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Abstract

This paper is concerned with the homogenization of model problems in periodic
porous media when important phenomena occur on the boundaries of the pores.
To this end, we generalize the notion of two-scale convergence for sequences of
functions which are defined on periodic surfaces. We apply our results to two
model problems : the first one is a diffusion equation in a porous medium with
a Fourier boundary condition, the second one is a coupled system of diffusion
equations inside and on the boundaries of the pores of a porous medium.

Key words : homogenization, two-scale convergence, periodic structures, porous
medium.

1 Introduction

In porous media, there are (at least) two length scales : a microscopic scale
(for example, the size of a single pore), and a macroscopic scale (the size of a
typical sample of porous media). Quite often, the partial differential equations
describing a physical phenomenon are posed at the microscopic level whereas
only macroscopic quantities are of interest for the engineer or the physicist.
Therefore, effective or homogenized equations have to be derived from the mi-
croscopic ones by an asymptotic process. To this end, it is convenient to assume
that porous media have a periodic microstructure. Although it is far from be-
ing the case, it is perfectly legitimate as far as deriving homogenized models is
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concerned. There is a vast body of literature on periodic homogenization (see
e.g. [3], [4], [11]). In this context, the homogenization process is divided in two
steps. In a first step, two-scale asymptotic expansions are used to formally ob-
tain the homogenized problem. In a second step, another method (usually the
so-called energy method of Tartar [9], [12]) is applied to prove convergence to
the homogenized equation guessed from the first step. Recently, a new method,
called two-scale convergence, has appeared which replaces these two steps by a
single process (see [1], [10]). It relies on a new type of convergence as recalled
in the next theorem.

Theorem 1.1 Let Ω be a bounded open set in IRN , and Y = [0, 1]N the unit
cube. Let uε be a bounded sequence in L2(Ω). Then, there exist a subsequence
(still denoted by ε) and a function u0(x, y) ∈ L2(Ω × Y ) such that uε two-scale
converges to u0(x, y) in the sense that

lim
ε→0

∫

Ω

uε(x)φ(x,
x

ε
)dx =

∫

Ω

∫

Y

u0(x, y)φ(x, y)dxdy,

for any continuous function φ(x, y) ∈ C[Ω̄;C#(Y )].

The goal of this paper is to generalize this previous result for sequences of
functions which are defined on a periodic surface instead of in a fixed domain.
Section 2 is devoted to a generalization of the two-scale convergence in this
setting. In Sections 3 and 4 these results are applied to some simple problems
in porous media in order to demonstrate the relevance of the method. These
model problems are derived from two more complex, and physically sound,
systems studied in great details in [5] and [8]. Here our purpose is just to
illustrate our method : original examples will appear elsewhere.

2 Presentation of the main results

Let Ω be a bounded open set in IRN . As usual in periodic homogenization, Y
is the unit periodicity cell [0, 1]N which is identified to the unit torus IRN/ZZN .
Let T be an open subset of Y with a smooth boundary Γ, and Y ∗ = Y \ T̄ . We
also identify T , Y ∗, and Γ with their images by the universal covering map, i.e.
their extension by Y -periodicity to the whole space IRN . Note that the periodic
extension of T may or may not be connected (in other words, the inclusion T
is not necessarily strictly included in the unit cell Y ). Then, for a sequence ε of
positive numbers going to zero, we define a perforated domain Ωε by

Ωε =
{

x ∈ Ω|
x

ε
∈ Y ∗

}

. (1)

We further define a N − 1 dimensional periodic surface Γε by

Γε =
{

x ∈ Ω|
x

ε
∈ Γ

}

, (2)
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which is nothing else than the part ∂Ωε lying inside Ω. It is easily seen that

lim
ε→0

ε|Γε|N−1 = |Γ|N−1
|Ω|N
|Y |N

, (3)

where | · |p is the p-dimensional Hausdorff measure. We denote by dσ(y), y ∈ Y ,
and dσε(x), x ∈ Ω, the surface measure on Γ, and Γε respectively. The spaces of
squared integrable functions, with respect to these measures on Γ and Γε, are
denoted by L2(Γ), and L2(Γε) respectively.

