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STRUCTURAL OPTIMIZATION USING OPTIMAL
MICROSTRUCTURES

Grégoire Allaire

Commissariat a I'Energie Atomique
DRN/DMT/SERMA, C.E.N. Saclay
91191 Gif sur Yvette - France

Abstract. In the context of shape optimization, the problem of minimizing the sum of the elas-
tic compliance and of the weight of a plane structure under specified loading is considered. A
relaxed formulation of the original problem is introduced, which allows microperforated compo-
sites as admissible designs. It is shown how the mathematical theory of optimal microstructures
for composites can be used in practice to compute this relaxed formulation. In particular. the
importance of so-called finite-rank sequentially laminated composites is emphasized. This
approach leads to a new numerical algorithm for shape optimization.

Keywords. Optimal design, shape optimization, composite materials, finite-rank laminates.

INTRODUCTION

Since the pioneering work of Hashin and Shtrikman (1] many efforts have been devoted to the
problem of bounding effective properties of composite materials, obtained by mixing twa elastic
components in fixed proportion. This is actually a problem of optimization of the microstructure
(or arrangement of the components), so that the best possible bounds on effective properties are
attained for so-called optimal microstructures. There is a great variety of such optimal micros-
tructures. including the concentric spheres assemblage (see e.g. [1]), the perodic arrangement of
properly shaped holes discovered by Vigdergauz [2], and the so-called finite-rank laminates intro-
duced by Tartar [3] and Francfort and Murat {4]. By far, the third class (of finite-rank lam-
inates) is the most general and easiest to use since. in particular, their effective properties may be
computed explicitly.

The main goal of this paper is to show how this theory of optimal composites may be used in
practice for some structural optimization problems. More precisely, we consider the model prob-
lem of optimal shape design for an elastic body : the design criteria are weight and compliance,
the latter being a global measure of rigidity. For most loading configurations it turns out that
there is no definite optimal shape, but, rather, a sequence of increasingly better designs obtained
by removing from the initial body more and more, smaller and smaller, holes. The limit design
is not a "classical” shape : it behaves like a composite material obtained by microperforation.

The content of this paper is the tollowing : the optimal shape design problem is formulated in
the first section, the second one is devoted to a brief review of the necessary results from the
theory of optimal composites, and finally, in the third section, a so-called relaxed formulation of
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the problem is introduced, which leads o a new numerical algorithm for computing optimal
shapes. The work reported here has been partially accomplished in collaboration with R.V.
Kohn and G. Francfort (see [5], [6], [7]) ; it is a pleasure for me to acknowledge their help and
friendship.

() OPTIMAL SHAPE DESIGN

The usual goal in structural optimization is to find the "best” structure which is, at the same
time, of minimal weight and of maximum strength. Here, we consider a model problem of this
type, in the context of linear elusticity with a single loading configuration. For simplicity, we
work in two space dimensions, but most part of the analysis can be carried away in three space
dimensions. We begin with a plane bounded domain L. occupied by a linearly elastic material
with Hooke’s law Ay, and loaded on its boundary by some known function f. Admissible
designs are obtained by removing a subset /{ < Q. consisting of one or more holes (the new
boundaries created this way are traction-free). The equations of elasticity for the resulting struc-
ture are

G = Age(u), efu) = A(Vu +'Vu)
diveoe =0 in OH (1)
on = f ondQ, on =0 on dH,
and the compliance is
c(QH) = [fu = [Apwlewr = [<Ajloo>. (2)
d (o) OH
Introducing a positive Lagrange multiplier A, the goal is to minimize, over admissible designs
OV, the weighted sum of the compliance and the weight, i.e.
Min g | c(Q\H) + A|O\H f] i (3)

The Lagrange multiplier A has the effect of balancing the two contradictory objectives of rigidity
and lightness of the optimal structure (increasing its value decreases the weight). As already said
in the introduction, problem (3) may have no "classical” minimizer (i.e. there is no optimal shape
Q\H), since it is often advantageous to cut infinitely many small holes in a given design in order
to decrease the functional (3). Thus, achieving the minimum may require a limiting procedure
leading to a "generalized" design consisting of composite materials made by microperforation.

