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TROPICALIZING THE SIMPLEX ALGORITHM∗
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Abstract. We develop a tropical analogue of the simplex algorithm for linear programming. In
particular, we obtain a combinatorial algorithm to perform one tropical pivoting step, including the
computation of reduced costs, in O(n(m + n)) time, where m is the number of constraints and n is
the dimension.
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1. Introduction. The tropical semiring (T,⊕,�) is the set T = R ∪ {−∞}
endowed with the two operations a ⊕ b = max(a, b) and a � b = a + b. We are
interested in the tropical equivalent of linear programming. In other words, our goal
is to give an algorithm for minimizing a tropical linear form max(c1+x1, . . . , cn+xn)
over a tropical polyhedron. The latter is the set of solutions x ∈ Tn of finitely many
inequalities of the form

max(a1 + x1, . . . , an + xn, an+1) � max(b1 + x1, . . . , bn + xn, bn+1).

All the coefficients aj , bj , cj are elements of T. An example is depicted in Figure 1.
Several avenues lead to this research. First, the classical simplex method belongs

to the most relevant algorithms, for both its applicability and its theoretical impli-
cations. So it is natural to explore variants and derivations, including tropical ones.
In the form that we are studying this leads to a class of minmax problems which
are also interesting from a purely complexity-theoretic point of view. In [AGG12] it
is shown that a tropical analogue of the feasibility problem in linear optimization is
polynomial-time equivalent to deciding which player has a winning strategy in a mean-
payoff game. The latter decision problem is among the few problems in NP as well
as co-NP (see Zwick and Paterson [ZP96]) for which no polynomial-time algorithm is
known. This game-theoretic perspective leads to a second approach to tropical linear
programming. A third train of thought is more geometrical. Viro suggested investi-
gating the tropical aspects of real algebraic geometry [Vir01]. Nonetheless, the main
focus of tropical geometry so far concerns the tropicalization of algebraic varieties
which are defined over the complex numbers (or Puiseux series with complex coeffi-
cients). More recently, however, the tropicalization of real semi-algebraic sets has been
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Fig. 1. A tropical linear program. The feasible set is the union of the gray shaded area with
the thick black halfline. Three level sets for the objective function max(x1, x2) are depicted in blue.
The thick red segment is the set of optima.

studied by Alessandrini [Ale13]. In this vein our work seeks to contribute to under-
standing the tropicalizations of the most simple semialgebraic sets: convex polyhedra.
A related motivation arises from linear programming over ordered fields, the complex-
ity of which is a well-known open question [Meg89, section 2]. Ordered fields arise
naturally when dealing with perturbations of classical linear programs [Jer73, FAA02].

Tropical polyhedra or tropically convex sets have appeared in different guises in
the works of several authors, including [Zim77, CG79, LMS01, CGQ04, BH04]; the
present work is specially motivated by the approach of Develin and Sturmfels [DS04],
in which tropical polyhedra are studied by combinatorial means, and by the further
work of Develin and Yu [DY07], who showed that tropical polyhedra are precisely the
images by the valuation of (convex) polyhedra over the field of Puiseux series.

With this in mind, the most natural approach for tropical linear programming
probably is to do linear programming over real Puiseux series and to tropicalize, i.e.,
to devise a method which traces the valuation of the path followed by the simplex
algorithm over real Puiseux series. This is exactly what we do here. What makes
our algorithm interesting is that the method itself does not manipulate Puiseux series
(explicit lifts to real Puiseux series are not needed). Instead it directly processes the
tropical input and “stays tropical” throughout the computations. In this way, the
arithmetical operations remain elementary.

In order to make our ideas more apparent, and to avoid technical details which
are too cumbersome to attack in a direct fashion, in the present paper we assume
that our tropical linear program is primally and dually nondegenerate. Further, we
assume that each point in the feasible region has finite coordinates only. Any tropical
linear program satisfying these properties will be called standard ; see Assumptions
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Algorithm 1. Phase II tropical simplex algorithm.

Input: A matrix A ∈ Tm×n
± , a column vector b ∈ Tm

± , an unsigned row vector c ∈ Tn. A

tropical basic point xI of P(A, b), and the corresponding set I ⊂ [m].
Output: A tropical basic point of P(A, b) that is minimal with respect to c.

1 compute the tropical reduced costs y associated with I
2 while y has a tropically negative entry do
3 choose iout ∈ I such that yiout is tropically negative
4 K ← I \ {iout}
5 pivot along the tropical edge EK to the tropical basic point xI′ for a set of the form

I′ = K ∪ {ient}
6 I ← I′
7 compute the tropical reduced costs y associated with I

8 return xI

4, 5, and 6 below. We defer all ramifications which come from looking at degenerate
input or infinite coefficients to a subsequent second paper. Our main result is the
following theorem.

Theorem 1.1. Consider a standard tropical linear program with n variables and
m inequalities. Then, the tropical simplex algorithm (Algorithm 1) terminates and re-
turns an optimal solution for any tropical pivoting rule. Every iteration (pivoting and
computing reduced costs) can be done in time O(n(m + n)). Moreover, the algorithm
traces the image by the valuation map of the path followed by the classical simplex
algorithm applied to any lift of this program to the field of real Puiseux series, with a
compatible pivoting rule.

In particular, under the assumptions of Theorem 1.1, linear programs over Puiseux
series are implicitly solved by the tropical simplex algorithm. By definition, a tropical
pivoting rule selects a variable of tropically negative reduced cost. A classical pivoting
rule is said to be compatible with the former tropical pivoting rule if they select the
same variables. Tropical pivot rules are the topic of section 4.

Our tropical simplex algorithm relies on several tools of independent interest.
For instance, Corollary 3.6 shows that, again under the general position assumption,
the cells of an arrangement of hyperplanes over the field of real Puiseux series are in
one-to-one correspondence with the cells of the arrangement of the associated tropical
hyperplanes. This leads to the notion of tropical basic points and tropical edges of a
system of tropical affine inequalities. Unlike the classical case, a tropical basic point
may not be tropically extreme; see Proposition 3.11 and Remark 3.12 below. This
stems from the lack of a good notion for a general “face” of a tropical polyhedron; see
the discussions in [Jos05, DY07]. This is related to competing notions of rank [DSS05,
AGG09].