The main result of two-scale convergence (see [1], [10]) can be generalized to
the case of sequences defined in L2(Γε).

Theorem 2.1 Let uε be a sequence in L2(Γε) such that

ε

∫

Γε

|uε(x)|
2dσε(x) ≤ C, (4)

where C is a positive constant, independent of ε. There exist a subsequence (still
denoted by ε) and a two-scale limit u0(x, y) ∈ L2(Ω;L2(Γ)) such that uε(x) two-
scale converges to u0(x, y) in the sense that

lim
ε→0

ε

∫

Γε

uε(x)φ(x,
x

ε
)dσε =

∫

Ω

∫

Γ

u0(x, y)φ(x, y)dxdσ(y),

for any continuous function φ(x, y) ∈ C[Ω̄;C#(Y )].

Remark 2.2 Note that the surface two-scale limit u0(x, y) is defined in the
whole domain Ω for the macroscopic variable x, and on the surface Γ for the
microscopic variable y.

Remark 2.3 In Theorem 2.1 the set Γε is a periodic (N − 1)-dimensional sur-
face. Of course, it could be generalized to lower dimensional periodic manyfolds,
like curves in 3-D. The same methodology could then be applied to homogeniza-
tion problems such as fluid flow through small pipes or electric currents through
wires.

The proof of Theorem 2.1 is very similar to the usual two-scale convergence
theorem [1]. It relies on the following lemma, the proof of which is left to the
reader.

Lemma 2.4 Let B = C[Ω̄;C#(Y )] be the space of continuous functions φ(x, y)
on Ω̄× Y which are Y -periodic in y. Then, B is a separable Banach space (i.e.
it contains a dense countable family), which is dense in L2(Ω;L2(Γ)), and such
that any function φ(x, y) ∈ B satisfies

ε

∫

Γε

|φ(x,
x

ε
)|2dσε(x) ≤ C‖φ‖2

B,
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and

lim
ε→0

ε

∫

Γε

|φ(x,
x

ε
)|2dσε(x) =

∫

Ω

∫

Γ

|φ(x, y)|2dxdσ(y).

Proof of Theorem 2.1. By Schwarz inequality, we have

∣

∣

∣

∣

ε

∫

Γε

uε(x)φ(x,
x

ε
)dσε

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

ε

∫

Γε

φ(x,
x

ε
)dσε

∣

∣

∣

∣

1

2

≤ C‖φ‖B . (5)

This implies that the left hand side of (5) is a continuous linear form on B which
can be identified to a duality product 〈µε, φ〉B′,B for some bounded sequence
of measures µε. Since B is separable, one can extract a subsequence and there
exists a limit µ0 such µε converges to µ0 in the weak * topology of B′ (the dual
of B). On the other hand, Lemma 2.4 allows us to pass to the limit in the
middle term of (5). Combining these two results yields

|〈µ0, φ〉B′,B | ≤ C

∣

∣

∣

∣

∫

Ω

∫

Γ

|φ(x, y)|2dxdσ(y)

∣

∣

∣

∣

1

2

. (6)

Equation (6) shows that µ0 is actually a continuous form on L2(Ω;L2(Γ)), by
density of B in this space. Thus, there exists u0(x, y) ∈ L2(Ω;L2(Γ)) such that

〈µ0, φ〉B′,B =

∫

Ω

∫

Γ

u0(x, y)φ(x, y)dxdσ(y),

which concludes the proof of Theorem 2.1.

The following result is an easy generalization of the corrector result of the
usual two-scale convergence (Theorem 1.8 in [1]).

Proposition 2.5 Let uε be a sequence of functions in L2(Γε) which two-scale
converges to a limit u0(x, y) ∈ L2(Ω;L2(Γ)). Then, the measure uεdσε con-
verges, in the sense of distributions in Ω, to the function u(x) =

∫

Γ u0(x, y)dσ(y)
belonging to L2(Ω), and we have

lim
ε→0

ε

∫

Γε

|uε|
2dσε ≥

∫

Ω

∫

Γ

|u0(x, y)|
2dxdσ(y) ≥

∫

Ω

|u(x)|2dx.

