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Abstract

We address the homogenization of a scalar wave equation with
a large potential in a periodic medium (sometime called the Klein-
Gordon equation). Denoting by € the period, the potential is scaled as
€~2. The homogenized limit depends on the sign of the first cell eigen-
value \;. If Ay =0, then the homogenized problem is a standard wave
equation. If A; # 0, then, upon changing the time scale to focus on
large times of order €~ !, we obtain dispersive homogenized problems,
i.e. equations which are not of the second order in time. If \; < 0, the
homogenized equation is parabolic, while for A\; > 0, the homogenized
equation is of Schrédinger type.

1 Introduction

We study the homogenization of a scalar wave equation with a large po-
tential (the so-called Klein-Gordon equation) and periodically oscillating
coefficients

s (4(2) 70)  ((2) (e Z)) =0 oo

ue =0 on 00 x (0,7),
ue(t = 0,z) = ud(z) in Q,

Ote 4 — 0,5) = ul(x) in Q

ot ’ ¢ ’

(1)
where Q C RY is an open set and T' > 0 a final time. The potential term in
(1), i.e. the zero-order term, is used to model some repelling or attracting
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effects like springs attaching an elastic membrane to a fixed support. The
coefficients A(y), c¢(y) and d(z,y) are real and bounded functions defined
for z € Q and y € TV (the unit torus). More precisely, the entries of
A(y) and c(y) belongs to L*®(TV), while d(z,y) is a Carathéodory function
in L®(Q; C(TV)). Furthermore, the matrix A(y) is symmetric, uniformly
positive definite, d(z,y) > 0 is non-negative while ¢(y) does not satisfy any
positivity assumption. Throughout this paper we assume that the initial
data are ) € H}(Q) and u! € L%*(Q2), so there exists a unique solution
ue € C ([0,T]; H () N C ([0, T]; L3 ().

Of course, if there is no large potential term, namely if ¢ = 0, the ho-
mogenization of (1) is classical (see e.g. [5], [6], [7], [11]). When ¢ # 0
it is a more difficult problem of homogenization mixed with singular per-
turbations. Nevertheless, the parabolic or elliptic version of (1), as well as
the corresponding eigenvalue problem, are well understood (see e.g. [2], [3],
[4], [13]). However, the methods of these articles do not apply to the wave
equation (1). In order to show the differences, we first describe the main
results and ideas of these previous works in the following parabolic case

aaqf —aiv (4 (5) vu) + (e (5) +d(2.5)) =0 i 0x(©7),
ue =0 ‘ ‘ ‘ on 00 x (0,7T),

ue(t =0,7) = ud(x) in Q.
(2)

Introduce the first eigencouple of the spectral cell problem
—divy (A(y)Vy1) + c(y)$r = Mg in TV, (3)

which, by the Krein-Rutman theorem, is simple and satisfies 1 (y) > 0 in
TV (recall it is a scalar problem). As usual we normalize the eigenfunc-
tion by assuming [y 1 (y)?dy = 1. The first eigenvalue )\; is interpreted
as a measure of the balance between diffusion and reaction caused by the
potential term. Then, one can change the unknown by writing a so-called

factorization principle
Mt ue(t, x)

'Ue(taw) =ed ™ (%) s

and check easily after some algebra (see the proof of Lemma 2.1) that the

(4)



new unknown v, is a solution of a simpler equation

2 ( ) 867;; _ div ((¢%A) (%) vfuﬁ) + (92d) (a: %) ve=0 inQx(0,T),
v =0 on 89 x (0,T),

vt = 0,2) = ;1?((;)) in Q.

(5)
The new parabolic equation (5) is simple to homogenize since it does not
contain any singularly perturbed term, and we thus obtain the following
result.

