
PDE constrained optimization
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Model problem: thickness optimization

Consider a plate occupying a bounded domain Ω in RN , with
forces f ∈ L2(Ω) and displacement u ∈ H1

0 (Ω) solution of the
membrane model{

−div (h∇u) = f in Ω,
u = 0 on ∂Ω.

The variable is the thickness h. It is called parametric optimization
because the computational domain Ω is fixed. The thickness h(x)
is just a parameter.
The admissible set is defined by

Uad =

{
h ∈ L2(Ω), 0 < hmin ≤ h(x) ≤ hmax in Ω,

∫
Ω
h(x)dx = h̄|Ω|

}
.
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Parametric optimization

Parametric optimization problem:

inf
h∈Uad

J(h) =

∫
Ω
j(u) dx

where u depends on h through the state equation, and j is a C 1

function from R to R such that |j(u)| ≤ C (u2 + 1) and
|j ′(u)| ≤ C (|u|+ 1).

Examples:

Compliance or work done by the load (a measure of rigidity)

j(u) = fu

Least square criterion to reach a target displacement
u0 ∈ L2(Ω)

j(u) = |u − u0|2
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Derivative of the objective function

inf
h∈Uad

J(h) =

∫
Ω
j(u) dx

Uad =

{
h ∈ L2(Ω), 0 < hmin ≤ h(x) ≤ hmax in Ω,

∫
Ω
h(x)dx = h̄|Ω|

}
.

with u solution of{
−div (h∇u) = f in Ω,

u = 0 on ∂Ω.

Theorem. The objective function is differentiable in L2(Ω) and
J ′(h) = ∇u · ∇p with the adjoint p solution of{

− div (h∇p) = −j ′(u) in Ω
p = 0 on ∂Ω.
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Numerical algorithms

1 For a general objective function we suggest a projected
gradient algorithm.

2 For compliance minimization a more efficient optimality
criteria algorithm is proposed.

The projected gradient algorithm is illustrated below on the
counter-example of non-existence of optimal design.
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Projected gradient algorithm

Projected gradient algorithm

1 Initialization of the thickness h0 ∈ Uad (for example, a
constant function which satisfies the constraints).

2 Iterations until convergence, for n ≥ 0:

hn+1 = PUad

(
hn − µJ ′(hn)

)
,

where µ > 0 is a descent step, PUad
is the projection operator

on the closed convex set Uad and the derivative is given by

J ′(hn) = ∇un · ∇pn

with the state un and the adjoint pn (associated with the
thickness hn).

To make the algorithm fully explicit, we have to specify what is the
(orthogonal) projection operator PUad

.
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Projection operator

The projection operator PUad
is defined by(

PUad
(h)

)
(x) = max (hmin,min (hmax , h(x) + ℓ))

where ℓ is the unique Lagrange multiplier such that∫
Ω
PUad

(h) dx = h0|Ω|.

The determination of the constant ℓ is not explicit: we must use
an iterative algorithm based on the property of the function

ℓ → F (ℓ) =

∫
Ω
max (hmin,min (hmax , h(x) + ℓ)) dx

which is strictly increasing and continuous on an interval [ℓ−, ℓ+]
such that F ([ℓ−, ℓ+]) = [hmin|Ω|, hmax |Ω|]. Thus, a simple iterative
algorithm is: first, bracket the root by an interval [ℓ1, ℓ2] such that

F (ℓ1) ≤ h0|Ω| ≤ F (ℓ2),

second, proceed by dichotomy to find the root ℓ.
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Details

In practice, we rather use a projected gradient algorithm with
a variable step (not optimal) which guarantees the decrease of
the functional: J(hn+1) < J(hn).

The overhead generated by the adjoint computation is very
modest : one has to build a new right-hand-side (using the
state) and solve the corresponding linear system (with the
same stiffness matrix).

Convergence is detected when the optimality condition is
satisfied with a threshold ϵ > 0∣∣hn −max

(
hmin,min

(
hmax , hn − µnJ

′(hn) + ℓn
))∣∣ ≤ ϵµnhmax .
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The self-adjoint case: the compliance

When j(u) = fu, we find p = −u since j ′(u) = f . This particular
case is said to be self-adjoint. It is a rare case where there exists
an optimal solution !

For this, we use the dual or complementary energy∫
Ω
fu dx = min

τ∈L2(Ω)N

− divτ=f in Ω

∫
Ω
h−1|τ |2dx .

We can rewrite the optimization problem as a double minimization

inf
h∈Uad

min
τ∈L2(Ω)N

− divτ=f in Ω

∫
Ω
h−1|τ |2dx ,

and the order of minimization can be changed.
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Optimality conditions

Lemma. Take τ ∈ L2(Ω)N . The problem

min
h∈Uad

∫
Ω
h−1|τ |2dx

admits a unique minimizer h(τ) in Uad given by

h(τ)(x) =


h∗(x) if hmin < h∗(x) < hmax

hmin if h∗(x) ≤ hmin

hmax if h∗(x) ≥ hmax

with h∗(x) =
|τ(x)|√

ℓ
,

where ℓ ∈ R+ is the Lagrange multiplier such that∫
Ω
h(x) dx = h0|Ω|.

Proof. The function h →
∫
Ω h−1|τ |2dx is strictly convex from Uad

into R and we easily find the stationary point of the Lagrangian∫
Ω
h−1|τ |2dx + ℓ

(∫
Ω
h(x) dx − h0|Ω|

)
.
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New numerical algorithm for the compliance

Instead of using a projected gradient algorithm (as before), we rely
on the optimality condition.

