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Abstract Two formulations for the design of the op-
timal insulation of a domain are investigated by com-
putational means. The results illustrate the similarities
and differences that result from the two approaches.
One method is in the format of a topology design
problem of distributing insulating material in a domain
surrounding a non-design domain that is heated by a
given heat source; this problem is treated in both a
relaxed format and a penalized material format. The
other approach deals with the optimal distribution of
a thin layer of insulation on the boundary of the non-
design domain; this problem is more in the realm of
shape design, or rather, it is similar to optimal design
of support conditions for structures. In both cases,
mathematical programming is used, but for the shape
design case, it is applied to the non-linear analysis
problems that arise when the optimal design is explicitly
solved for.
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1 Introduction

Much of the fundamental mathematical insight in the
area of optimal design for continuum problems was
originally obtained by studying the scalar case of con-
duction (or equivalently, torsion; see, for example,the
overviews given in the books by Cherkaev 2000; Allaire
2002). However, only a moderate number of papers
in the area cover computational experiments for con-
duction problems and it is common that the maximiza-
tion of the conduction is treated, typically measured in
such a way that the problem is analogous to the well-
known minimum compliance problem for structures.
Even rarer are papers on the design of insulation per
se; however, the basics for this case are analogous to
the maximization of the torsional stiffness of a shaft.
We refer the reader to the papers of Lavrov et al.
(1980), Lurie and Cherkaev (1997), Glowinski (1984),
Goodman et al. (1986), Pedreira and Vinter (1990),
Burns and Cherkaev (1997), Sigmund and Torquato
(1997), Cox et al. (1999), Donoso and Sigmund (2004),
Li et al. (2004), Zuo et al. (2005), Ha and Cho (2005),
and Donoso and Pedregal (2005).

In this paper, we deal with variations of the problem
of optimal design of insulation in a common physical
setting that is inspired by the work on the “thin insula-
tion” case by Buttazzo (1988b). Inside a given domain
�fix, a heat source f is given and this source is restricted
to a subdomain ω of the fixed domain �fix (Fig. 1).
Our goal is to find an optimal use (maximization of
heat) of an amount of insulation material to be dis-
tributed around the domain �fix; this can be as a layer
on the boundary or it can be distributed in a domain
surrounding �fix. This is an abstract setting of finding
the insulation of a house �fix with radiators in ω that
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Fig. 1 Template geometry of
the topology design insulation
problem with heat source in ω

and design domain �des Ω
fix

ω

desΩ

generate heat given by f ; for simplicity, in this paper,
we treat the problem in 2-D.

The paper illustrates several of the issues that have
been a central part of the work of Pauli Pedersen to
whom this volume of Stuctural and Multidisciplinary
Optimization is dedicated: shape design, topology de-
sign, the use of optimization algorithms for design and
analysis, and work with problem structure.

2 The topology optimization formulation

For the topology optimization problem, we imbed the
domain �fix into a larger domain � and use the area
�des = � \ �fix as the design domain.

The analysis problem for the temperature T is the
stationary heat transfer equation defined in all of �,

−∇(a(x)∇T(x)) = f in �; T(x) = 0 on ∂� (1)

with zero temperature on the boundary ∂� of �. Here,
f is the heat source density, which is zero outside of
the set ω (in the examples, we set f = 1 in ω). The
parameter a(x) corresponds to the local conductivity of
the material. Explicitly, a(x) is the function

a(x) =
{

δcon, no insulation at x

δins, there is insulation at x
(2)

where 0 < δins � δcon. Also, we have that a(x) = δcon

in �fix.
The optimization problem we will treat is one of op-

timal insulation, that is, we seek an optimal distribution
of a given amount V of the insulator with conduction
properties a = δins so as to maximize the heat in the
area �fix. The objective for heat is here expressed as
(Buttazzo 1988b, note that f = 0 in � \ ω)

H =
∫

ω

f T dx =
∫

�fix

f Tdx =
∫

�

f Tdx (3)

where T is the solution of (1). We note here that the
global insulation properties could also be measured
in terms of dissipation of heat, e.g., in terms of the
fundamental eigenvalue of heat conduction problem as

in (1) (for a treatment of this for the case of a thin
insulation layer, see Cox et al. 1999).