Theorem 1.1 Consider the scalar parabolic problem (2). The new unknown
Ve, defined by (4), converges weakly in L? ((0,T); H{(Q)) to the solution v
of the following homogenized problem

% —div(A*Vv) +d*(z)v=0 in Q x (0,T),
v=20 on 02 x (0,T), (6)
v(t =0,z) = v°(z) in Q,

where d*(z fTN z,y)Y3(y) dy, A* is the classical homogenized matriz of

(42 A) (see formula (36)), and v° is the weak limit in L?(Q) of ud(z)y1 (£).

It is clear from the above brief summary of the parabolic case that the
main idea, namely the factorization principle (4), is not going to work in the
hyperbolic case without some improvement. Let us try a naive adaptation
of this idea to convince the reader. Since (1) is of second order in time, the
analogous time renormalization of the unknown is
—i@ Ue (t, LE)

i (%)

where % is the square root of —1 and /A1 is possibly imaginary if A; < 0.
After some algebra we obtain that v, is a solution of

7 (2) (G + Y2500 —aiv (12 (2) v
+(4h%d) (a: %) ve=0  inQx(0,7),

ve(t, ) =

(7)

,

ve=0 on 09 x (0,7),
ve(t = 0,z) = ud(z) /1 (2) in Q,
| Gt =0,2) = (ul(@) - ing(x)) f1 (2) in Q.

(8)



There is an additional difficulty in (8), compared to (5), which is the very
large first-order time derivative. Actually it is not possible to pass to the
limit in (8) (or to obtain uniform a priori estimates) because of this term
which scales as €71, except if A\; = 0, of course.

Therefore, the only obvious case in the homogenization of the wave equa-
tion (1) occurs when A\; = 0 (it is treated in section 2). The main new idea
to treat the remaining cases A1 # 0 is to scale the time variable, i.e. to look
at large times of order ¢~!. In other words, we replace the original wave

equation (1) by the following rescaled version

20t giv (A (Z) vu) + (e (D) +d(2.5))u =0 mx0.7)

ot?
ue =0 on 90 x (0,7T),
ue(t = 0,z) = ud(z) in Q,
i (t=0,2) = ui(z) in Q.

(9)
The homogenization of (9) when A; < 0 yields a parabolic limit equation
(the imaginary root ¢ cancels out in the factorization principle (7)): this case
is analyzed in section 3. On the other hand, if A\; > 0, the new unknown
ve, defined by (7), is complex-valued and the homogenized limit of (9) is a
Schrodinger equation.
Coming back to the scaling of the original wave equation (1) our results
can be summarized as follows. The asymptotic behavior of the solution
ue(t, x) of (1) is:

1if A\ = 0, u(t,z) ~ o (5) u(t, ), where v is the solution of an
€

homogenized wave equation,

VASSY:
2. if A <0, ue(t,z) = e« : P (%) v(et, z), where v is the solution of

an homogenized parabolic equation,

/At
3. if Ay > 0, uc(t,z) = € o 1 (E> v(et, ), where v is the solution of
€

an homogenized Schrodinger equation.

Of course, the two last asymptotic behaviors make sense for large times, i.e.
when ¢ is of order e . Finally, we conclude this introduction by emphasizing
that our results apply only for purely periodic coefficients A(y) and c(y). If
they also depends on the slow variable x, concentration and localization
effects are expected as already obtained for the parabolic problem in [4].
Notation: for any function ¢(x,%) defined on RY x TV, we denote by ¢¢
the function ¢(z, 2).



2 Hyperbolic homogenized limit

We first consider the case when the first cell eigenvalue, defined in (3), is
A1 = 0. In such a case we homogenize the original wave equation (1). Since
the homogenization process is classical, we merely sketch the main argu-
ments. When A\; = 0, there is no time renormalization and the factorization
principle (7) reduces to

ue(t,x)

¥i(2)

Lemma 2.1 Assume A1 = 0. If uc is a solution of (1), then v, defined by
(10), is a solution of

ve(t, x) = (10)

w220 i (9P AT0) + v =0 in 2 (0.7),

ve =10 on 02 x (0,7T), (11)
ge(t =0, ) =u ( )/¢1 (%) in Q,

et =0,z (z) /91 (%) in Q.