A fundamental discrepancy to the classical simplex algorithm is that a tropical
edge in Tn may have a more complex geometrical structure as, indeed, it consists of
up to n ordinary segments. These segments can be determined from tangent digraphs,
which encode a local description of a tropical polyhedron; tangent digraphs were ini-
tially introduced in the form of directed hypergraphs in [AGG13]. The cornerstone
of the tropical simplex algorithm is a new combinatorial characterization of the tan-
gent digraph (Proposition 4.3) at a point inside a tropical edge. In particular, this
entails an incremental computation of tangent digraphs from one ordinary segment
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to another (Proposition 4.9), leading to an O(n(m + n)) time method for one full
pivoting step; see Theorem 4.13. Finally, we define the tropical reduced cost vector,
which allows one to certify the optimality of a given basic point. We show that the
vector of reduced costs can be computed by solving a system of signed tropical linear
equations and that the running time of this step is also bounded by O(n(m+n)); see
Theorem 5.7.

Let us finally point out some related work. The study of the analogues of linear
programs over ordered semirings was undertaken in the book [Zim81]; in particular,
a duality theorem for a special class of linear programs can be found there. The idea
of looking for analogues of convex programming results over “extremal” (a variant of
tropical) structures is also apparent in [Zim76]. Several recent works have proposed
algorithms to solve various tropical programming problems. In [BA08], a dichotomy
algorithm is developed, allowing one to solve tropical linear programming problems by
a reduction to linear feasibility problems. In [GKS12], more general linear-fractional
programming problems are studied, in which one maximizes the difference of two
tropical linear forms. A policy iteration algorithm based on a parametric mean payoff
game is given there. These policies seem to have interesting connections with basic
points. However, our present approach leads to a fundamentally different method: we
move along edges in the graph of the tropical polytope, whereas policy iteration type
algorithms often take “great leaps” in the same graph; also, one iteration of the present
algorithm takes only O(n(m+n)) time, whereas every iteration in [GKS12] requires us
to solve a mean payoff game. Yet another different class of algorithms for solving trop-
ical linear feasibility problems relies on cyclic projection [CGB03, GS07, AGNS11].
Recall also that the tropical linear feasibility problem is equivalent to mean payoff
games, for which a number of algorithms are available, like pumping [GKK88], value it-
eration [ZP96, AGG12], or policy iteration [GG98, DG06, BV07, Cha09]. A reduction
of mean payoff games to classical linear programs with exponentially large coefficients
is established in [Sch09]. The asymptotic simplex method developed in [FAA02] solves
arbitrary linear programs on Laurent series (which is sufficient for tropical linear pro-
grams with rational coefficients). Each iteration of their method requires O(s(m+n)2)
operations, where s � (m+n) is the maximum taken over the valuations of all Puiseux
series arising during the computation. Our tropical simplex algorithm shows a better
complexity per iteration since the factor of s is dispensed with, but the approach of
[FAA02] does not require any genericity assumptions.

This paper is organized as follows. Section 2 describes our notation and collects
the relevant known facts about convex polyhedra over real Puiseux series. For the
reader’s convenience we introduce a running example which we refer to throughout
this paper. In section 3 we characterize the key players in our algorithms: tropical
basic points and tropical edges. The core of our paper is section 4, where we describe
the tropical pivot. Section 5 discusses tropical reduced costs. Finally, Theorem 1.1 is
proved in section 6.

Our algorithm for solving tropical linear programs is outlined in Algorithm 1. It
directly corresponds to Phase II of the classical simplex method over real Puiseux
series. Phase II starts from a given tropical basic point and proceeds along improving
edges toward an optimal tropical basic point, The Phase I problem, to find a first
tropical basic point, will be addressed in a sequel to this work. While classically
Phase I can be reduced to Phase II, in general, this requires solving a degenerate
linear program. As explained above, this is out of the scope of the present paper.
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2. Preliminaries.

2.1. Tropical arithmetic. The domain for our computations is the set T =
R∪{−∞}. The neutral elements for the tropical “addition” and “multiplication” are
� := −∞ and � := 0, respectively. The usual definition of matrix operations carries
over to tropical matrices. Given two matrices A = (aij) and B = (bij), we denote by
A⊕B and A�B the matrices with entries aij⊕bij and

⊕
k aik�bkj, respectively. We

also denote by A� the transpose of the matrix A, by Ai the ith row of A, and by AI

the submatrix of A formed from the rows i ∈ I. For the sake of simplicity, we identify
vectors of size n with n×1-matrices. Given a = (a1j) ∈ T1×n and x ∈ Tn, we denote
by argmax(a� x) the set of indices i ∈ [n] = {1, . . . , n} attaining the maximum in

a� x = max
j∈[n]

(a1j + xj).

The usual total order � on R extends to T. This induces a partial ordering of tropical
vectors by entrywise comparisons. The topology induced by the order makes (T,⊕,�)
a topological semiring.

In the following, we will think of the n-fold product space Tn as a semimodule
over T, where scalars act tropically on vectors by (λ, x) �→ λ�x := (λ+x1, . . . , λ+xn)
and the tropical vector addition is (x, y) �→ x⊕ y := (max(x1, y1), . . . ,max(xn, yn)).

2.1.1. Signed tropical numbers. It will be convenient to use the set of signed
tropical numbers [Plu90], denoted here by T±. The latter set consists of two copies of
T, called the set of positive tropical numbers and the set of negative tropical numbers,
respectively. These two copies are glued by identifying the element �. Positive and
negative tropical numbers are written as a and 	a, respectively, for some a ∈ T. By
definition, the numbers a and 	a are different, unless a = �. Their sign is sign(a) = 1
and sign(	a) = −1 when a is not � and sign(�) = 0. The modulus of x ∈ {a,	a}
is defined as |x| := a. The multiplication x � y of two elements x, y ∈ T± yields the
element whose modulus is |x|+ |y| and whose sign is the product sign(x) sign(y). The
positive part and the negative part of an element x ∈ T± are the tropical numbers x+

and x− defined by

x+ =

{ |x| if x is positive,
� otherwise,

x− =

{
� if x is positive,
|x| otherwise.