Assume further that u0(x, y) is smooth and that

lim
ε→0

ε

∫

Γε

|uε|
2dσε =

∫

Ω

∫

Γ

|u0(x, y)|
2dxdσ(y),

then

lim
ε→0

ε

∫

Γε

|uε(x) − u0(x,
x

ε
)|2dσε(x) = 0.
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In the case where uε is the trace on Γε of some function in H1(Ω), a link can
be established between its usual and surface two-scale limits.

Proposition 2.6 Let uε be a sequence of functions in H1(Ω) such that

‖uε‖L2(Ω) + ε‖∇uε‖L2(Ω) ≤ C,

where C is a positive constant independent of ε. Then, the trace of uε on Γε

satisfies the estimate

ε

∫

Γε

|uε(x)|
2dσε(x) ≤ C,

and, up to a subsequence, it two-scale converges in the sense of Theorem 2.1 to
a limit u0(x, y) which is the trace on Γ of the usual two-scale limit, a function
in L2(Ω;H1

#(Y )). More precisely,

lim
ε→0

ε

∫

Γε

uε(x)φ(x,
x

ε
)dσε =

∫

Ω

∫

Γ

u0(x, y)φ(x, y)dxdσ(y),

lim
ε→0

∫

Ω

uε(x)φ(x,
x

ε
)dx =

∫

Ω

∫

Y

u0(x, y)φ(x, y)dxdy,

lim
ε→0

ε

∫

Ω

∇uε(x)φ(x,
x

ε
)dx =

∫

Ω

∫

Y

∇yu0(x, y)φ(x, y)dxdy,

for any continuous function φ(x, y) ∈ C[Ω̄;C#(Y )].

Proof. By rescaling and summation over the ε-cells of Ω, the trace inequality
in the unit cell yields

ε

∫

Γε

|uε(x)|
2dσε(x) ≤ C‖uε‖

2
L2(Ω) + ε2‖∇uε‖

2
L2(Ω).

Thus, up to a subsequence, uε two-scale converges in the sense of Theorem 2.1
to a limit v0(x, y) ∈ L2(Ω;L2(Γ)). On the other hand, by virtue of Proposition
1.14 in [1], and up to another subsequence, uε two-scale converges in the sense
of Theorem 1.1 to a limit u0(x, y) ∈ L2(Ω;H1

#(Y )). To prove that v0 is just the
trace of u0 on Γ, the sequence uε is first restricted to the perforated domain Ωε

defined by (1). For any vector-valued smooth test function ψ(x, y), integrating
by parts gives

ε

∫

Ωε

∇uε · ψ(x,
x

ε
)dx = −ε

∫

Ωε

uε divxψ(x,
x

ε
)dx −

∫

Ωε

uε divyψ(x,
x

ε
)dx

+ε

∫

Γε

uεψ(x,
x

ε
) · ~ndσε(x). (7)
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Passing to the two-scale limit in each term, (7) becomes

∫

Ω

∫

Y ∗

∇yu0 · ψdxdy = −

∫

Ω

∫

Y ∗

u0 divyψdxdy +

∫

Ω

∫

Γ

v0ψ · ~ndxdσ(y). (8)

Integrating by parts in (8) gives

∫

Ω

∫

Γ

(v0 − u0)ψ · ~ndxdσ(y) = 0.

It is not difficult to check that smooth functions are dense in L2(Ω;L2
#(Y, div))

and that any function of L2(Ω;L2(Γ)) is attained as the normal trace of some
function of L2(Ω;L2(Y, div)). This implies that v0 coincides with the trace of
u0 on Γ.