To take into account this physical behavior of nearly optimal shapes, we have to enlarge the
space of admissible designs by permitting perforated composites from the start (this process is
called relaxation ). Such a structure is determined by two functions 8(x), the local volume frac-
tion of material taking values between 0 and 1. and A (x), the corresponding effective Hooke's
law. The equations of elasticity now take place everywhere in the domain Q

o = Ae(u), e(u) = (Ve +'Vu)
dive =0 inQ 4)
on = f on 08,

and the compliance is defined as

c(A) = .JJuf.u = f|;<A (xX)e(u)elu)> = i‘;d& x)loo> . (5)

The weight is just the integral of the material volume fraction. Therefore the relaxed
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formulation of (3) is

Min o)1) [c(m + A [B(x) dx (6)

Q

where the minimization takes place over all perforated composites with density B(x), and
Hooke's law A (x). A priori, the minimization of (6) is a formiduble task since the set of all
possible composite Hooke’s law is not known, However, thanks to the precise form of the com-
pliance (which is nothing but the stored elastic energy), it will be shown in section (II) that {6)
always admits minimizers among a class of optimal composites, namely the rank-2 sequentially
laminated composites. Furthermore, in section (II), part of this minimization will be done
analytically, and (6) will be reduced to a non-linear minimization over statically admissible
stresses which is thus easily amenable to numerical computation.

The advantage of the relaxed formulation (6) over the original one (3) is twotold (see [7] for
details). On the one hand, problem (6) has always a solution. On the other hand, the minimum
values of (3) and (6) are the sames, and each solution of (6) determines a minimizing sequence
of classical designs for (3). At this point the use of composites might appear to be just a trick
for proving existence theorems. In fact its importance goes much further. Indeed, it permits to
separate the minimization of (6) in two different tasks : first, optimize locally the microstructure
(this will be done analytically), second, minimize globally on the density 6(x). This has the
effect of transforming the difficult "free-boundary” problem (3) into a much ecasier “sizing"
optimization problem (6) in a fixed domain. This idea is at the root of the new numerical pro-
cedure proposed in section (III) for computing optimal shapes. Although the mathematical
theory of relaxation by homogenization of microstructures is, by now, well-established (see
Murat and Tartar [8], Lurie and al. [9], Kohn and Strang [10]), it is only recenty that the first
numerical applications have appeared thanks to the pioneering work of Bendsoe and Kikuchi
[11]. However, the present work differs from their in one important respect : here, the use of
optimal microstructures (i.e. rank-2 layered composites, see figure 1) is emphasized, while Bend-
soe and Kikuchi considered ad hoc microstructures, namely square holes in squared cells, which
are known to be sub-optimal.

(II) COMPOSITE MATERIALS AND OPTIMAL MICROSTRUCTURES

This section presents a brief review of some results from the theory of optimal bounds on com-
posite materials, which will be used latter for computing the relaxed problem (6). Let us con-
sider the problem of mixing two isotropic, linearly elastic, materials (with perfect bonding at the
interface) in fixed proportion, Such a mixture behaves as an effective elastic medium, also
called composite material. Since the arrangement (or the microstructure) of the two phases is not
prescribed, different effective Hooke's laws (possibly anisotropic) may arise for different
geometries of the mixture, Unfortunately, there is no simple algebraic characterization of such
effective Hooke’s laws. In other words, the set of all possible composite materials is not known
a priori (of course, this set is included between the Voigt and Reuss bounds, ie. the harmonic
and arithmetic means of the components Hooke’s laws, but it is always strictly smaller). Yet, we
have a partial knowledge of the boundaries of this set. More preciscly, in some cases we know
what is the extremal rigidity or elasticity of all possible composite materials, and which micros-
tructures are exiremal. For a general account of this theory the reader is referred to [1], [4],
[12], [13], [14] and the bibliographies therein.