Proof. We briefly sketch the proof since it is by now classical [2], [3], [4], [13]-
To pass from (1) to (10) it is sufficient to replace u(t, z) by ve(t, )91 (z/€)
and to multiply (1) by 1(z/e). Then, using equation (3), defining 1, and
the fact that

PEdiv (AV (15ve)) = Pivediv (AVYS) + div (|52 AV v,)

yields the equivalence between the two equations. Note also that the same
computation shows that the application u(z) — u(z)/v1(z/€) is linear con-
tinuous in Hg(Q). O

Theorem 2.2 Assume A1 = 0 and that the initial data satisfy

O(z) weakly in H(Q),

Yz) weakly in L*(Q). (12)

) — v
¥t (2) 5 (0,2) — v
Then, v, solution of (11), converges weakly in L? ((0,T); H}(2)) to the
solution v of the following homogenized problem

2
Oy —div(A'Vo) +d*(xy =0 in Qx (0,7),
v=0 on 02 x (0,T), (13)
v(t =0,z) = v°(z) in €2,
%(t =0,z) = v!(z) in 2,



with d*(z) = [pn d(z,y)¥3(y) dy and A* is the classical homogenized matriz
of (Y?A) (see formula (36)).

The proof of Theorem 2.2 is classical [5], [6], so we omit it. Remark that
one can improve the convergence in Theorem 2.2 by introducing so-called
corrector results if the initial data are well-prepared. However, in the general
case, convergence of the energy density can be obtained only by means of
geometric optics, WKB asymptotic expansions or H-measures [5], [8], [9],
[12]. We shall not discuss these issues here.

Remark 2.3 Theorem 2.2 still holds true if we add to equation (1) a source
term f(t,z) € L* ((0,T) x Q). It yields a source term ([yn 11(y) dy) f(t, z)
in the homogenized equation (13).

3 Parabolic homogenized limit

We now consider the case when the first cell eigenvalue, defined in (3), is
negative A; < 0. In this case we homogenize the rescaled wave equation (9).
To do so, we perform a time renormalization of the unknown analogous to
(7), namely we define

~¥ht ue(t, )
7
¥ (%)
which is still a real-valued function since A\; < 0. The next lemma gives the
equation satisfied by the new unknown wv..

ve(t,z) =e (14)

Lemma 3.1 Assume A1 < 0. If u is a solution of (9), then v., defined by
(14), is a solution of

2
720 2 T O — div (W5 PAT) + i Pdv =0 in @ x (0,7),

ot?
Ve =0 on 09 x (0,T),
ve(t = 0,z) = ud(z) /¢ (2) in Q,
Bt = 0,2) = (ul(x) — Y5ul(@)) /91 () in 9.
(15)

The proof of Lemma, 3.1 is just a simple computation similar to that in
Lemma 2.1, so we safely leave it to the reader. Remark that the time scaling
of (9) is precisely chosen such that the first-order time derivative in (15) is
of order 1 with respect to € (compare with equation (8) in the introduction).
The main advantage of the new problem (15) is that its solution satisfies
uniform a priori estimates.



Lemma 3.2 Assume that the initial data satisfy the following uniform bounds
[udllz2@) + ell Vel 2 @n + lluclir2 @) < C. (16)
Then the solution of (15) satisfies

Ov,
[vell oo (0,r)22(02)) + IV Vell 20,y x v + €l = 5 Iz2omyx) <€ (17)

where C' > 0 is a constant that does not depend on e.