Modulus, positive part, and negative part extend to matrices entrywise. It was shown
in [Plu90] that signed tropical numbers can be embedded in a semiring, called the
symmetrized tropical semiring. Indeed, the sum of two signed tropical numbers with
opposite signs but identical modulus cannot be defined as a signed tropical number;
one needs to enlarge T± with a third type of elements, called balanced elements, to
represent such sums. We will defer the discussion of the symmetrized tropical semiring
until section 5.1, since the additional technicalities can be spared in the first three
quarters of this paper. In particular, the addition of signed tropical numbers will not
be used before section 5.1.

2.1.2. General position. The permanent of the square matrix M = (mij) ∈
Tn×n is given by

(2.1) tper(M) :=
⊕

σ∈Sym(n)

m1σ(1) � · · · �mnσ(n) = max
σ∈Sym(n)

m1σ(1) + · · ·+mnσ(n),
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where Sym(n) is the set of all permutations of [n]. Computing the tropical perma-
nent amounts to finding a permutation which attains the maximum in (2.1). Such a
permutation is a solution of the assignment problem with costs (mij). It can found in
time O(n3) using the Hungarian method; see [Sch03, section 17.3]. A square matrix
is said to be tropically singular if tper(M) = � or if the maximum is attained at least
twice in (2.1).

A slightly more restrictive notion of singularity arises when signs are taken into
account. A signed matrix M ∈ Tn×n

± is tropically sign singular if tper(|M |) = � or
if the maximum in tper(|M |) is attained on two distinct permutations σ and π such
that the terms tsign(σ)�m1σ(1) � · · · �mnσ(n) and tsign(π)�m1π(1) � · · · �mnπ(n)

have opposite tropical signs, where tsign(σ) = � if σ is an even permutation and
tsign(σ) = 	� otherwise. The notion of tropical sign singularity of a matrix appeared
in different forms in [GM84], [Plu90], and [Jos05, section 4].

We call a rectangular matrix W ∈ Tm×n
± tropically generic if for every square

submatrix U of W either tper(|U |) = � or |U | is not tropically singular. Similarly,
the matrix W is tropically sign generic if tper(|U |) = � or U is not tropically sign
singular, again for all square submatrices U .

Example 2.1. Consider the following matrix with signed tropical entries:

W =

⎛
⎜⎜⎝

−5 −3 	0
	(−7) −5 0
−7 −2 	0
−2 	(−6) 	0

⎞
⎟⎟⎠ .

The matrix W is not tropically generic. Indeed, consider its submatrix W ′ formed
from the first two rows and the first two columns. We have tper(|W ′|) = ((−5) �
(−5))⊕ (|	 (−7)|� (−3)) = (−10)⊕ (−10), thus |W ′| is tropically singular. However,
W ′ is not tropically sign singular, as the terms � � (−5) � (−5) = −10 and 	� �
	(−7)�(−3) = −10 associated with the maximizing permutations in tper(|W ′|) have
the same tropical sign.

Now consider the submatrix W ′′ = (�(−7) 0

−7 �0
) formed from the second and third

rows and the first and last columns of W . We have tper(|W ′′|) =
(| 	 (−7)| � | 	

0|) ⊕ (
(−7) � 0

)
= (−7) ⊕ (−7) and the two terms � � 	(−7) � 	0 = −7 and

	�� (−7)� 0 = 	(−7) have opposite tropical signs. Thus W ′′ is not tropically sign
singular, and therefore W is not tropically sign generic.

2.2. Tropically convex sets and tropical polyhedra. A set S ⊂ Tn is said
to be tropically convex if λ � x ⊕ μ � y ∈ S for all x, y ∈ S and λ, μ ∈ T such that
λ ⊕ μ = �. The set S is said to be tropical cone when the same conclusion holds
even if the requirement that λ ⊕ μ = � is omitted. A tropical cone is polyhedral
if it is finitely generated. These notions are analogous to the classical ones, since
the condition λ, μ � � is trivially satisfied. Given V ⊂ Tn, we denote by tconv(V )
the smallest (inclusionwise) tropically convex subset of Tn containing V . Similarly,
tpos(V ) denote the smallest tropical cone of Tn containing V .

2.2.1. Tropical half-spaces and s-hyperplanes. An (affine) tropical half-
space is a subset of Tn of the form

(2.2) max(α1 + x1, . . . , αn + xn, αn+1) � max(β1 + x1 . . . , βn + xn, βn+1),

where α, β ∈ Tn+1 . When αn+1 = βn+1 = �, it is said to be a linear tropical half-
space. Throughout this paper, we assume that half-spaces are defined by nontrivial
inequalities.
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Assumption 1. There is at least one nonnull coefficient in the inequality (2.2),
i.e.,

max

(
max

j∈[n+1]
αj , max

j∈[n+1]
βj

)
> � .

Without loss of generality (see [GK11, Lemma 1]), we also always assume that
half-spaces are induced by an inequality satisfying the following condition.

Assumption 2. Each variable appears on at most one side of the inequality (2.2),
i.e.,

min(αj , βj) = � for all j ∈ [n+ 1] .

Then, we can concisely describe a tropical half-space with a signed row vector a =
(a1j) ∈ T1×n

± and a signed scalar b ∈ T± as

H�(a, b) : =
{
x ∈ Tn | a+11 � x1 ⊕ · · · ⊕ a+1n � xn ⊕ b+

� a−11 � x1 ⊕ · · · ⊕ a−1n � xn ⊕ b−
}

= {x ∈ Tn | a+ � x⊕ b+ � a− � x⊕ b−}.
A signed tropical hyperplane, or s-hyperplane, is defined as the set of the solutions

x ∈ Tn of an equality of the form

(2.3) H(a, b) = {x ∈ Tn | a+ � x⊕ b+ = a− � x⊕ b−},
where a ∈ T1×n

± and b ∈ T±. When H�(a, b) is a nonempty proper subset of Tn, its
boundary is H(a, b).

Remark 2.2. The set H(a, b) is said to be signed because it corresponds to the
tropicalization of the intersection of a usual hyperplane with the nonnegative orthant
over Puiseux series; see section 2.3. A tropical (unsigned) hyperplane is defined
by an unsigned row vector a = (a1j) ∈ T1×n and an unsigned scalar b ∈ T as
the set of all points x ∈ Tn such that the maximum is attained at least twice in
a � x ⊕ b = max(a11 + x1, . . . , a1n + xn, b); see [RGST05]. This corresponds to the
tropicalization of an entire ordinary hyperplane.

