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Model problem: thickness optimization

Consider a plate occupying a bounded domain Q in RV, with
forces f € L2(2) and displacement u € H}(f) solution of the
membrane model

—div(hVu) = f inQ,
u = 0 onof.

The variable is the thickness h. It is called parametric optimization
because the computational domain Q is fixed. The thickness h(x)
is just a parameter.

The admissible set is defined by

Usg = {h € L%(2),0 < hmin < h(x) < hmax in Q,/ h(x)dx = E\Q]}
Q

X
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Parametric optimization

Parametric optimization problem:

inf J(h):/ﬂj(u)dx

helU,y

where u depends on h through the state equation, and j is a C?
function from R to R such that |j(v)| < C(u? + 1) and
' (w) < C(Jul +1).

Examples:

e Compliance or work done by the load (a measure of rigidity)
Jj(u) = fu

@ Least square criterion to reach a target displacement
up € L2(Q)

J(u) = [u— uol® X
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Derivative of the objective function

inf J(h)—/ﬂj(u)dx

hel,y

Usg = {h € 1%(9),0 < hAmin < h(x) < hmax in Q / x)dx = h|Q|}.

with v solution of

—div(hVu) = f inQ,
u = 0 onof.

Theorem. The objective function is differentiable in L2() and
J'(h) = Vu - Vp with the adjoint p solution of

—div(hVp) = —j'(u) inQ
p = 0 on 09Q. X
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Numerical algorithms

@ For a general objective function we suggest a projected
gradient algorithm.

@ For compliance minimization a more efficient optimality
criteria algorithm is proposed.

The projected gradient algorithm is illustrated below on the
counter-example of non-existence of optimal design.

X
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Projected gradient algorithm

Projected gradient algorithm

@ Initialization of the thickness hy € U,y (for example, a
constant function which satisfies the constraints).

@ lterations until convergence, for n > 0:

hny1 = Pu,, (hn - MJ’(h,,)),

where 1 > 0 is a descent step, Py, is the projection operator
on the closed convex set U4 and the derivative is given by

J'(hn) = Vu,-Vp,

with the state u, and the adjoint p, (associated with the
thickness hy,).

To make the algorithm fully explicit, we have to specify what is the
(orthogonal) projection operator Py, ,. X
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Projection operator

The projection operator P, is defined by

(Putaa(1)) (x) = max (i, min (s h(x) + £))

where £ is the unique Lagrange multiplier such that

/quad(h) dx = h0|Q‘

The determination of the constant £ is not explicit: we must use
an iterative algorithm based on the property of the function

{— F() = / max (hmin, Min (Amax, h(x) + ¢)) dx
Q

which is strictly increasing and continuous on an interval [/, 7]

such that F([¢7,0%]) = [Amin|Q|, hmax|Q|]. Thus, a simple iterative

algorithm is: first, bracket the root by an interval [}, 2] such that
F() < holf) < F(2) )

second, proceed by dichotomy to find the root £. :



@ In practice, we rather use a projected gradient algorithm with
a variable step (not optimal) which guarantees the decrease of
the functional: J(hy41) < J(hy).

@ The overhead generated by the adjoint computation is very
modest : one has to build a new right-hand-side (using the
state) and solve the corresponding linear system (with the
same stiffness matrix).

@ Convergence is detected when the optimality condition is
satisfied with a threshold ¢ > 0

|hn — max (hmina min (hmaXa hn — #nJ,(hn) + én))} < E,unhmax-

X
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The self-adjoint case: the compliance

When j(u) = fu, we find p = —u since j’(u) = f. This particular
case is said to be self-adjoint. It is a rare case where there exists
an optimal solution !

For this, we use the dual or complementary energy
/ fudx = min / ht |7 2dx .
Q rel2(Q)N Q
—divr=f in Q
We can rewrite the optimization problem as a double minimization
inf min /h1\7'|2dx,
Q

heUsg ret2()N
—divr=f in Q

and the order of minimization can be changed.

X
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Optimality conditions

Lemma. Take 7 € L2(Q)N. The problem

min /hl\TFdx
hel,y Q

admits a unique minimizer h(7) in U,q given by

h*(x)  if hmin < h*(x) < Bmax (%)
h(T)(x) =< hmin  if B*(x) < hpin with h*(x) = N
hmax if h*(X) > hmax

where ¢ € R, is the Lagrange multiplier such that
/ h(x) dx = ho|Q].
Q

Proof. The function h — [, h™t|7|?dx is strictly convex from Uag
into R and we easily find the stationary point of the Lagrangian

/ Bt 7 Pdx + ¢ </ h(x) dx — ho\Q|> . X
Q Q :
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New numerical algorithm for the compliance

Instead of using a projected gradient algorithm (as before), we rely
on the optimality condition.

We perform an alternate minimization in h and 7.

This is called an optimality criteria method.

