p
IX.al, = / ap ]+ / e
— n

Cn ( Esup [u(z)|+  sup |U($)|>

(0,1/n) z€(1-1/n,1)

IN

1

n

_ c( sp fae)+  sup |u<x>>.
z€(0,1/n) z€(1-1/n,1)

As © is continuous, the right-hand side of this inequality goes to zero
when n goes to infinity and

X7l p —ns00 0.

It follows that x,u converges toward uw as n goes to infinity. Similar, we
can prove similarly that the map from WP(R) into itself v — x,v is



uniformly continuous in WP (I). We deduce than for every ¢ > 0, there
exists n such that
[Xn% =1, <e.

As C§°(R) is dens in W1P(R), there exists v € C§°(R) such that
[v—1l1p <e.
It follows that

Ixnv = ullwioay = lxnv = Ullwiem < lIxnv = Xa8llp + IXn¥ =@l p
Cllo =ull1p + Ixn¥ — w1 < 2e.

IN

. From the inequality, we have that @ does belong to the dual of wir' (R)
which is equal to W1P(R).