2.2.2. Tropical polyhedra. A tropical polyhedron is the intersection of finitely
many tropical affine half-spaces. It will be denoted by a signed matrix A ∈ Tm×n

± and
a signed vector b ∈ Tm

± as

P(A, b) := {x ∈ Tn | A+ � x⊕ b+ � A− � x⊕ b−} =
⋂

i∈[m]

H�(Ai, bi).

If all those tropical half-spaces are linear, i.e., if b is identically �, that intersection is
a tropical polyhedral cone.

Example 2.3. The tropical polyhedron depicted in Figure 1 is defined by the
following matrix and vector:

A =

⎛
⎜⎜⎝

−5 −3
	(−7) −5
−7 −2
−2 	(−6)

⎞
⎟⎟⎠ and b =

⎛
⎜⎜⎝

	0
0
	0
	0

⎞
⎟⎟⎠

The half-space depicted in orange in Figure 1 is H�(A1, b1) = {x ∈ T2 | max(x1 −
5, x2 − 3) � 0}. Its boundary is the signed hyperplane H(A1, b1) = {x ∈ T2 |
max(x1 − 5, x2 − 3) = 0}. The last three rows yield the inequalities
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max(x2, 0) � x1 − 7 ,

max(x1 − 7, x2 − 2) � 0 ,

x1 � max(x2 − 6, 0) ,

which define the half-spaces respectively depicted in purple, green, and khaki in
Figure 1.

A point x in a tropical polyhedron P(A, b) clearly satisfies the inequalities xj � �

for all j ∈ [n]. Although redundant, including these inequalities in the representation
of a tropical polyhedron is occasionally useful.

Assumption 3. For all j ∈ [n], all points x ∈ P(A, b) satisfy xj > � or the non-
negativity constraint xj � � appears in the external representation of P(A, b), i.e.,
there exists a row index i ∈ [m] such that (Ai bi) is the row vector whose jth entry is
� while all other entries are �.

The Minkowski–Weyl theorem holds in the tropical case: a tropical polyhedron
can be defined either externally (i.e., by means of half-spaces), or internally as the
convex hull of finitely many points and rays.

Theorem 2.4 (see [GK11, Theorem 2]). A subset P ⊂ Tn is a tropical polyhedron
if and only if there exist two finite sets V,R ⊂ Tn such that

P = {x⊕ y | x ∈ tconv(V ) and y ∈ tpos(R)}.
It will be convenient to homogenize a tropical polyhedron P(A, b) into the tropical

polyhedral cone C := {x ∈ Tn+1 | W+ � x � W− � x}, where W := (A b). As a
tropical cone, C is closed under tropical scalar multiplication. For this reason, we
identify C with its image in the tropical projective space

TPn :=
{
R� x | x ∈ Tn+1 \ {(�, . . . , �)}} .

The points of the tropical polyhedron P(A, b) are associated with elements of the
tropical polyhedral cone C by the following bijection:

(2.4)
P(A, b) −→ {y ∈ C | yn+1 = �},

x �−→ (x, �).

The points of the form (x, �) in C correspond to the rays in the recession cone of
P(A, b); see [GK11].

Remark 2.5. Let R ∈ Tm×n be a matrix with finite coefficients only. Then
P = tpos(R) is a tropical polyhedral cone in Tn such that the image of P ∩Rn under
the canonical projection from Rn to the tropical torus {R� x | x ∈ Rn} is a “tropical
polytope” in the sense of Develin and Sturmfels [DS04]. Via this identification, the
tropical linear half-spaces which are nonempty proper subsets of Tn correspond to the
“tropical half-spaces” studied in [Jos05]. The tropical projective space defined above
compactifies the tropical torus (with boundary).

2.3. Puiseux series. The set R{{t}} of (generalized) Puiseux series with real
coefficients is the set of formal power series

x =
∑
α∈R

xαt
α

with xα ∈ R such that the support {xα | xα �= 0} is either a finite set or the set of
valuations of a increasing unbounded sequence. By definition of its support, every
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nonnull Puiseux series x admits a smallest exponent αmin ∈ R. The real number
−αmin is called the valuation of x and is denoted val(x). By convention, we set
val(0) = −∞. The leading coefficient, denoted lc(x), is the coefficient xαmin of the
smallest exponent αmin = − val(x) when x �= 0 and is 0 otherwise. Throughout the
paper, we write K instead of R{{t}}.

The set of generalized Puiseux series, equipped with the sum and product of
formal power series, constitutes a field. It can be identified with a subfield of the field
of Hahn series, i.e., formal power series with arbitrary well-ordered support. A variant
of this field was also considered by Hardy under the name of “generalized Dirichlet
series.” Our approach follows Markwig [Mar10].

The n-fold Cartesian product Kn is a K-vector space when equipped with the
scalar multiplication (λ,x) �→ λx := (λx1, . . . ,λxn) and the vector addition (x,y) �→
x+ y := (x1 + y1, . . . ,xn + yn).

A Puiseux series x is said to be positive if lc(x) > 0, and we write x > 0 in this
case. Similarly, we write x > y if x− y > 0. This definition turns K into an ordered
field. The topology induced by this order makes K a topological field.

The valuation is a map from K to T which satisfies

val(xy) = val(x)� val(y),

val(x+ y) � val(x)⊕ val(y).

Equality occurs in the last inequality if and only if the leading terms of x and y
do not cancel. In particular, cancellation never occurs whenever x and y share the
same sign. This property is the main reason for using Puiseux series to study the
tropical semiring. Indeed, the map val defines a homomorphism from the semiring
K+ of nonnegative Puiseux series to the tropical semiring. This homomorphism is
order preserving, that is,

if x � y � 0, then val(x) � val(y) .

It is convenient to equip the valuation with a sign information. We define the
signed valuation map by

sval : K −→ T±,

x �−→
{
val(x) if x � 0,

	 val(x) otherwise.

A lift of a signed tropical number x ∈ T± is a Puiseux series x such that sval(x) = x.
Clearly, such a lift is by no means unique. The set of all lifts will be denoted sval−1(x).
The signed valuation map is extended to vectors and matrices by componentwise
application. In the following, any Puiseux series will be written in bold and its signed
valuation with a standard font, e.g., x = sval(x).