Using the weak form of the state equation (1), we
can here express our goal to find the minimum of the
functional

J(T, a) =
∫

�

a(x)|∇T(x)|2dx − 2
∫

�

f (x)T(x)dx (4)

in both fields. This follows from the property that

min
T

T|∂�=0
J(T, a) = −H. (5)

To make the problem nontrivial, we should also impose
a volume constraint:

Vins(a) =
∫

�des

1{x:a(x)=δins}dx ≤ V (6)

Elaborating further, the problem we should solve can
be written as

min
a,T

Vins(a)≤V; a(x)∈{δcon,δins}
T(x)=0 on ∂�

J(T, a) (7)

We note that this way of rewriting the optimization
problems in this form is also quite standard in studies of
minimum or maximum compliance problems (cf., e.g.,
Cherkaev 2000; Allaire 2002; Bendsøe and Sigmund
2003).

In the following, we shall describe both a solid
isotropic material with penalization (SIMP)-type ap-
proach and a relaxation approach to deal with this
problem. We will here apply a standard nested ap-
proach for the computational treatment, meaning that
the analysis problem is seen as a function call and the
optimization procedure just deals with the optimization
over the design field a. This means that we solve the
problem that can be written as

min
a,a(x)∈{δcon,δins}

Vins(a)≤V

⎡
⎣ min

T
T(x)=0 on ∂�

J(T, a)

⎤
⎦ (8)

2.1 An approach by penalized interpolation

For the pure topology design problem, we wish to
obtain results that satisfy the discrete valued nature of
the constraint (2). However, to avoid the use of integer
programming, we adopt here the the SIMP method,
which has proven very popular and extremely efficient
in structural applications (for an overview, see Bendsøe
and Sigmund 2003). In our present setting, it means
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that we introduce a spatially varying density ρ(x) of
the insulation material and express the conductivity
properties at a point x in the design domain �des by an
expression:

ap(ρ(x)) = (1− ρ(x))p(δcon − δins) + δins, 0 ≤ ρ ≤ 1

(9)

and with the volume constraint written as∫
�des

ρ(x)dx ≤ V (10)

In (9), p is a suitably chosen penalty parameter that
should infer a penalization of intermediate values of ρ.
Note that the interpolation (9) satisfies ap(ρ(x) = 0) =
δcon and ap(ρ(x) = 1) = δins.

The computational procedure we will apply deals
with the nested format (8), which we here write as

min
ρ

−H(ρ)

s.t. :
∫

�des

ρ(x)dx ≤ V

0 ≤ ρ(x) ≤ 1 (11)

The min–min format of the design problem (8)
means that a suitable choice of the power p ≥ 1 in
(9) is different from the typical minimum structural
compliance setting. First of all, we note that for p = 1,
(9) is a linear interpolation (like a Voigt upper bound
for the effective properties). This means that problem
(11), as an optimization problem in ρ, for p = 1 has a
concave objective function and a convex constraint set.
This follows from (5), which shows that the objective
function of (11) is a minimization of linear (i.e., con-
cave) functions. The concavity of the objective function
for p = 1 implies the existence of a globally optimal
0-1 solution for a finite element method (FEM) dis-
cretized version of the problem where we, for example,
use element-wise constant densities in a uniform mesh
and a volume constraint that is an integer times the
volume of the base element. This kind of property is
also the idea behind the so-called RAMP interpolation
proposed in Stolpe and Svanberg (2001) for structural
applications.

2.1.1 Computational method

The computational solution procedure for (11) follows
what one could label the “standard procedure” in the
area. The temperature field and the the design field are
discretized using FE, here using element-wise constant
interpolations for ρ and linear, triangular elements for

T (the elements consist of a triangulation of the square
elements used for ρ). The resulting finite dimensional
optimization problem is then solved using sensitiv-
ity analysis and MMA (Svanberg 2002). The sensi-
tivity analysis is quite standard (see, e.g., Bendsøe and
Sigmund 2003, p.17) and will thus not be repeated here.

Numerical experiments have shown that it is ben-
eficial to use a continuation method for the penalty
parameter p (like for SIMP in structural applications).
Here a natural continuation method using the interpo-
lation scheme is to begin the optimization procedure
with p around 2 to 4 and then decrease p until p = 1.
Finally (and not unexpectedly), one should also, for
the present case, apply a filtering technique to avoid
mesh-dependent results; in this work, we have used
the gradient-filtering techniques originally proposed by
Bendsøe and Sigmund (2003, p.35).

2.1.2 Examples

Various example results for the topology design setting
are shown in Figs. 2, 3, 4, 5, 6, 7, and 8. Unless otherwise
stated, all figures using SIMP have been obtained using
filtering techniques (cf. the discussion above).

Note that most of the designs place the insulation
directly on the boundary of the fixed domain �fix; in
essence this means that a simple topology is chosen.
However, as shown in Fig. 6, certain combinations of
geometry and material parameters can result in a design
where the optimal use of insulation is not to place this
directly along the boundary of �fix. There a decrease
in the conduction properties of the insulation material
(by a factor of 7.5 as compared to the left-hand design
in Fig. 6) results in a new type of design (to the right)
where the insulation material is not “sticking” to the
boundary of the domain �fix—the part of the design
domain that is enclosed by the insulation is the hatched
region.