Here, we are going to specialize the theory to the case of composites (with Hooke's law denoted
by A) obtained by mixing an isotropic material (with Hooke's law Ag) with void. From a
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physical point of view, these composites A are nothing but the original material A, pertorated by
holes with traction-tree boundaries. The proportion of material is fixed and is denoted by 8. Let
us also fix a constant stress tensor d. In view of the structural optimization problem considered
in section (I) (where the compliance (5) plays a key role), we seek a composite material A (not
necessarily unigue) which minimizes the complementary energy < A™'o.6 >, i.c. which is the
most rigid under the given stress 6. This question has been worked out in [7] and [14]. and we
recall their main results without proot. It turns out that such an optimal composite can always
be choosen in the class of so-called rank-2 luyerings (in two space dimensions). In other words,
denoting by Gg (resp. Lg) the set of all possible perforated composites (resp. rank-2 layerings)
with density 6, we have

Min 4., <A7'0.0> = Min ., <A7'6.0> )

Furthermore, the parameters of the optimal rank-2 layering and the value of the minimum in (7)
can be explicitly computed. Before doing this, let us describe precisely what is a rank-2 layer-
ng.

A rank-2 layering of material A, and void, with an overall density , is obtained by two succes-
sive laminations. It is characterized by four parameters : the layers normals ey and ¢,, and the
proportions m and my which satisfies m+m, = 1,0 <m < I, and 0 < m, < L. In a first step,
a proportion m,8/(1-m,8) of material A, is layered with void, in the direction ¢,. In a second
step, a proportion m,0 of material A is layered with the previous layering (obtained in the first
step), in the direction e,. Thus, for the final rank-2 layered composite, the parameters m; are
exactly the proportion of material distributed in layers normal to ;. Of course each step
involves a limiting procedure, i.e. the thickness of the layers goes to zero, but further, the length
scale of the second step has to be much larger than that of the first step. As a consequence, this
microstructure appears physically as the original material A, perforated with very thin and long
holes (see figure 1). One of the main advantage of rank-2 layerings is the existence of an expli-
cit algebraic formula for their effective Hooke's law (see proposition 4.2 in [4]).

We now tm to the characterization of the optimal rank-2 layering in (7) which is the strongest,
or the most rigid. perforated composite supporting the stress @ (see [S] for details). Denoting by
g, and g, the eigenvalues of the stress tensor & (a two-by-two matrix in two space dimensions),
the layers normals are simply the eigendirections of o, and the amount of material in each layer
1s proportional to the corresponding eigenvalue, i.c.

G = lo, | i |Ul | @)
' oy + lay] . o]+ foy] ~
Furthermore, the minimum value in (7) 1s just
2
Min ., <A7'06> = <Ajlee> + (K+4'3:l:3_8} ﬂcl | + |o, l] 9

where K and  are the bulk and shear moduli of material A,. Remark that if we take equal to
the identity, and if we assume that the composite A is isotropic, formula (9) is nothing but the
well-known Hashin-Shtrikman upper bound on the effective bulk modulus. This bound is also
attained by a microstructure obtained with the concentric spheres assemblage (see [1]). Thus,
optimal microstructures are not necessarily unique. We favor rank-2 layerings for two reasons :
there is an explicit algebraic formula for their effective Hooke's law, and they are optimal for

» any value of the stress o. (Actually, their generalizations, so-called finite-rank laminates, are

optimal for almost all known bounds ; see e.g. [4], [13], and [14].)
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(I11) COMPUTATION OF THE RELAXED FORMULATION AND NUMERICAL

RESULTS
We are now equipped to reformulate the relaxed problem (6) in a way suitable for numerical
computations. The starting point is the principle of minimum complementary energy which
gives the value of the compliance (5) as
cA) = [fu = Ming c0ima [<a )T >dr (1
an n =f on df} Q