We establish below a last corollary of surface two-scale convergence con-
cerning a sequence uε which belongs to H1(Γε). To define the Sobolev spaces
H1(Γε), we first define the tangential derivative operator ∇t

ε on Γε in the usual
way (see e.g. Chapter 16 in [6]) : for a smooth function u ∈ C1(Ω̄) ∇t

εu(x) is
the projection of ∇u(x) on the tangent hyperplane to Γε at the point x. Then,
H1(Γε) is defined by

H1(Γε) =
{

u ∈ L2(Γε)|∇
t
εu ∈ L2(Γε)

N
}

.

A similar definition holds for H1(Γ), based on the tangential derivative operator
∇t on Γ. We further denote by H1

#(Γ) the subspace of Y -periodic functions in

H1(Γ).

Proposition 2.7 Let uε be a sequence of functions in H1(Γε) such that

ε

∫

Γε

|uε(x)|
2dσε(x) + ε3

∫

Γε

|∇t
εuε(x)|

2dσε(x) ≤ C, (9)

where C is a positive constant independent of ε. Then, there exists a subsequence
and a function u0(x, y) ∈ L2(Ω;H1

#(Γ)) such that the subsequences uε and ε∇t
εuε

two-scale converge, in the sense of Theorem 2.1, to u0(x, y) and ∇t
yu0(x, y)

respectively.

The proof of Proposition 2.7 requires the following elementary lemma on the
tangential divergence.

Lemma 2.8 Let divt denote the tangential divergence operator on Γ defined as
the adjoint operator of ∇t through the following Green’s formula

∫

Γ

∇tu · vdσ = −

∫

Γ

u divtvdσ,
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for any u ∈ H1
#(Γ) and v ∈ L2

#(Γ)N with divtv ∈ L2
#(Γ). Assume that Γ is a

C2 smooth compact boundary in the torus Y . Then, the exterior normal vector
~n of Γ can be extended to a neighbourhood of Γ as a C1 field, and for smooth
functions ψ(y) ∈ C1

#(Y )N the tangential divergence operator is defined by

divtψ(y) = div (ψ(y) − (ψ(y) · ~n)~n) for any y ∈ Γ.

Proof of Proposition 2.7. Thanks to the a priori estimate (9), by application
of Theorem 2.1, uε and ε∇t

εuε two-scale converge, up to a subsequence, to some
limits u0(x, y) ∈ L2(Ω;L2(Γ)) and ξ0(x, y) ∈ L2(Ω;L2(Γ))N . Let ψ(x, y) ∈
C[Ω̄;C#(Y )]N have a compact support in Ω. By integration by part,

ε2
∫

Γε

∇t
εuε(x) · ψ(x,

x

ε
)dσε(x) = −ε2

∫

Γε

uε(x) divt
ε

(

ψ(x,
x

ε
)
)

dσε(x). (10)

By Lemma 2.8 the tangential divergence in the right hand side of (10) can be
computed as

ε divt
ε

(

ψ(x,
x

ε
)
)

=
(

divtψ
)

(x,
x

ε
) + O(ε),

where the operator divt acts only on the y variable of ψ(x, y). Therefore, passing
to the two-scale limit in (10) yields

∫

Ω

∫

Γ

ξ0 · ψdxdσ(y) = −

∫

Ω

∫

Γ

u0 divtψdxdσ(y). (11)

A last integration by parts in (11) implies that ξ0 coincides with divtu0.

Remark 2.9 In the present context, many other results can also be obtained
by generalizing the previous properties of the usual two-scale convergence. We
simply mention the possibility of studying non-linear monotone homogenization
problems, or multiple-scale problems [2].

3 A model of diffusion with Fourier boundary

conditions.

In this Section the results of Section 2 are applied to the homogenization of a
model problem derived from a more complex and pertinent problem, studied in
[5], and modeling the condensation of steam in a periodic cooling structure.