Theorem 3.3 Assume that Ay < 0 and that the initial data satisfy

P1 () ud(w) O(z) weakly in L*(Q),

— v
62¢1 (%) Ul(ﬂi) — 0 weakly in LQ(Q), (18)

Then v, solution of (15), converges weakly in L? ((0,T); Hi(Q)) to the so-
lution v of the following parabolic equation

2\/—>\1——d1v (A*Vv) +d*(z)v=0 in Qx(0,T),

v=20 on Q2 x (0,7T), (19)
v(t =0,7) = 100(z) in Q,
with d*(z) = [pn d(z,y) )92 (y) dy and A* is the classical homogenized matriz
of ( ?A)

Remark 3.4 The factor 1/2 in front of the initial condition for the ho-
mogenized problem is quite surprising. One possible explanation is the exis-
tence of an initial layer in time corresponding to a very fast decay of half of
the initial data. This initial layer would correspond to the alternative time
renormalization
AL ue(t, )
i (%)’
which has the opposite sign in the exponential compared to (14). Formally,
we would admit as an homogenized limit a backward heat equation which is
ill-posed (so all this reasoning is purely formal).

Remark also that assumption (18) is much weaker than the usual as-
sumption (12) for the homogenization of the wave equation without large
potential. In particular, it is only for simplicity that we assumed a zero
limit for the rescaled initial velocity in (18). A similar result holds true if
it admits a non-zero limit (that will contribute to the initial condition of
the homogenized problem). For example, this would be the case if the initial
velocity ul(z) is of the order of € 2

we(t,z) =e

(20)



Remark 3.5 Theorem 3.3 still holds true if we add to equation (9) a source
term of the type

fta) = f (b, 2,

It yields a source term f*(t,x) f’ﬂ‘N ft,z,y)1(y) dy in the homogenized
equation (19).

8115

Proof of Lemma 3.2. We multiply equation (15) by <
by parts to obtain the usual energy estimate

and we integrate

dE, 2
with
1 €12 2 8’05 2 € " 9
— 9 0 il | e Bt + AVve - Ve + dffve|” | dz.

By assumption we have E.(0) < Ce ? so that, upon integrating in time, we
deduce from (21) and the fact that d® > 0

el Vvell Lo (0.2 () + € || ||L°° (oryre) < G,

and 5
Ve
ot llz2(0,m)x) < C-

el

Now, we multiply equation (15) by v, to get
T
\/—Al/ |¢§|2|ve(T)|2dx+/ /|¢§|2 (AVve - Vv + d€lv|?) do dt =
Q 0o Ja
T 2
€12 | Ove
VN [ ) da / A

(9'0 at@v
+ [ il o050 do =€ [ ot or) (1) do

From the previous estimates, the assumption on the initial data and the
non-negativeness of d° we deduce

dz dt

T
\/—Al/nlqﬁilzlve(T)l"’der/o /Q|¢f|2A€Vv€-Vv€dxdt§C(1+||U€(T)||L2(Q)),



which gives the desired result since by the Krein-Rutman theorem and stan-
dard regularity there exists two positive constants m, M such that 0 < m <
Yi(y) < M in TN, O

Proof of Theorem 3.3. In view of the a priori estimates of Lemma 3.2
there exist a subsequence and limits v(t,z) and v (¢, z,y) such that v, con-
verges weakly to v in L2 ((O,T);H&(Q)) and Vv, two-scale converges to
Vou(t,z) + Vyvi(t, z,y) with vi(t,z,y) € L ((0,T) x Q; H(TV)) (see [1],
[10] for the notion of two-scale convergence). We define an oscillating test
function

x
belty) = 9(t, ) + e (2,7 ) |

where ¢ and ¢; are smooth test functions defined on [0,7] x Q x TV with
compact support in [0, 7[x£2. We multiply (15) by ¢, and we integrate by
parts to obtain

T v, ¢ T d¢
2 €12 € € _ — €12 I3
6/0 /Qhﬁﬂ ot ot dr dt — 2/ )\1/0 /Q|¢1| Ve dz dt
T
+ / / |¢ﬂ2 (AEV’UC Ve + deve(ﬁe) dx dt (22)
0 Ja

e
¢ /Q 517 $e(0) 5 (0) dr — 2/~ /Q 95 $e(0)ve(0) dz = .

We pass to the limit in (22): the first term goes to zero because of esti-
mate (17), we use two-scale convergence for the third one, and usual weak
convergence for the other ones. Recalling that [ [41]* dy = 1 we obtain

T 8¢ T )
T

VAL [ 0000 do 20/ [ 900" do = 0.