2.4. Puiseux linear programming solves tropical linear programming.
Hyperplanes, half-spaces, and convex polyhedra can be defined over an arbitrary
ordered field. The most basic results used in linear programming (Farkas’ lemma,
Minkowski–Weyl, strong duality, etc.) are of algebraic nature. Their proofs only rely
on the axioms of ordered fields and consequently are also valid in this setting; see, for
instance, [Jer73, Meg87, FAA02]. Actually, in the present paper, we deal with the field
K of Puiseux series with real coefficients, which is known to be real closed [Mar10],
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i.e., each nonnegative element is a square, and every polynomial with odd degree has
at least one root. For such a field, stronger results follow from Tarski’s principle:
any first-order sentence that is valid over the reals is also valid over an arbitrary real
closed field and thus valid over K. We refer to [Tar51, Sei54] for further details; see
also [BPCR06] for a recent overview. In order to have a concise name we call ordinary
polyhedra defined over K Puiseux polyhedra.

In this section, we examine how tropical polyhedra are related with Puiseux poly-
hedra in Kn

+ via the valuation map. In [DY07, Proposition 2.1], Develin and Yu prove
that a tropical polyhedral cone tpos(R) can be lifted to a Puiseux polyhedral cone in
Kn

+ by lifting the set R of generators. This result can be trivially extended to arbitrary
tropical polyhedra, thanks to the tropical Minkowski–Weyl theorem (Theorem 2.4),
by lifting the whole internal representation. Alternatively, we shall see that a tropical
polyhedron can also be lifted to a Puiseux polyhedron in Kn

+ by lifting its external
representation by half-spaces. As a consequence, an optimal solution to a tropical
linear program can be found by solving a linear program over Puiseux series.

We denote by H(a, b) the hyperplane over Kn defined by the equality ax+b = 0,
where a ∈ K1×n and b ∈ K. The hyperplane H(a, b) induces the half-space H�(a, b)
by replacing the equality constraint by the inequality �. We will denote Puiseux
polyhedra as follows:

P(A, b) := {x ∈ Kn | Ax+ b � 0},
where A ∈ Km×n and b ∈ Km.

We now consider a tropical linear program:

(2.5)
minimize c� x
subject to x ∈ P(A, b),

where A ∈ Tm×n
± , b ∈ Tm± are signed matrices and c ∈ T1×n is an unsigned row vector.

Proposition 2.6. There is a way to associate to every tropical linear program
of the form (2.5) satisfying Assumption 3 a Puiseux linear program

(2.6)
minimize cx
subject to x ∈ P(A, b)

satisfying A ∈ sval−1(A), b ∈ sval−1(b) and c ∈ sval−1(c), so that
(i) the image by the valuation of the feasible set of the linear program (2.6) is

precisely the feasible set of the tropical linear program (2.5); in particular,
(2.6) is feasible if and only if (2.5) is feasible;

(ii) the valuation of any optimal solution of (2.6) (if any) is an optimal solution
of (2.5).

Notice that the converse of (ii) does not necessarily hold. That is, there are
tropical linear programs with optimal solutions which do not arise as projections
from any lift; see Example 2.8 below.

Proof. To begin with, we will exhibit lifts A ∈ sval−1(A) and b ∈ sval−1(b)
of the external representation such that val(P(A, b)) = P(A, b). The inclusion
val(P(A, b)) ⊂ P(A, b) is satisfied for any lifts A, b. Indeed, consider a point
x ∈ P(A, b). Then, by Assumption 3, the polyhedron P(A, b) is included in the
nonnegative orthant Kn

+. Let (A b) = (A+ b+) − (A− b−), where the entries
of (A+ b+) and (A− b−) are nonnegative. Every point x ∈ P(A, b) satisfies
A+x+b+ � A−x+b−. Since the Puiseux series on each side of these inequalities are
nonnegative, the valuation preserves their ordering and A+ � x⊕ b+ � A− � x⊕ b−.
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We claim that the reverse inclusion holds for any lift of the form (A b) =
(A+ b+)− (A− b−) defined, for i ∈ [m] and j ∈ [n], by

(2.7)
A+ = (αt−a

+
ij ) and A− = (t−a

−
ij ),

b+ = (αt−b
+
i ) and b− = (t−b

−
i ),

where α is a real number strictly greater than n + 1, and A = (aij). To see this,
observe that for any x ∈ P(A, b) the lift x = (t−x1 , . . . , t−xn) belongs to the Puiseux
polyhedron P(A, b). Indeed, for any i ∈ [m] we have

A−i x+ b−i =

n∑
j=1

t−a
−
ij−xj + t−b

−
i � (n+ 1)t−(a

−
i �x⊕b−i ) < αt−(a

−
i �x⊕b−i )

and

A+
i x+ b+i = α

⎛
⎝ n∑

j=1

t−a
+
ij−xj + t−b

+
i

⎞
⎠ � αt−(a

+
i �x⊕b+i ) � αt−(a

−
i �x⊕b−i ),

thus Aix+ bi > 0. This shows that a lift to real Puiseux series does exist.
We need to prove the claimed properties of such a lift. Let A and b as above.

Since val(P(A, b)) = P(A, b), the Puiseux linear program (2.6) is feasible if and only
if the tropical one (2.5) is feasible. Now take any c ∈ sval−1(c), e.g., cj = t−cj for
j ∈ [n]. If (2.6) admits an optimal solution x∗, then cx � cx∗ � 0 for all x ∈ P(A, b).
Since c is nonnegative, c � x � c � val(x∗) for all x ∈ val(P(A, b)) = P(A, b). This
concludes the proof.

Remark 2.7. Observe that in Proposition 2.6, the Puiseux linear program (2.6)
cannot be unbounded. Indeed, for all lifts (A b) ∈ sval−1(A b), we haveP(A, b) ⊂ Kn

+

thanks to Assumption 3. Since c has tropically positive entries, its lift c also has
positive entries. Then the inequality cx � 0 holds for all x ∈ P(A, b) and thus
provides a lower bound for the minimization problem (2.6).

