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Exercise 1

Let © be a bounded regular open subset of RY.
1. Prove that for every u € HZ(Q),

AuQ:/ D2
/Q| AL

|or|=2
2. Prove that there exists a constant C such that for every u € H3(Q2),

/Q (18 + Juf?) > Cllull2.

3. Prove that for every f € L?(2), there exists a unique u = T'(f) € HZ(2)
such that for all v € HZ(1),

/Q (Aulv + uv) = /Q fo.

4. Prove that T is a compact and self adjoint operator from L?(Q) into
L?(Q).

5. Prove that the eigenvectors u solution of

/ (AulAv + uwv) = /\/ uv
o Q
defines a Hilbert basis of L?((2).

Exercise 2
Let I = (0,1). Let u € WHP(I) with 1 < p < oo. Our goal is to prove that
uw' =0 ae. ontheset E={zr el : u(xr) =0} Fix a function G € C*(R,R)
such that |G(¢)] < 1 and |G'(t)] < C for every t € R for a constant C, and

1 ift>1
Gity=4q t if [t] < 1/2
-1 ift<—1.
Set o
(o Clouta)
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Check that ||v,||fe — 0 as n — co.
Show that v,, € WP(I) and compute v/,.
Deduce that |v],] is bounded by a fixed function in LP(I).

Prove that v],(z) — f(z) a.e. on I, as n — oo and identify f.
[Hint: Consider separately the cases ¢ ¢ E and x € E. ]

Deduce that v}, — f in LP(I).

. Prove that f =0 a.e. on I and conclude that v’ = 0 a.e. on E.

Answer of exercise 2

|lvn]l <1/n— 0.
Assume first that u is a regular map, then

vy (z) = G'(nu(z))u' (x).

n

Moreover,
op| < Clu].

Thus, we get
[vnllip < llvallp + lvpllp < 14 Cllug ll1p-

Now, we only have to extend the previous analysis to every u € WP (I).
Let (ux) € C*°(I)N be a sequence converging toward u in WP(I). we
have that

G(nug)

n

is bounded in L*°(I) and converging almost everywhere toward G(nu)/n.
Thus, from the dominated converge Theorem, it converges in LP(I).
Without lost of generality, we can assume that |u)| is bounded by a
map ¢ € LP(I). The sequence G'(nuy)u;, converges a.e. toward G’ (u)u’
(because G in C'). Moreover, |G'(nuy)u}| is bounded by C|uj}| and
thus by C'p. From the dominated convergence Theorem, we deduce that
G’ (nuy)uj, converges toward G'(nu)u' in LP. It follows that G(nuy)/n is
a Cauchy sequence in W1P(I) and that is it convergent. Moreover, the
limit is G(nu)/n and

(G(nu)/n) = lién(G(nuk)/n)' =G’ (nu)u'.

We have v], = G'(nu)u’ and |v],| bounded by Clu'| € LP(I).

4. If x ¢ E then v} (z) = G'(nu(z))u/(z) = 0 for n sufficiently large.

If € E then v} (z) = v/ ().

Finally, lim, o vl (2) — f(z) a.e. in I with f(z) = 0if 2 € F and
fl@)=7d(x)ifz e E.

From the dominated convergence Theorem, v/, does converge toward f
in LP.



6. The sequence v, is converging in W1P(I). Let v its limit. We have
v’ = f. We have proved that v = 0, thus f = 0. As f = «’ almost
everywhere on E, we conclude that v =0 a.e. on E.

Exercise 3 Helly’s selection theorem

Let (u,) be a bounded sequence in Wh1(0,1). The goal is to prove that
there exists a subsequence (uy, ) such that u,, (z) converges to a limit for every
z €0,1].

1. Show that we may always assume in addition that

Vn, uy, is a nondecreasing on [0, 1]. (1)
[Hint: Consider the sequences vy, (z) = [ |u},(t)| dt and w, = vy, — uy

] In what follows we assume that (1)) holds.

2. Prove that there exist a subsequence (u,,) and a measurable set E C
[0,1] with |E| = 0 such that w,, (z) convergences to a limit, denoted
u(z), for every x € [0,1]\ E. [Hint:  Use the fact that W1 C L! with
compact injection. ]

3. Show that w is nondecreasing on [0,1] \ F and deduce that there are a
countable set D C (0,1) ) and a nondecreasing function @ : (0,1) — R
such that u(z + 0) = u(x — 0), Yz € (0,1) \ D and u(z) = u(z), Vz €
(0,1)\ (DUE).