Eliminating v; and ¢ in (23) gives the usual formula for A* as the homog-
enized matrix of (1?A) (see e.g. [1]) and delivers a variational formulation
for the homogenized problem (19). By uniqueness of the solution of the
homogenized problem (19), we deduce that the entire sequence v, converges
tov. O



4 Schrodinger homogenized limit

We finally consider the case when the first cell eigenvalue, defined in (3), is

positive A\; > 0. In this case we homogenize the rescaled wave equation (9).

Once again we perform a time renormalization of the unknown, namely we

define

fi@ Ue (ta "E)
Y1 (%)

which is now a complex-valued function. The next lemma gives the equation
satisfied by the new unknown v,.

ve(t, z) = (24)

Lemma 4.1 Assume A1 > 0. If u is a solution of (9), then v., defined by
(24), is a solution of

220 4 2in /Mt 20— div (5 PAT ) + 95 = 0 in ©x (0.T),

=0 on 082 x (0,
ve(t—Ox)—u()/lpl() in Q,
(1= 0,2) = (ula) — i 0d(2) foh (2) in 9.

(25)

The proof of Lemma, 4.1 is again a simple computation similar to those
in Lemmas 2.1 and 3.1, so we omit it. Remark that the time scaling of (9) is
precisely chosen such that the first-order time derivative in (25) is of order
1 with respect to e. Notice also that changing the sign of the exponential in
the time renormalization (24) simply amounts to take the complex conjugate
of the new unknown v..

The main advantage of the new problem (25) is that its solution satisfies
uniform a priori estimates. Note however that they are weaker than the
ones obtained in the previous parabolic case (A; < 0, see Lemma 3.2).

Lemma 4.2 Assume that the initial data satisfy the following uniform bounds

[ull 2@ + ell Va2 @n + € llucllL2 @) < C. (26)
Then the solution of (25) satisfies
91, 0V¢

[vell oo (0,1);22(02)) T €l VVell Loo (0,720 )N)+€ | ot |l oo (0,22 (02)) < C
(27)

where C > 0 is a constant that does not depend on e.

10
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Theorem 4.3 Assume that Ay > 0 and that the initial data satisfy

P (E)ud(z) — v%z) weakly in L2(2),
ey (L) ul(z) — 0 weakly in L*(Q).

Then, up to a subsequence, v¢, solution of (25), converges weakly in L? ((0,T) x )
to a solution v of the following Schrodinger equation

(28)

0
{ 2/ —';’ —div(AVo) +d @ =0 inQx (O.T), gy
v(t =0,z) = 100(2) in €,
with d*(z fTN z,y)Y3(y) dy and A* is the classical homogenized matriz

of (ﬁA)

Remark 4.4 There is no boundary condition in the homogenized Schrodinger
equation, because we are unable to recover it with the weak L*(Q) a priori es-
timates of Lemma 4.2. However, in the case of the whole space, Q = RN, we
do not need any boundary condition: the homogenized problem (29) admits a
unique solution v and the entire sequence ve (and not merely a subsequence)
converges to this v.

Remark 4.5 Theorem 4.8 still holds true if we add to equation (9) a source
term of the type

RVISY
fet,z)=¢" f (t,m,z) .
€

It yields a source term f*(t,z) fTN f(t,z,y)¥1(y) dy in the homogenized
equation (29).
Proof of Lemma 4.2. We multiply equation (25) by 2=, we integrate by
parts and take the real part to obtain the usual energy estimate

dE,

dt

=0, (30)

with
(91)6

+ AVo, - Vo, + d€|'ue|2> dz.

=5 [t (

By assumption we have E(0) < Ce~? so that we deduce from (30) and the
non-negative character of d¢

9, O¢

€l|Vvell Lo (0,02 (02)) + € || ||L°° (o)) < C.