We perform an alternate minimization in h and τ .

This is called an optimality criteria method.
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Optimality criteria method

1 Initialization of the thickness h0 ∈ Uad .
2 Iterations until convergence, for n ≥ 0:

1 Computation of the state τn, unique solution of

min
τ∈L2(Ω)N

− divτ=f in Ω

∫
Ω

h−1
n |τ |2dx ,

with the previous thickness hn.
2 Update of the thickness :

hn+1 = h(τn),

where h(τ) is the minimizer defined by the optimality
condition. The Lagrange multiplier is computed by dichotomy.
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Details

Remark that minimizing in τ is equivalent to solving the equation{
−div (hn∇un) = f in Ω

un = 0 on ∂Ω,

and we recover τn by the formulaτn = hn∇un.

This algorithm is an alternate minimization in τ and h of the
objective function. In particular, we deduce that the objective
function always decreases through the iterations

J(hn+1) =

∫
Ω
h−1
n+1|τn+1|2dx ≤

∫
Ω
h−1
n |τn+1|2dx ≤

∫
Ω
h−1
n |τn|2dx = J(hn).

This algorithm can also be interpreted as an optimality criteria
method (a fixed point algorithm on the optimality conditions).
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Numerical example in elasticity

Thickness optimization of an elastic plate in planar deformation


−divσ = f in Ω
σ = hAe(u) = h (2µ e(u) + λ tr(e(u)) Id) in Ω
u = 0 on ΓD
σn = g on ΓN

with the strain tensor e(u) = 1
2

(
∇u + (∇u)t

)
.
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Compliance minimization

Set of admissible thickness:

Uad =

{
h ∈ L2(Ω), hmax ≥ h(x) ≥ hmin > 0 in Ω,

∫
Ω
h(x)dx = h0|Ω|

}
.

The compliance optimization can be written

min
h∈Uad

J(h) =

∫
Ω
f · u dx +

∫
ΓN

g · u ds.

The theoretical results are the same and the problem rewrites

inf
h∈Uad

min
σ∈L2(Ω)N×N

− divσ=f in Ω, σn=g on ΓN

∫
Ω
h−1A−1σ : σdx .

We apply the optimality criteria method.
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Boundary conditions and mesh for an elastic plate

FreeFem++ computations ; scripts available on the web page

http://www.cmap.polytechnique.fr/~allaire/cours X annee3.html
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Numerical results

Thickness at iterations 1, 5, 10, 30 (uniform initialization).

hmin = 0.1, hmax = 1.0, h0 = 0.5 (increasing thickness from white
to black)
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Numerical results

Comparing the initial and final deformed shapes
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Numerical results

Convergence history
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Numerical instabilities

Numerical instabilities (checkerboards)

Finite elements P2 for u and P0 for h ⇒ OK

Finite elements P1 for u and P0 for h ⇒ unstable !

Hint (not a proof!): artificial rigidity of checkerboards.

Result with P1 / P0 finite elements.
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Numerical counter-example of non-existence of an optimal
design (in elasticity)

We look for the design which horizontally is less deformed and
vertically more deformed.

boundary conditions target displacement u0

inf
h∈Uad

J(h) =

∫
Ω
|u − u0|2 dx
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Optimal designs for meshes with 448, 947, 3992, 7186
triangles
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No convergence under mesh refinement

Non existence of solutions can be seen numerically as no
convergence under mesh refinement !

More and more details appear when the mesh size is decreased.
The value of the objective function decreases with the mesh size.
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Regularization

Triple motivation:

1 To avoid instabilities when using P1 finite elements for u and
P0 for h (less expensive than P2-P0).

2 To obtain an algorithm which converges by mesh refinement.

3 To adhere to the “regularized” framework of section 5.2.3
(with existence of optimal solutions).
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H1(Ω) scalar product

Recall that

⟨J ′(h), k⟩ =
∫
Ω
k∇u · ∇p dx ∀ k ∈ Uad .

Main idea: we change the scalar product !
Previously we identified Uad to a subspace of L2(Ω), thus

⟨J ′(h), k⟩ =
∫
Ω
J ′(h) k dx ⇒ J ′(h) = ∇u · ∇p .

Now, we identify Uad to a subspace H1(Ω), thus

⟨J ′(h), k⟩ =
∫
Ω

(
∇J ′(h) · ∇k + J ′(h)k

)
dx ,

and we deduce a new formula for the gradient
−∆J ′(h) + J ′(h) = ∇u · ∇p in Ω,

∂J ′(h)

∂n
= 0 on ∂Ω.
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Regularized optimal design

Finite elements P1-P0. Compliance minimization. Alternate
directions algorithm.
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Regularized optimal shapes

Same case as the “numerical counter-examples” (meshes 448, 947,
3992, 7186).
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Conclusion on regularization

Regularization works !

It has a tendency to smooth the geometric details.

It costs a bit more (solving an additional Laplacian to
compute the gradient).

Difficulty in choosing the regularization parameter ϵ > 0
(which can be interpreted as a lengthscale)

−ϵ2∆J ′(h) + J ′(h) = ∇u · ∇p in Ω

Another possibility: H1 penalization of the thickness

J̃(h) = J(h) +
ϵ2

2

∫
Ω
|∇h|2 dx

and use of an H1 gradient.

One can use filters, considering for instance

J̃(h) = J(ϕ ∗ h)

for some convolution kernel ϕ.
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