We offer a visualization for Proposition 2.6 in Figure 2. As model theory explains,
polyhedra over real Puiseux series, for most purposes, pretty much are the same
as classical polyhedra over the reals. Therefore, we can also visualize the lift in
Proposition 2.6 as a classical polyhedron. More precisely, the constraints of the lift
are provided by (2.6), and we can choose the lifted objective vector to be cj = t−cj
for j ∈ [n]. Now, replacing the parameter t by a real number provides a real linear
program. If that real number is sufficiently small, the classical linear program over
the reals is combinatorially equivalent to the Puiseux one, that is, they share the same
vertex-facet incidences and hence they share the same vertex-edge graph; the optimal
vertices are in bijection.

Example 2.8. Throughout the rest of this paper, we will illustrate our results on
the following tropical linear program:

minimize max(x1 − 2, x2, x3 − 1)

subject to max(0, x2 − 1) � max(x1 − 1, x3 − 1)H1

x3 � max(0, x2 − 2)H2

x2 � 0H3

x1 � max(0, x2 − 3)H4

0 � x2 − 4 .H5
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(t0, t0, t0)

(t0, t0, t−4)

(t−4, t0, t0)

(t−4, t−4, t0)

(t−4, t−4, t−4)

Fig. 2. A lift of the tropical polyhedron defined by the inequalities from Example 2.8 and
its external representation.

(0, 0, 0)

(0, 0, 4)

(4, 0, 0)

(4, 4, 0)

(4, 4, 4)

Fig. 3. The tropical polyhedron defined by the inequalities from Example 2.8 and its external
representation.

These constraints define the tropical polyhedron represented in Figure 3. A lift of this
tropical polyhedron is depicted in Figure 2. The optimal valuation of this tropical
linear program is 0 and the set of optimal solutions is the ordinary square:

{(x1, x2, x3) ∈ T3 | 0 � x1 � 1 and x2 = 0 and 0 � x3 � 1}.
However, over Puiseux series, there is a unique optimum. It is the point located in the
intersection of three hyperplanes obtained by lifting the inequalities (H2), (H3), and
(H4). This point has valuation (0, 0, 0), which is an optimum for the tropical linear
program. Corollary 3.6 and Proposition 5.5 below assert this does not depend on the
choice of the lift. The reason is that our example satisfies the standard conditions
mentioned in Theorem 1.1.

We will also present several results in the homogeneous setting. They will be
illustrated on the tropical cone defined by the following inequalities:
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(2.9)

max(x4, x2 − 1) � max(x1 − 1, x3 − 1),

x3 � max(x4, x2 − 2),

x2 � x4,

x1 � max(x4, x2 − 3),

x4 � x2 − 4.

This cone corresponds to the previous polyhedron by the correspondence given in (2.4),
i.e., the coordinate x4 plays the role of the affine component. For the sake of simplicity,
the linear half-spaces in (2.9) are still referred to as (H1)–(H5).

2.5. The simplex method. A Puiseux linear program can be solved using the
classical simplex method. We briefly recall the basic facts. Let I ⊂ [m] be a subset
of cardinality n such that the submatrix AI , formed from the rows with indices in
I, is nonsingular. The intersection

⋂
i∈I H(Ai, bi) contains a unique point, which we

denote as xI . When xI belongs to the polyhedron P(A, b), it is called a (feasible)
basic point.

Remark 2.9. A basis is usually defined by a partition of the (explicitly bounded)
variables (s1, . . . , sm) in “basic” and “nonbasic” variables, where s = Ax+b. Observe
that I corresponds to the “nonbasic” variables as it indexes the zero coordinates of s.
The set I can also be interpreted as the set of “basic” variables in the dual program.
For any set I ⊂ [m] we let

PI(A, b) :=
⋂
i∈I

H(Ai, bi) ∩P(A, b) .

A subset K ⊂ [m] of cardinality n − 1 defines the (feasible) edge EK := PK(A, b)
when

⋂
i∈K H(Ai, bi) is an affine line that intersects P(A, b). Notice that an edge

defined in this way may have “length zero,” i.e., as a set it consists of only a single
point. A basic point xI is contained in the n edges defined by the sets I \ {k} for
k ∈ I. The edge I \ {k} belongs to the line directed by the vector dk with coordinates

(2.10) dk
j = (−1)k+j detMkj

detAI
,

where Mkj is the matrix obtained from AI by deleting its kth row and jth column.

As we are minimizing, moving along the edge I \ {k} from the basic point xI

improves the objective function if the reduced cost yk = cdk is negative. The vector of
reduced costs y = (yk)k∈I forms a solution of the following linear system of equations:

(2.11) −A�I y + c = 0 .

Each iteration of the simplex method starts on some basic point xI . An edge I \ {k}
with a negative reduced cost is selected. If no such edge exists, then the basic point
is optimal by the strong duality theorem of linear programming [Sch03, section 5.5]
(which holds in any ordered field such as real Puiseux series). Otherwise, the algorithm
pivots, i.e., moves to the other end of the selected edge. Pivoting amounts to finding
the length μ ∈ K of the edge, which is given by
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(2.12) μ = inf

{
Aix

I + bi
−Aidk

| i ∈ [m] \ I and Aid
k < 0

}
.

If the edge is bounded, i.e., if there exists an i ∈ [m] \ I such that Aid
k < 0, then the

algorithm reaches a new basic point. Otherwise, the linear program is unbounded,
and the valuation μ is ∞.

Remark 2.10. Basic points and directions are provided by determinants. If
(A b) = val(A b) is tropically generic, this amounts to computing tropical perma-
nents. However, the length μ of the edge cannot be computed only with valuations.
This difficulty can be observed already in dimension one. Consider the Puiseux poly-
hedron defined by the inequalities

x � 1 and x � t2 and x � t3 .

Minimizing c = 1 and starting from the basic point x = 1, the direction of the single
pivot is d = −1. The pivoting step must decide where the edge ends, and in this case
the edge length is given by μ = min(1 − t2, 1 − t3) = 1 − t2. Yet, the valuation of
1− t2 and 1− t3 yields zero in both cases. This shows that in order to find the correct
minimum t2, it does not suffice to look at the valuations of the optimal solutions of
the Puiseux lift.