We remark here that various types of optimal de-
signs are obtained depending on the data given; this
includes the shape of the domains �fix and ω, as well
as the size of the outer design domain �. Also, the
placement of ω within �fix and the placement of �fix

within � plays a role. The later is specifically important
as it controls how “close” the boundary of �fix is to the
ambient temperature (T = 0; see Fig. 7). One sees that
there is a tendency that “classical” solutions are more
likely if the insulation and the outer boundary of zero
temperature are far apart.

If one wishes to model a situation where the outer
temperature (T = 0) is applied directly to the outer
boundary of the insulation, the format of the optimiza-
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Fig. 2 Optimal design for the topology design insulation problem
(using SIMP), with heat source in the gray area. The black area is
the insulation that can be placed outside the inner white domain,
but only inside the outer square

tion problem should be changed, for example using
ideas that have been devised to deal with pressure load
problems in structural applications (see, for example,
Hammer and Olhoff 2000; Chen and Kikuchi 2001;
Sigmund and Clausen 2006).

Fig. 3 Optimal design for the topology design insulation problem
(using SIMP). Here, insulation is not required along all of the
boundary

Fig. 4 Optimal design for the topology design insulation problem
(using SIMP), without a filtering scheme, using a 240 by 240 mesh

2.2 Relaxation of the topology optimization
formulation: no filtering used

As is well-known, the integer-valued problem (8) does
not generally allow for the existence of solutions in the
continuum formulation of the problem. For the prob-
lem at hand, it turns out that the relaxation required—
as for structural problems—will involve composites.

Fig. 5 An example similar to Fig. 3, but now using a filter. Results
for a 160 by 160 mesh



On two formulations of an optimal insulation problem 367

Fig. 6 An illustration that topology may change in some circumstances. Solutions obtained without filtering

However, as we are dealing with a scalar conduction
problem and are minimizing heat, the relaxation is the
same as the convexification of the problem, which again
is equivalent to using the Reuss-like lower bound that
interpolates the conduction properties by the harmonic
average of the properties (see Lurie and Cherkaev
1997; Murat and Tartar 1997; Cherkaev 2000; Allaire
2002, and references therein). This means that the prob-
lem (11) becomes a convex problem in ρ if we use the
interpolation:

arelax(ρ(x)) =
[
ρ(x)

1

δins
+ (1− ρ(x))

1

δcon

]−1

= δinsδcon

ρ(x)δcon + (1− ρ(x))δins
(12)

The material properties in (12) for intermediate val-
ues of ρ can be realized by a layered medium (a so-
called rank 1 layering), which has an energy that can be
seen as isotropic since the direction of the layering is
given by the gradients of the temperature field. More-
over, the energy can be given via material properties
defined in (12), which is a Reuss lower bound on the
conductivity. Note that this is quite unique for the scalar
conduction case at hand (for elasticity, the Reuss lower
bound is not attainable by a composite).

2.2.1 Computational procedure

If one chooses to use the formulation (11) together with
(12), one can follow the same computational proce-
dure as described above for the SIMP interpolation. In
this case, however, one does not need a continuation
method nor a filtering technique. Moreover, optimal
designs do have areas with intermediate values of ρ,
in contrast to the situation for the SIMP method. An
example is shown in Fig. 8. Computations have been
performed on a 120 by 120 mesh of squares, and no
symmetry conditions have been imposed. Note the ap-
pearance of moderate areas with “gray” in the relaxed
solution.

We note here that the related computational results
contained in Goodman et al. (1986) work with a formu-
lation in the state field only, that is, problem (8) is first
solved analytically with respect to the design field ρ.

3 A model with a boundary layer of insulation

The model we will apply for the shape design of a
layer of insulation around a given domain is in the
literature called “the thin insulation layer” problem
(Fig. 9). In this model, one uses the assumption that
the insulation material will be concentrated in a thin
layer around the insulated body like a varnish layer, and
the design variable is the thickness of the insulation in
each point of the body’s boundary. The format we will
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Fig. 7 The influence of choice of outer design domain �

use here is the limiting case where the layer is infinitely
thin but with infinitely high insulation properties, but
with a nontrivial limiting model (neither Dirichlet nor
Neuman boundary conditions prevail).

