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Exercise 1

Let Ω be a bounded regular open subset of RN .

1. Prove that for every u ∈ H2
0 (Ω),∫

Ω

|∆u|2 =

∫
Ω

∑
|α|=2

|Dαu|2
 .

2. Prove that there exists a constant C such that for every u ∈ H2
0 (Ω),∫

Ω

(
|∆u|2 + |u|2

)
≥ C‖u‖2H2 .

3. Prove that for every f ∈ L2(Ω), there exists a unique u = T (f) ∈ H2
0 (Ω)

such that for all v ∈ H2
0 (Ω),∫

Ω

(∆u∆v + uv) =

∫
Ω

fv.

4. Prove that T is a compact and self adjoint operator from L2(Ω) into
L2(Ω).

5. Prove that the eigenvectors u solution of∫
Ω

(∆u∆v + uv) = λ

∫
Ω

uv

defines a Hilbert basis of L2(Ω).

Exercise 2

Let I = (0, 1). Let u ∈ W 1,p(I) with 1 ≤ p < ∞. Our goal is to prove that
u′ = 0 a.e. on the set E = {x ∈ I : u(x) = 0}. Fix a function G ∈ C1(R,R)
such that |G(t)| ≤ 1 and |G′(t)| ≤ C for every t ∈ R for a constant C, and

G(t) =

 1 if t ≥ 1
t if |t| ≤ 1/2
−1 if t ≤ −1.

Set

vn(x) =
G(nu(x))

n
.
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1. Check that ‖vn‖L∞ → 0 as n→∞.

2. Show that vn ∈W 1,p(I) and compute v′n.

3. Deduce that |v′n| is bounded by a fixed function in Lp(I).

4. Prove that v′n(x)→ f(x) a.e. on I, as n→∞ and identify f .
[Hint: Consider separately the cases x 6∈ E and x ∈ E. ]

5. Deduce that v′n → f in Lp(I).

6. Prove that f = 0 a.e. on I and conclude that u′ = 0 a.e. on E.

Answer of exercise 2

1. ‖vn‖ ≤ 1/n→ 0.

2. Assume first that u is a regular map, then

v′n(x) = G′(nu(x))u′(x).

Moreover,
|v′n| ≤ C|u′|.

Thus, we get

‖vn‖1,p ≤ ‖vn‖p + ‖v′n‖p ≤ 1 + C‖u′n‖1,p.

Now, we only have to extend the previous analysis to every u ∈W 1,p(I).
Let (uk) ∈ C∞(I)N be a sequence converging toward u in W 1,p(I). we
have that

G(nuk)

n

is bounded in L∞(I) and converging almost everywhere toward G(nu)/n.
Thus, from the dominated converge Theorem, it converges in Lp(I).
Without lost of generality, we can assume that |u′k| is bounded by a
map ϕ ∈ Lp(I). The sequence G′(nuk)u′k converges a.e. toward G′(u)u′

(because G in C1). Moreover, |G′(nuk)u′k| is bounded by C|u′k| and
thus by Cϕ. From the dominated convergence Theorem, we deduce that
G′(nuk)u′k converges toward G′(nu)u′ in Lp. It follows that G(nuk)/n is
a Cauchy sequence in W 1,p(I) and that is it convergent. Moreover, the
limit is G(nu)/n and

(G(nu)/n)′ = lim
k

(G(nuk)/n)′ = G′(nu)u′.

3. We have v′n = G′(nu)u′ and |v′n| bounded by C|u′| ∈ Lp(I).

4. If x 6∈ E then v′n(x) = G′(nu(x))u′(x) = 0 for n sufficiently large.
If x ∈ E then v′n(x) = u′(x).
Finally, limn→∞ v′n(x) → f(x) a.e. in I with f(x) = 0 if x 6∈ E and
f(x) = u′(x) if x ∈ E.

5. From the dominated convergence Theorem, v′n does converge toward f
in Lp.

2



6. The sequence vn is converging in W 1,p(I). Let v its limit. We have
v′ = f . We have proved that v = 0, thus f = 0. As f = u′ almost
everywhere on E, we conclude that u = 0 a.e. on E.

Exercise 3 Helly’s selection theorem

Let (un) be a bounded sequence in W 1,1(0, 1). The goal is to prove that
there exists a subsequence (unk

) such that unk
(x) converges to a limit for every

x ∈ [0, 1].

1. Show that we may always assume in addition that

∀n, un is a nondecreasing on [0, 1]. (1)

[Hint: Consider the sequences vn(x) =
∫ x

0
|u′n(t)| dt and wn = vn − un

] In what follows we assume that (1) holds.

2. Prove that there exist a subsequence (unk
) and a measurable set E ⊂

[0, 1] with |E| = 0 such that unk
(x) convergences to a limit, denoted

u(x), for every x ∈ [0, 1] \E. [Hint: Use the fact that W 1,1 ⊂ L1 with
compact injection. ]

3. Show that u is nondecreasing on [0, 1] \ E and deduce that there are a
countable set D ⊂ (0, 1) ) and a nondecreasing function u : (0, 1) → R
such that u(x + 0) = u(x − 0), ∀x ∈ (0, 1) \ D and u(x) = u(x), ∀x ∈
(0, 1) \ (D ∪ E).

4. Prove that unk
(x)→ u(x), ∀x ∈ (0, 1) \D.

5. Construct a subsequence from the sequence (unk
) that converges for every

x ∈ [0, 1]. [Hint: Use a diagonal process. ]

Answer of exercise 3

1. Let T be the map from C∞([0, 1]) into W 1,1(0, 1) be defined by

T (ϕ) =

∫ x

0

|ϕ′(t)| dt.