4. Prove that u,, (z) — @(x), Vo € (0,1) \ D.

5. Construct a subsequence from the sequence (uy,, ) that converges for every
x € [0,1]. [Hint: Use a diagonal process. |

Answer of exercise [3]

1. Let T be the map from C*°([0,1]) into W1(0, 1) be defined by

7(0) = [ 1¢/(0)]d.
0
We have T'(p) = |¢'|. Moreover,

T < llell,n-

Thus, T is a linear map such that

1T 11 < el

As C*(0,1) is dense in W11(0,1) It follows that 7' can be uniquely
extend into a linear continuous map (also denoted T) from W11(0,1)
into itself and as

T(e) = #'l,
for every ¢ € C§°([0, 1]), we have

T(u)" = || for all w € W1(0,1).



Moreover, for all u € W1(0,1), there exists ,, € C°°([0,1]) such that
¢, does converge toward u in W1(0,1). By definition, we have

T(u) = lim T (pn),

and
hwmw—%%mwﬂ=lﬂ%m—m%mu
< [ 10— 0l de < lon s

Thus, T(¢n) converges toward [ |u/(t)|dt in L>(0,1). In particular,
it converges in L!(0,1). As T(p,) does also converges toward T'(u) in
W11(0,1), and thus in L'(0,1), we have

T(u) = / [u'(t)] dt.
0
It follows that w,, = v,, — u,, with
xr
o= [ lolds
0
belongs to W1(0,1) and that
Wl = )~ 2 0,

Thus, w,, is a nondecreasing map. Let us assume that the result is proved
for nondecreasing maps. As (u,,) is bounded in W11(0,1), (v,) and (w,)
are both bounded in W'(0,1) and nondecreasing. Thus, they admit
everywhere converging subsequences (wy(n)) and (Vy(n)) and (uep(y)) is
everywhere converging.

. As the injection from W11(0,1) into L'(0,1) is compact, there exists a
subsequence u,, () converging toward for the strong topology of LY(0,1)
toward an element u € L1(0,1). From the inverse Lebesgue’s Theorem,
there exists a subsequence g, o, (n) that do converge almost everywhere
toward u.

. We set ¢ = @1 0 g as in Question 2. For all z <y € [0,1] \ E, we have
Upp(n) () < Ug(ny(y). Passing to the limit, we get u(x) < u(y). We set

u(z) =sup{u(y) : y<z,z€[0,1]\ E}.

It is correctly defined for all z € (0,1]. If 0 € E, we set w(0) = inf u.
Now, as @ is an increasing function defined on [0,1]. Moreover, it is
bounded. Thus, it admits only a finite number of jump greater than a
given constant C'. It follows that the number of jumps is in fact countable.
Finally, it is easy to check that w = u on [0,1] \ E.



4. Let z € (0,1)\D. For every € > 0, their exits z—, 2% € [0, 1]\ E such that
x~ < < a7 such that [a(z™) —u(z7)| < e. As uy(,) is nondecreasing,
we have for all n,m > 0,

Up(n) (T7) < Uy (2) < gy ()

and

() (27) < —Up(im) (T) < —Ug(n) (7).
Summing both inequalities leads to
Uip(m) (27) =t (27) < ) (%) = Ugp(m) () < o) (27) = Ugp(am) (27)-
and
[t ) () =t ) ()| < Mt 00) (27) =t () (27, [t ) (&) =t () (7))
For n and m great enough, we get

U (n) (%) = Ugp(m) ()] < [u(z™) —u(z™)| +e < 2.

Hence, u, ) () is a Cauchy sequence and is convergent. Finally, we have
for every y,z € E that y < z < z,

IN
i~

(Z)7

u(y) < limug ) ()

and thus
U(z —0) < limuge, () < a(z 4+ 0).

Asx ¢ D, u(z) =u(z~) =u(z") and

lim g () (z) = U(x).

5. If D is finite, the proof is almost trivial. Otherwise, let (z,,) be a sequence
in (0,1) such that
D={z, : neN}L

Assume that we have construct a subsequence (uy, (n)) of Uy () such that
(ww,, (n) (1)) is converging for every I < k. The sequence (uy, (n)(2))n is
bounded in R, so there exists an increasing map 941 : N — N such that
(U, (n) © Yry1(Tk))n is converging. Setting W1 = Wy 0 gy, we have
construct a sequence of subsequences (uy, (n) such that (ug, () (z1))n is
converging for every k < [. Finally, setting ¥(n) = ¥,,(n), the sequence
(g (n))n is a subsequence of (uy(n))n that converges for every # € D and
thus for every z € [0, 1] from Question 4.