We will first formulate the problem with a finite layer
of insulation. Consider now the fixed domain �fix with
a suitable smooth boundary and let n(x) represent the
unit outer normal to ∂�fix, for every x ∈ ∂�fix. We cover
the boundary of �fix by an external thin layer �ε of in-

sulating material of conductivity 0 < δins � δcon as fol-
lows. For a thickness function d ∈ C0(∂�fix, [0, +∞]),
let us define the insulation set �ε(d) as

�ε(d) = {x + tn(x), with x ∈ ∂�fix, 0 ≤ t < εd(x))} (13)

where ε > 0 is small enough. The complete model will
then be defined on the set �ε := �fix

⋃
�ε(d) and the



On two formulations of an optimal insulation problem 369

conductivity properties in this domain will be given
as (for notational simplicity, we set here δcon = 1, and
write δins = δ):

aε,δ(x) :=
{
1, x ∈ �fix

δ, x ∈ �ε

(14)

The analysis problem for the temperature T is as earlier
(1) given on the set �ε , with heat source f . In this

Fig. 8 Optimal insulation of a square with an internal square heat
source. Top A solution to the relaxed design problem. Below The
corresponding case solved with SIMP

Fig. 9 Template geometry of
the thin insulation problem,
with heat source in ω and thin
design domain �ε

Ω
fix

ω

Σε

new setting, the variational formulation of the state
equation can be written as

min
T

T|∂�ε =0

∫
�fix

|∇T|2dx + δ

∫
�ε

|∇T|2dx − 2
∫

�fix

f Tdx

(15)

It is known that when considering the asymptotic
behavior of problem (15) when (ε, δ) → (0, 0), we have
to consider three distinct cases, depending on the con-
vergence rates of ε and δ. First, if ε � δ, then the
limiting case is where the insulation could be neglected,
and the limit is the classical Dirichlet problem defined
on �fix. In the second case where ε 	 δ, the limit case is
such that there is no conduction in �ε and the limiting
case will be that of the classical Neuman problem on
�fix.

The third possibility is of interest for optimal design.
In this case, ε ≈ δ, that is, ε = kδ, where k is a constant,
and the limit case represents the situation where the
width of the insulating layer and the conductivity of
the insulating material go “equally fast” to zero (δ =
ε/k, and ε → 0). The correct meaning of “limit case”
should be given in terms of 	-convergence (see, for
example, Buttazzo 1988a,b; Buttazzo and Kohn 1987;
Morini 2002; Esposito and Riey 2003) and becomes

min
T

E(T, d) (16)

with

E(T, d) =
∫

�fix

|∇T|2dx − 2
∫

�fix

f Tdx +
∫

∂�fix

T2

k d
dx

(17)

In partial differential equation (PDE) form, this prob-
lem has the form:

−
T = f in �fix, kd
∂T
∂n

+ T = 0 on ∂�fix (18)

which has a boundary condition that mixes Dirichlet
and Neuman data.
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3.1 The optimization setting

In order to find the “best” insulation around �fix,
our optimization problem for the model (16) will be
formulated analogously to (8). The design fields will be
positive thickness functions d defined on the boundary
of �fix, which satisfy a volume constraint. Thus, the
design set is

	w =
{

d ∈ L1(∂�fix) : d ≥ 0,
∫

∂�fix

d dx ≤ w

}
(19)

and the optimization problem of maximizing heat in the
domain �fix becomes the convex problem:1

min
d,T

d∈	w

E(T, d). (20)

The convexity of (20) means that one could proba-
bly, with advantage, solve the problem computationally
using an optimization procedure that works simultane-
ously with both the design and the temperature field.
However, here we take another approach and, instead,
solve analytically for the design field in (20) . That is,
rewriting the problem as

min
T
min
d∈	w

E(T, d), (21)

we solve the inner problem directly. That is, we use that
for every field T, in which there exists a solution dT ∈
	w (which is unique if T is nonzero) of the minimum
problem

min

{∫
∂�fix

T2

k d
dx : d ∈ 	w

}
(22)

and this solution is given as

dT = w
|T|∫

∂�fix
|T| dx

. (23)

Inserting (23) in (21), we obtain the following equiv-
alent problem in the state field T only:

min
T

{∫
�fix

|∇T|2dx−2
∫

�fix

f Tdx+ 1

k w

(∫
∂�fix

|T|dx
)2}

(24)

This is the problem that we then will solve by compu-
tational means. It is a pure analysis problem of finding
a minimizer of a potential energy, albeit of a rather
unusual form. This is due to the last term of the en-
ergy in (24), which has the form of a penalization of
the temperature on the boundary of the domain; the

1This follows from the strict convexity of the real function
(x, y) → x2/y, y > 0, in two variables.

lesser insulation available, the more the temperature is
penalized. However, note that the penalization is not of
standard type as it couples the behaviour at all points on
the boundary.