We have T (ϕ)′ = |ϕ′|. Moreover,

|T (ϕ)| ≤ ‖ϕ‖1,1.

Thus, T is a linear map such that

‖T (ϕ)‖1,1 ≤ ‖ϕ‖1,1.

As C∞(0, 1) is dense in W 1,1(0, 1) It follows that T can be uniquely
extend into a linear continuous map (also denoted T ) from W 1,1(0, 1)
into itself and as

T (ϕ)′ = |ϕ′|,
for every ϕ ∈ C∞0 ([0, 1]), we have

T (u)′ = |u′| for all u ∈W 1,1(0, 1).
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Moreover, for all u ∈ W 1,1(0, 1), there exists ϕn ∈ C∞([0, 1]) such that
ϕn does converge toward u in W 1,1(0, 1). By definition, we have

T (u) = limT (ϕn),

and∣∣∣∣T (ϕn)(x)−
∫ x

0

|u′|(t) dt
∣∣∣∣ =

∫ x

0

|ϕ′n(t)| − |u′(t)| dt

≤
∫ x

0

|ϕ′n(t)− u′(t)| dt ≤ ‖ϕn − u‖1,1.

Thus, T (ϕn) converges toward
∫ x

0
|u′(t)| dt in L∞(0, 1). In particular,

it converges in L1(0, 1). As T (ϕn) does also converges toward T (u) in
W 1,1(0, 1), and thus in L1(0, 1), we have

T (u) =

∫ x

0

|u′(t)| dt.

It follows that wn = vn − un with

vn =

∫ x

0

|u′n(t)| ds

belongs to W 1,1(0, 1) and that

w′n = |u′n| − u′n ≥ 0.

Thus, wn is a nondecreasing map. Let us assume that the result is proved
for nondecreasing maps. As (un) is bounded in W 1,1(0, 1), (vn) and (wn)
are both bounded in W 1,1(0, 1) and nondecreasing. Thus, they admit
everywhere converging subsequences (wϕ(n)) and (vϕ(n)) and (uϕ(n)) is
everywhere converging.

2. As the injection from W 1,1(0, 1) into L1(0, 1) is compact, there exists a
subsequence uϕ1(n) converging toward for the strong topology of L1(0, 1)
toward an element u ∈ L1(0, 1). From the inverse Lebesgue’s Theorem,
there exists a subsequence uϕ1◦ϕ2(n) that do converge almost everywhere
toward u.

3. We set ϕ = ϕ1 ◦ ϕ2 as in Question 2. For all x < y ∈ [0, 1] \ E, we have
uϕ(n)(x) ≤ uϕ(n)(y). Passing to the limit, we get u(x) ≤ u(y). We set

u(x) = sup{u(y) : y ≤ x, x ∈ [0, 1] \ E}.

It is correctly defined for all x ∈ (0, 1]. If 0 ∈ E, we set u(0) = inf u.
Now, as u is an increasing function defined on [0, 1]. Moreover, it is
bounded. Thus, it admits only a finite number of jump greater than a
given constant C. It follows that the number of jumps is in fact countable.
Finally, it is easy to check that u = u on [0, 1] \ E.

4



4. Let x ∈ (0, 1)\D. For every ε > 0, their exits x−, x+ ∈ [0, 1]\E such that
x− ≤ x ≤ x+ such that |u(x+)− u(x−)| < ε. As uϕ(n) is nondecreasing,
we have for all n,m > 0,

uϕ(n)(x
−) ≤ uϕ(n)(x) ≤ uϕ(n)(x

+)

and
−uϕ(m)(x

+) ≤ −uϕ(m)(x) ≤ −uϕ(m)(x
−).

Summing both inequalities leads to

uϕ(n)(x
−)− uϕ(m)(x

+) ≤ uϕ(n)(x)− uϕ(m)(x) ≤ uϕ(n)(x
+)− uϕ(m)(x

−).

and

|uϕ(n)(x)−uϕ(m)(x)| ≤ max(|uϕ(n)(x
−)−uϕ(m)(x

+)|, |uϕ(n)(x
+)−uϕ(m)(x

−)|)

For n and m great enough, we get

|uϕ(n)(x)− uϕ(m)(x)| ≤ |u(x+)− u(x−)|+ ε ≤ 2ε.

Hence, uϕ(n)(x) is a Cauchy sequence and is convergent. Finally, we have
for every y, z ∈ E that y < x < z,

u(y) ≤ limuϕ(n)(x) ≤ u(z),

and thus
u(x− 0) ≤ limuϕ(n)(x) ≤ u(x+ 0).

As x /∈ D, u(x) = u(x−) = u(x+) and

limuϕ(n)(x) = u(x).

5. If D is finite, the proof is almost trivial. Otherwise, let (xn) be a sequence
in (0, 1) such that

D = {xn : n ∈ N}.

Assume that we have construct a subsequence (uΨk(n)) of uϕ(n) such that
(uΨk(n)(xl))n is converging for every l < k. The sequence (uΨk(n)(xk))n is
bounded in R, so there exists an increasing map ψk+1 : N→ N such that
(uΨk(n) ◦ ψk+1(xk))n is converging. Setting Ψk+1 = Ψk ◦ ψk+1, we have
construct a sequence of subsequences (uΨk(n) such that (uΨk(n)(xl))n is
converging for every k < l. Finally, setting Ψ(n) = Ψn(n), the sequence
(uΨ(n))n is a subsequence of (uϕ(n))n that converges for every x ∈ D and
thus for every x ∈ [0, 1] from Question 4.
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