3. Tropical basic points and tropical edges. Geometrically speaking, the
classical simplex method traces the vertex-edge graph of an ordinary polyhedron from
one basic point along a directed path to an optimal solution, which again is basic.
Basic points and edges over Puiseux series are cells of the arrangement of hyperplanes
{H(Ai, bi)}i∈[m]. It turns out that, under some genericity assumptions, the valuation

of these cells can be described by intersecting tropical half-spaces in {H�(Ai, bi)}i∈[m]

and s-hyperplanes in {H(Ai, bi)}i∈[m]. This result will be proved in Corollary 3.6
below.

3.1. The tangent digraph. Consider a matrix W = (wij) ∈ T
m×(n+1)
± . For

every point x ∈ Tn+1 with no � entries, we define the tangent graph Gx(W ) at the
point x with respect to W as a bipartite graph over the following two disjoint sets of
nodes: the “coordinate nodes” [n+1] and the “hyperplane nodes” {i ∈ [m] | W+

i �x =
W−i � x > �}. There is an edge between the hyperplane node i and the coordinate
node j when j ∈ argmax(|Wi| � x).

The tangent digraph �Gx(W ) is an oriented version of Gx(W ), where the edge
between the hyperplane node i and the coordinate node j is oriented from j to i when
wij is tropically positive, and from i to j when wij is tropically negative (if a tangent
digraph contains an edge between i and j then wij �= �).

Examples of tangent digraphs are given in Figure 4 (where hyperplane nodes are

denoted Hi). The term “tangent” comes from the fact that �Gx(W ) is a combinatorial
encoding of the tangent cone at x in the tropical cone C = P(W, �); see [AGG13]. The
tangent digraph is the same for any two points in the same cell of the arrangement of
tropical hyperplanes given by the inequalities. The tangent graph Gx(W ) corresponds
to the “types” introduced in [DS04] but relative only to the hyperplanes given by the
tight inequalities at x.

When there is no risk of confusion, we will denote by Gx and �Gx the tangent graph
and digraph, respectively.
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At (1, 0, 0)

3 2

14 H1

H2 H3

In the open segment

](1, 0, 0), (1, 1, 0)[

3 2

14 H1

H2

At (1, 1, 0)

3 2

14

H1H2

In the open segment

](1, 1, 0), (2, 2, 0)[

3 2

14

H1H2

At (2, 2, 0)

3 2

14

H1H2

In the open segment

](2, 2, 0), (4, 4, 2)[

3 2

14

H1

H2

At (4, 4, 2)

3 2

14

H5 H1

H2

Fig. 4. Tangent digraphs at various points of the tropical cone obtained by homogenization of
the tropical polyhedron defined by the inequalities from Example 2.8. Hyperplane nodes are rectangles
and coordinate nodes are circles.

Example 3.1. Let W be the matrix formed by the coefficients of the system (2.9),
and consider the point x = (1, 0, 0, 0) (corresponding to (1, 0, 0) via the bijection (2.4)).
The inequalities (H1), (H2), and (H3) are tight at x. They read

max(x4, x2 − 1) � max(x1 − 1, x3 − 1),

x3 � max(x4, x2 − 2),

x2 � x4,

where we marked the positions where the maxima are attained. The tangent digraph
�Gx(W ) is depicted in the top left of Figure 4. For instance, the first inequality provides
the arcs from coordinate node 4 to hyperplane node H1 and from H1 to coordinate
node 1.

If I and J are respectively subsets of the hyperplane and coordinate nodes of Gx,
a matching between I and J is a subgraph of Gx with node set I ∪ J in which every
node is incident to exactly one edge.

Lemma 3.2. Let W ∈ T
m×(n+1)
± and x ∈ Tn+1 be a point with no � entries.

Suppose the tangent graph Gx contains a matching between the hyperplane nodes I
and the coordinate nodes J . Then the submatrix W ′ of W formed from rows I and
columns J is such that |W ′| has a finite tropical permanent. Moreover, the matching
yields a maximizing permutation in the latter tropical permanent.

Proof. Let {(i1, j1), . . . , (iq, jq)} be a matching between the hyperplane nodes
I = {i1, . . . , iq} and the coordinate nodes J = {j1, . . . , jq}. By definition of the
tangent graph, for all p ∈ [q], we have

|wipjp |+ xjp � |wipl|+ xl for all l ∈ [n+ 1] .
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Since x has no � entries, this implies
∑q

p=1 |wipjp | �
∑q

p=1 |wipσ(ip)| for any bijection

σ : I → J . Thus the tropical permanent of |W ′| is ∑q
p=1 |wipjp |, which is obtained

with the bijection ip �→ jp.
Consider a p ∈ [q]. By definition of the tangent graph |Wip | � x > �. Moreover,

we suppose that x has finite entries. Thus |wipjp | > �. As a consequence,
∑q

p=1 |wipjp |
is finite.

Lemma 3.3. Let W ∈ T
m×(n+1)
± and x ∈ Tn+1 be a point with no � entries. If the

tangent graph Gx contains an undirected cycle, then the matrix W contains a square
submatrix W ′ such that |W ′| is tropically singular and tper(|W ′|) > �. Moreover, if

the cycle is directed in the tangent digraph �Gx, then W ′ is tropically sign singular.
Proof. To prove the first statement, let j1, i1, j2, . . . , iq, jq+1 = j1 be an undirected

cycle in Gx. By Assumption 2 we have q � 2. Up to restricting to a subcycle, we may
assume that the cycle is simple, i.e., the indices i1, . . . , iq and j1, . . . , jq are pairwise
distinct. As a consequence, the maps σ : ip �→ jp and τ : ip �→ jp+1 for p ∈ [q] are
bijections. The sets of edges {(ip, jp) | p ∈ [q]} and {(ip, jp+1) | p ∈ [q]} are two
distinct matchings between the hyperplane nodes i1, . . . , ip and the coordinate nodes
j1, . . . , jp. Let W ′ be the submatrix of W formed from rows i1, . . . , iq and columns
j1, . . . , jq. By Lemma 3.2, the bijections σ and τ are both maximizing in tper(|W ′|).
Lemma 3.2 also shows that tper(|W ′|) > �.