Thus, the relaxed formulation (6) appears as a double minimization over perforated composite
materials and statically admissible stresses. The next step is to interchange the order of minimi-
zation, and to put the optimization in 8 and A inside the integral since it is subject only to local
constraints. Thus, the relaxed problem (6) is equivalent to

Mifl iy <=0 in Q IMinusesl[<A_'1,1> + le]dx. an
Tn =f on #l Q A

The main advantage of formulaton (11) over (6) is that we can restrict the class of admissible
composites A to that of optimal composites in the sense of section (IT), i.e. to rank-2 layerings.
The equivalence between (6) and (11) reflects the two possible approaches of shape optimization,
In (6), one fixes a design, then solves an elasticity problem, then adjusts the design to improve
its performance. In (11), a statically admissible stress is choosen, then the optimal design is
found for this stress, then the stress is adjusted to achieve kinematic admissibility. We favor this
last approach since, as shown in section (II), we know explicitly an optimal microstructure for
any given stress.

A new numerical algorithm for computing optimal shapes is thus deduced from the relaxed for-
mulation (11). It amounts to iterate until convergence the following procedure : (i) having a
candidate stress field, compute (analytically) the parameters of the corresponding optimal rank-2
layering ; (ii) solve a linear (possibly anisotropic) elasticity problem for this design and deduce

the new stress field. Convergence is detected when almost no changes occur between two suc- °

cessive stress fields. For details about the practical implementation of this algorithm, the reader
is referred to [5] and [7].

We present some numerical results for the so-called cantilever problem. The original shape (the
domain ) is a rectangle which is fixed on its left side (zero displacement). Its other sides are
traction free except on the middle point of the right side where a constant unit force is applied
vertically (parallel to the edge) (see figure 2). The density 8 of the computed optimal design is
plotted on figures 3, 4, and 5 (void is obtained for 8 = 0, pure material for 8 = |, and composites
for intermediate densities). The first result (figure 3) holds for a rectangle, the heigth of which is
twice its width. The optimal shape looks like two bars connected at right angle. This design is
very similar to what could be obtained with the celebrated Michell truss approach [15]. It is not
a surprise since, in the limit where the Lagrange multiplier A goes to infinity, the relaxed formu-
lation (11) is essentally equivalent to a continuous Michell truss problem (see [7] for details).
Remark that the design includes almost no composites (up to errors of discretization).

The second result (figure 4) holds for a rectangle, the heigth of which is half its width. Here, the
optimal shape includes a lot of composite regions (which is fair since the relaxed formulation
allows them). However, from a practical point of view, perforated composites are difficult to
manufacture, and one would rather suppress them if possible. This can easily be done by penal-
izing intermediate densities in our numerical algorithm, ie. by forcing @ to be closed to 0 or 1
(see [5] for details). For the same configuration as in figure 4, figure 5 displays the result of our
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pcnuiizcd procedure which is a "near-optimal” structure, ie. very close to the optimal design
drawn on figure 4 (the objective tunction (11) has increased of less than 5%), but with almost no
compusites.

The new numerical algorithm, which has been briefly presented above, has an essential advan-
tage @ it places no restriction on the topology of the optimal design. Indeed, the computation
takes place 1n a fixed domain. and no "front-tracking” procedure is used to follow the boundaries
of the optimal shape. Thus. this type of algorithm may be seen as a topology optimization
method which can be used as a pre-processor for a more conventional code. In other words. an
optimal design produced by this algorithm is a good candidate for an initial guess of a classical
optimization code which would smooth out its edges without changing its topology (for striking
examples, see [16]).
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a rank-2 layering (the grey area is the material part)
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Figure 2
loading configuration of the cantilever problem
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Figure 3
first cantilever problem : 70% of matenal removed
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Figure 4
second cantilever problem : 48% of material removed

Figure 5

second cantilever problem : after penalization. 51% of material removed
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