Let f(x) belong to L2(Ω) and α(y) ≥ 0 to L∞
# (Y ). Our model problem is a

diffusion equation in the porous medium Ωε with a Fourier boundary condition
on Γε







−∆uε + uε = f in Ωε
∂uε

∂n
+ εα(x

ε
)uε = 0 on Γε

uε = 0 on ∂Ω,
(12)
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which admits a unique solution uε ∈ H1(Ωε) satisfying the a priori estimate

‖uε‖L2(Ωε) + ‖∇uε‖L2(Ωε) ≤ ‖f‖L2(Ω).

The homogenized system for system (12) is

{

− div(A∇u) + (1 + a)u = f in Ω
u = 0 on ∂Ω,

(13)

where a is a non-negative constant given by

a =
1

|Y ∗|

∫

Γ

α(y)dσ(y),

and A is a symetric positive definite matrix defined by

Aij =
1

|Y ∗|

∫

Y ∗

(∇ywi + ~ei) · (∇ywj + ~ej)dy.

and (wi)1≤i≤N is the family of solutions of the cell problem







− divy(∇ywi + ~ei) = 0 in Y ∗

(∇ywi + ~ei) · ~n = 0 on ∂T
y → wi(y) Y -periodic.

(14)

Proposition 3.1 The sequence uε of solutions of (12), extended by zero in
Ω\Ωε) two-scale converges to χ(y)u(x), where χ(y) is the characteristic function
of Y ∗, and u the unique solution in H1

0 (Ω) of the homogenized problem.

Proof. The application of two-scale convergence to the homogenization of prob-
lem (12) with a Neumann (instead of Fourier) boundary condition has already
been done in [1] (see Theorem 2.9). Therefore, we only give the new arguments
required to treat the Fourier boundary condition. In view of the a priori esti-
mate, there exist u(x) ∈ H1

0 (Ω) and u1(x, y) ∈ L2(Ω;H1
#(Y ∗)/IR) such that,

up to a subsequence, the extensions by zero of uε and ∇uε two-scale converge
to χ(y)u(x) and χ(y)(∇xu(x) + ∇yu1(x, y)). In the variational formulation of
(12), we choose a test function φε(x) = φ(x) + εφ1(x,

x
ε
)

∫

Ωε

∇uε · ∇φεdx+

∫

Ωε

uεφεdx+ ε

∫

Γε

α(
x

ε
)uεφεdσε =

∫

Ωε

fφεdx. (15)

The usual two-scale convergence allows us to pass to the limit in all terms of (15)
but the third one. For this latter term, we use Proposition 2.6 which implies
that the trace of uε on Γε two-scale converges to u(x) in the sense of Theorem
2.1. Finally, passing to the limit in (15) yields

∫

Ω

∫

Y ∗
(∇u+ ∇yu1) · (∇φ+ ∇yφ1)dxdy

+
∫

Ω

∫

Y ∗
uφdxdy +

∫

Ω

∫

Γ α(y)uφdxdσ(y) =
∫

Ω

∫

Y ∗
fφdxdy.

(16)
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It is not difficult to check that (16) is a variational formulation which admits a
unique solution (u, u1) ∈ H1

0 (Ω)×L2(Ω;H1
#(Y ∗)/IR). Thus the entire sequence

uε converges. Eventually, the homogenized system (13) is easily recovered from
(16) by remarking that

u1(x, y) =
N

∑

i=1

wi(y)
∂u

∂xi

(x),

where wi are the solutions of the cell problem (14).

4 A model of diffusion and adsorption in porous

media.

We now apply the results of Section 2 to a simplified model derived from a more
complete and physical one studied in [7], [8] concerning the diffusion, adsorption,
and reaction of chemicals in porous media. Roughly speaking, it is a system
of two competing diffusion equations, one inside the pores, and one on their
boundaries. For simplicity we assume hereafter that Γ is compactly embeded
in Y , considered as an open set in IRN , in order that Γε does not meet the
boundary ∂Ω. We shall denote by ∆t

ε and ∆t the Laplace-Beltrami operators
on Γε and Γ satisfying the usual rule of integration by parts

−

∫

Γ

∆tu(y)v(y)dσ(y) =

∫

Γ

∇tu(y) · ∇tv(y)dσ(y)

for functions u, v ∈ H1
#(Γ) (a similar formula holds for ∆t

ε).