X
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Optimality criteria method

@ Initialization of the thickness hg € U,q.
@ lterations until convergence, for n > 0:
@® Computation of the state 7,, unique solution of

min ht | 2dx
re2@N Q

— divr=fin Q

with the previous thickness h,,.
@ Update of the thickness :

hn+1 = h(Tn)a

where h(7) is the minimizer defined by the optimality
condition. The Lagrange multiplier is computed by dichotomy.

X
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Remark that minimizing in 7 is equivalent to solving the equation

—div(h,Vu,) = f inQ
u, = 0 on 09,
and we recover 7, by the formular, = h,Vu,.

This algorithm is an alternate minimization in 7 and h of the
objective function. In particular, we deduce that the objective
function always decreases through the iterations

Shnia) = [ Hhalrmalax < [ s Pax < [ ok = J(h).
Q Q Q

This algorithm can also be interpreted as an optimality criteria
method (a fixed point algorithm on the optimality conditions).
X
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Numerical example in elasticity

Thickness optimization of an elastic plate in planar deformation

h
Q
—dive = f in
o = hAe(u) = h(2ue(u) + Atr(e(uv))Id) in Q
u=20 onlp
on=g on FN
with the strain tensor e(u) = 3 (Vu + (Vu)?). X
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Compliance minimization

Set of admissible thickness:
Usg = {h c LZ(Q), hmax = h(x) > hmin >0 in Q,/ h(x)dx = h0|Q|}.
Q

The compliance optimization can be written

min J(h):/f-udx—l—/ g - uds.
heU,q Q My

The theoretical results are the same and the problem rewrites

inf min h A o odx .
heU,q cel2(Q)NXN Q
—dive=f inQ, on=g onTy

We apply the optimality criteria method.
X
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Boundary conditions and mesh for an elastic plate

|

FreeFem++ computations ; scripts available on the web page

http://www.cmap.polytechnique.fr/~allaire/cours X annee3.html

X
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Numerical results

Thickness at iterations 1, 5, 10, 30 (uniform initialization).

e

NN V)

“-m*H—*——'

Bmin = 0.1, hmax = 1.0, ho = 0.5 (increasing thickness from white

to black) A
X
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Numerical results

Comparing the initial and final deformed shapes
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Numerical results

Convergence history
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Numerical instabilities

Numerical instabilities (checkerboards)

o Finite elements P2 for u and PO for h = OK

@ Finite elements P1 for u and PO for h = unstable !
Hint (not a proof!): artificial rigidity of checkerboards.

AMMAL ) 4
“‘ | 4

Result with P1 / PO finite elements. X
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Numerical counter-example of non-existence of an optimal

design (in elasticity)

We look for the design which horizontally is less deformed and
vertically more deformed.

boundary conditions target displacement ug
inf J(h) = u — upl? dx
nf J(h) = [ Ju=
X
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Optimal designs for meshes with 448, 947, 3992, 7186
triangles

—
—
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No convergence under mesh refinement

Non existence of solutions can be seen numerically as no
convergence under mesh refinement !

More and more details appear when the mesh size is decreased.
The value of the objective function decreases with the mesh size.
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Nombre d’iterations X
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Regularization

Triple motivation:

© To avoid instabilities when using P1 finite elements for v and
PO for h (less expensive than P2-P0).
@ To obtain an algorithm which converges by mesh refinement.

© To adhere to the “regularized” framework of section 5.2.3
(with existence of optimal solutions).

X

G. Allaire PDE constrained optimization



H(Q) scalar product

Recall that

<J'(h),k):/kVu-Vpdx Vk € Usg.
Q

Main idea: we change the scalar product !
Previously we identified /.4 to a subspace of L?(), thus

(J(h), k) = / J(hkdx = J(h)=Vu-Vp.
Q
Now, we identify U,4 to a subspace H(), thus

(J(h), k) = /Q (VI (h) - Vk + J'(h)k) dx .

and we deduce a new formula for the gradient
—~AJ'(h)+J'(h)=Vu-Vp inQ,
{ aJ'(h)
on

=0 on 0f). X



Regularized optimal design

Finite elements P1-Py. Compliance minimization. Alternate
directions algorithm.

X
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Regularized optimal shapes

Same case as the “numerical counter-examples” (meshes 448, 947,
3992, 7186).

X
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Conclusion on regularization

@ Regularization works !

@ It has a tendency to smooth the geometric details.

@ It costs a bit more (solving an additional Laplacian to
compute the gradient).

o Difficulty in choosing the regularization parameter ¢ > 0
(which can be interpreted as a lengthscale)

—EAJS (M) +J(h)=Vu-Vp inQ

@ Another possibility: H! penalization of the thickness
~ 62
J(h) = J(h) + / |V h|? dx
2 Jo

and use of an H! gradient.
@ One can use filters, considering for instance

J(h) = (¢ h)
X
for some convolution kernel ¢. :
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