Note that, having obtained the optimal field T, we
can subsequently compute the optimal design from
(23).

3.2 Computational setup

One should first note that one cannot solve (24) in a
classical way by the finite element method. To see this,
one should note that the PDE format corresponding to
(24) is of the form

− 
 T = f in �fix

0 ∈ kw
∂T
∂n

+ H(T)

∫
∂�fix

|T| dx on ∂�fix (25)

where H(t) is the multi valued mapping

H(t) =
{

sign(t) if t �= 0

[−1, 1] if t = 0
(26)

The problem (25) is a non-local PDE as the boundary
condition in each point involves the integral of |T| over
the whole of the boundary. This is not easy to solve
by standard methods (i.e., by solving linear equations).
However, we remark that if the source term f is non-
negative, then—by the maximum principle—the tem-
perature, for any design, is positive. Therefore, there is
no need (in such a case) for the absolute value in (24).
Consequently, the underlying PDE (25) becomes linear
(albeit it is still nonlocal).

Here, we have thus chosen to use FE for the dis-
cretization, but to solve the resulting finite dimensional
optimization problem by an optimization algorithm.

3.2.1 Smoothing the functional

To solve the problem (24), we have choosen a finite
element space of linear elements on triangular elements
so that one can express the functional (24) in terms of
the expansion coefficients of the FEM approximation.
Moreover, in order to work with a smooth objective
function, we approximate the absolute value term of
(24) by the expression

|T| ≈
√

T2 + γ 2 (27)

with γ � 1.
The resulting nonlinear but convex optimization

problem in the FE expansion coefficients was then
solved by using the SNOPT optimization algorithm
(Gill et al. 2005). SNOPT is a general purpose system
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Fig. 10 Comparing SIMP and the thin insulation case

for solving linear or nonlinear optimization problems
involving many variables (and constraints) by a sequen
tial quadratic programming algorithm. After finding the
field T for the optimal design, one can evaluate its
values on the boundary to find the optimal thickness
distribution of insulation [using (23)].

3.3 Examples

In Figs. 10, 11, and 12, we show a range of examples
that illustrate the thin insulation case. The results are
illustrated by showing a graph of the optimal insulation
thickness, as it is distributed around the boundary.
Comparisons with the topology design case (the SIMP
variant) are also shown. There are here two ways to
compare the results; one is by computing the thickness
of the insulation layer in the topology example. An
alternative is to compare the values of the tempera-
ture field along the boundary of the domain using the
expression

d = |T|∫
∂�fix

|T| dx
(28)

which is the optimal layer thickness in the thin insula-
tion case.

Figure 10 shows the geometry of an insulation prob-
lem for a “two-winged house” and the topology opti-
mization solution together with the distribution of the
optimal thin layer over the boundary; thus the graph
in Fig. 10b shows the thickness dT as a function of
the position along the boundary, moving clockwise and

Fig. 11 A direct comparison of the temperature along the bound-
ary of �fix for the designs obtained in Fig. 10
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Fig. 12 An illustration of the convergence of the topology optimized designs to the thin insulation case

starting to the left at the left-most upper hand corner
of the domain �fix. Finally, for comparison, Fig. 10c
shows the thickness of the insulation layer in the topol-
ogy optimized case, measured along the normal to
the boundary of �fix (and illustrated as in Fig. 10(b)).
When using the relationship (28) one obtains the two
graphs of Fig. 11, where the lower curve is for the thin
insulation case, the upper for the topology design case.
Note the similar physics of the two cases.

Using (28) also allows us to directly compare the
behavior of the topology design problem when one

in this formulation decreases the volume of insulation
material, while at the same time, the conductivity of
the insulating material is decreased. As seen in Fig. 12,
this can effectively demonstrate the convergence, as
predicted by theory. The graphs show the temperature
around the outer boundary of �fix for the geometry
shown in Fig. 8 for the thin insulation case (lower curve
in all four plots) and for the topology design, where the
volume is lowered and the insulation properties made
higher. Note that finer meshes are required when re-
ducing the volume, in order to have proper resolution.
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The four plots thus correspond to an FEM mesh reso-
lution of (a) 60× 60, (b) 80× 80, (c) 100× 100, and (d)
120× 120, for the full analysis domain �.

4 Conclusions

The methods of topology and shape design can ef-
fectively be applied to a broad range of physics. In
this paper, we have dealt with the problem of optimal
insulation, using a whole range of the theoretical and
computational techniques and results of the field. The
problem is somewhat unique in its mathematical struc-
ture and it allows for illustrating many features of the
area in a rather compact form.
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