Let f(x) belong to L2(Ω) and α(y) ≥ 0 to L∞
# (Y ). The model problem reads

as














−∆uε + uε = f in Ωε

−ε2∆t
εvε + vε = α(x

ε
)(uε − vε) on Γε

∂uε

∂n
+ εα(x

ε
)(uε − vε) = 0 on Γε

uε = 0 on ∂Ω,

(17)

which admits a unique solution (uε, vε) ∈ H1(Ωε) satisfying the a priori estimate
{

‖uε‖L2(Ωε) + ‖∇uε‖L2(Ωε) ≤ C
ε‖vε‖

2
L2(Γε)

+ ε3‖∇t
εvε‖

2
L2(Γε)

≤ C.

Proposition 4.1 The sequences uε (extended by zero in Ω \ Ωε), and vε two-
scale converge to χ(y)u(x), and v(x, y) respectively, where (u, v) is the unique
solution in H1

0 (Ω) × L2(Ω;H1
#(Γ)) of the homogenized system







− div(A∇u(x)) + (1 + a)u(x) = f(x) + 1
|Y ∗|

∫

Γ
α(y)v(x, y)dσ(y) in Ω

−∆t
yv(x, y) + (1 + α(y))v(x, y) = α(y)u(x) in Ω × Γ

u = 0 on ∂Ω,
(18)
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where the matrix A and the non-negative constant are defined as in Section 3.

Remark 4.2 The homogenized system (18) can be further simplified since v(x, y)
is the product of u(x) by a function depending only on y. Corrector results (i.e.
strong convergences) can easily be obtained by using Proposition 2.5 in this pa-
per, and Theorem 1.8 in [1].

Proof. As in Section 3, the a priori estimate implies the existence of u(x) ∈
H1

0 (Ω) and u1(x, y) ∈ L2(Ω;H1
#(Y ∗)/IR) such that, up to a subsequence, the ex-

tensions by zero of uε and ∇uε two-scale converge to χ(y)u(x) and χ(y)(∇xu(x)+
∇yu1(x, y)). Furthermore by Proposition 2.6, there exists v(x, y) ∈ L2(Ω;H1

#(Γ))

such that, up to another subsequence, vε and ε∇t
εvε two-scale converge, in the

sense of Theorem 2.1, to v(x, y) and ∇t
yv(x, y). In the variational formulation

of (17), we choose a test function (φε(x), θε(x)) =
(

φ(x) + εφ1(x,
x
ε
), θ(x, x

ε
)
)

∫

Ωε

∇uε · ∇φεdx+

∫

Ωε

uεφεdx + ε

∫

Γε

α(
x

ε
)(uε − vε)φεdσε =

∫

Ωε

fφεdx,

ε3
∫

Γε

∇t
εvε · ∇

t
εθεdσε + ε

∫

Γε

vεθεdσε = ε

∫

Γε

α(
x

ε
)(uε − vε)θεdσε.

We can pass to the two-scale limit in all terms which yields
∫

Ω

∫

Y ∗

(∇u+ ∇yu1) · (∇φ+ ∇yφ1)dxdy +

∫

Ω

∫

Y ∗

uφdxdy

+

∫

Ω

∫

Γ

α(y)(u− v)φdxdσ(y) =

∫

Ω

∫

Y ∗

fφdxdy, (19)

∫

Ω

∫

Γ

∇t
yv · ∇

t
yθdxdσ(y) +

∫

Ω

∫

Γ

vθdxdσ(y) =

∫

Ω

∫

Γ

α(y)(u− v)θdxdσ(y)

It is not difficult to check that (19) is a variational formulation which admits a
unique solution (u, u1, v) ∈ H1

0 (Ω) × L2(Ω;H1
#(Y ∗)/IR) × L2(Ω;H1

#(Γ)). Thus
the entire sequence (uε, vε) converges. Eventually, the homogenized system (18)
is easily recovered by arguing as in Section 3.
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