11



Now, we multiply equation (25) by v to get

[ (-l

66 . 66
/W¢q2—e U (T) di — & /W¢12 5(0) 2 (0) da

+2i/ A / / 5] 6Eed:valt—O

Taking the imaginary part yields

%XAWWMGWM—JX/WWM@PM=

—&(Ame<@f - [ wilad0 %%m).

From the previous estimates and the assumption on the initial data we

deduce
¢MLmemescuﬂmmmmm

which gives the desired result. O

8’05

+ AV, - VT, + d€|'u€|2> dz dt

Proof of Theorem 4.3. From the a priori estimates of Lemma 4.2, there
exist a subsequence and a limit v(¢,z,y) € L? ((0,T) x Q; H'(TV)) such
that ve two-scale converges to v(t,z,y) and eVwv. two-scale converges to
Vyo(t,z,y) [1], [10]. Since the convergence of v, is weaker than in the
previous parabolic case (see section 3), the proof is different from that of
Theorem 3.3.

In a first step, we multiply (25) by a test function e2¢ = €2¢ (¢, z, %)
where ¢(t,z,vy) is a smooth function defined on [0, 7] x @ x TV with compact
support in ]0,T[x€. After integrating by parts and because of Lemma 4.2
we obtain

T
/ / [5]* A“eVve - eV dzdt = O (¢7). (31)
0 Q

Passing to the two-scale limit in (31) yields

T
/0 /Q/TN 91| AV - Vyda dy dt = 0,

which, for a.e. (t,z) € (0,T) x Q, is the variational formulation for

—divy (j41 [ AVy0) =0 in TV,

12



By uniqueness of the solution in H'(T")/R, we deduce that

v(t,z,y) = v(t, ). (32)

In a second step, we multiply (25) by another test function

al ¢ T
de(t,x) = ¢(t,z) + ez ——(t,2)x; (—) )
= 0 €

where ¢ is a smooth test function with compact support in [0, T[x€2, and,
denoting by (ej)1<j<n the canonical basis of R, x;(y) is the unique solution
in H'(TV)/R of the cell problem

—divy (|91* A(ej + Vyx;)) =0 in TV, (33)

After integrating by parts (twice in space), we obtain

—e? /OT/QW?IQ ?;;f aa‘ifd dt—/OT/Qvediv (|¢§|2A€V$6) d dt
+/T/ |¢;|2dfv€$€dxdt—2i\/Y1/T/ |¢;|2v€356 do dt (34)
—¢ [ W30 G0 do ~20v/5 [ W F0)uc(0)da =0,

Let us explain how to pass to the limit in (34). For the first term, we
notice that €2 |1){|* %%, being bounded in L™ ((0,T); L?(2)), it converges
weakly in this space to a limit which is necessarily 0 since |9)$ \2 Ve is bounded

in the same space. On the other hand 2 f converges strongly to g—‘f in
L?((0,T) x 9), so the first term of (34) goes to zero. We can use two-scale
convergence in the second term of (34) since, by using equation (33), we
have

€

div (i AV,) = divy | [1[*4 | ¥ m¢+ZVny o

+divy | |91]? AZ Vs a¢ -I—O(e).
j=1

We also use two-scale convergence to pass to the limit in all other terms
except the fourth one which goes to zero for the same reason than the first

13



one. Recalling that [;y |11]°dy = 1 we obtain

T 2 - 9%
— vdivy / P |“A| Vo + Vyxi=) | dy | dx dt
[ [ 3. Viugg,)

T T w
—|—/ / d*vada:dt—%\/)\l/ /va—d)dxdt—i\//\l/ #(0)v° dz = 0.
0o Ja 0o Ja Ot Q
(35)
We recognize in the first term of (35) the homogenized matrix A* defined
by

Atej = /TN [ |? A (e + Vyx;) dy. (36)

Thus, (35) is nothing but an ultra-weak variational formulation of the ho-
mogenized problem (29). Unfortunately, this does not allow to recover vari-
ationally the Dirichlet boundary condition for v. O
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