Now suppose that the cycle is directed. Then, wipjp is tropically positive and
wipjp+1 is tropically negative for all p ∈ [q]. Consequently, the tropical signs of
wi1j1 � · · · � wiqjq and wi1j2 � · · · � wiqjq+1 differ by (−1)q. Moreover, τ is obtained
from σ by a cyclic permutation of order q, so their signs differ by (−1)q+1. As a
result, the terms tsign(σ)�wi1j1 �· · ·�wiqjq and tsign(τ)�wi1j2 �· · ·�wiqjq+1 have
opposite tropical signs. This completes the proof.

3.2. Cells of an arrangement of signed tropical hyperplanes. Our next
result shows how the tangent digraph can be used to get sufficient control on the lift
of the points in a tropical polyhedron to points in some Puiseux polyhedron, while
dealing mostly with inequality descriptions. Throughout this section we assume that
the extended matrix (A b) is tropically sign generic.

A tropical polyhedron P(A, b) is always the image under the valuation map
of a polyhedron over Puiseux series. Indeed, consider an internal representation
tconv(V )⊕ tpos(R) of P(A, b) (which exists by Theorem 2.4). The result of Develin
and Yu, [DY07, Proposition 2.1] implies that any lift V ,R of the sets V,R provides
a Puiseux polyhedron P = conv(V ) + pos(R) such that val(P) = P(A, b).

One can also lift a tropical polyhedron through its inequality representation. For
example, for any A ∈ Tm×n

± and b ∈ Tm
± satisfying Assumption 3, Proposition 2.6

provides Puiseux matrices A ∈ sval−1(A) and b ∈ sval−1(b) such that val(P(A, b)) =
P(A, b). However, the latter equality may fail for arbitrary lifts A ∈ sval−1(A) and
b ∈ sval−1(b).

Example 3.4. Consider the tropical polyhedron

(3.1) P = {x ∈ T2 | max(0, x2) � x1, max(0, x1) � x2, x1 � �, x2 � �} .

One possible lift of this representation in terms of inequalities is the Puiseux polyhe-
dron

(3.2) P = {x ∈ K2 | 2 + x2 � 2x1, 2 + x1 � 2x2, x1 � 0, x2 � 0} .
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0 x1

0

x2

t0
x1

t0

x2

0 x1

0

x2

Fig. 5. Left: the tropical polyhedron P described in (3.1); middle: the Puiseux polyhedron P
obtained by lifting the inequality representation of P as in (3.2); right: the set val(P), which is
stricly contained in P.

Since P is contained in the nonnegative orthant, we have val(P) ⊆ P . Here this
inclusion is strict. The set val(P) consists of all the nonpositive points in x ∈ T2 with
x1 � 0 and x2 � 0, while P additionally contains the half-line {(λ, λ) | λ > 0}. To
show this, suppose that there exists (x1,x2) ∈ P such that val(x1) = val(x2) = λ > 0.
Let u1t

λ and u2t
λ be the leading terms of x1 and x2, respectively. Then the inequality

2 + x1 � 2x2 implies that u1 � 2u2, while 2 + x2 � 2x1 imposes that u2 � 2u1, and
we obtain a contradiction as u1, u2 > 0. See Figure 5.

Theorem 3.5. Suppose that (A b) is tropically sign generic. Then the identity

val
(
P(A, b) ∩Kn

+

)
= P(A, b)

holds for any A ∈ sval−1(A) and b ∈ sval−1(b).
Proof. Let W = (A b). For any A ∈ sval−1(A) and b ∈ sval−1(b), let W = (A b).

We first prove the result for the cones C = P(W, �) and C = P(W , 0). The inclusion
val(C ∩ Kn+1

+ ) ⊂ C is trivial. Conversely, let x ∈ C. Up to removing the columns j
of W with xj = �, we can assume that x has no � entries. We construct a lift x of

x in the Puiseux cone C ∩ Kn+1
+ using the tangent digraph �Gx with hyperplane node

set I. We claim that it is sufficient to find a vector v ∈ Rn+1 satisfying the following
conditions: ∑

j∈arg max(|Wi|�x)
lc(wij)vj > 0 for all i ∈ I ,(3.3)

vj > 0 for all j ∈ [n+ 1] ,(3.4)

where W = (wij).
Indeed, given such a vector v, consider the lift x = (vjt

−xj )j of x. Clearly
x ∈ Kn+1

+ . If i ∈ I, then (3.3) ensures that the leading coefficient of Wix is positive.
If i �∈ I, two cases can occur. Either W+

i � x = W−i � x = � and thus Wix = 0.
Otherwise, W+

i � x > W−i � x, so the leading term of Wix is positive. We conclude
that Wix � 0 for all i ∈ [m]. This proves the claim.

Let F = (fij) ∈ RI×(n+1) be the real matrix defined by fij = lc(wij) when
j ∈ argmax(|Wi| � x) and fij = 0 otherwise. We claim that there exists v ∈ Rn+1

such that Fv > 0 and v > 0 or, equivalently, that the following polyhedron is not
empty:

{v ∈ Rn+1 | Fv � 1, v � 1}.
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By contradiction, suppose that the latter polyhedron is empty. Then, by Farkas’
lemma [Sch03, section 5.4], there exists α ∈ RI

+ and λ ∈ Rn+1
+ such that

F�α+ λ � 0,(3.5) ∑
i∈I

αi +
∑

j∈[n+1]

λj > 0.(3.6)

Note that if α is the 0 vector, then by (3.6) there exists a λj > 0 for some j ∈ [n+1],
which contradicts (3.5). Thus, the set K = {i ∈ I | αi > 0} is not empty. Let
J ⊂ [n+ 1] be defined by

J :=
⋃
i∈K

argmax(W+
i � x) =

⋃
i∈K

{j | fij > 0}.

By definition of the tangent digraph, every hyperplane node in K has an incoming arc
from a coordinate node in J . Moreover, for every j ∈ J , the inequality (3.5) yields∑

i∈I
fijαi � 0 .

This sum contains a positive term fijαi (by definition of J). Consequently, it must
also contain a negative term fkjαk. Equivalently, k ∈ K and fkj < 0, which means
that the coordinate node j has an incoming arc from the hyperplane node k. It
follows that the tangent digraph �Gx contains a directed cycle (through nodes K ∪ J).
Then, by Lemma 3.3, the matrix W contains a tropically sign singular submatrix with
tper(|W |) > �. This proves the claim.

Now we consider the polyhedron P(A, b). The inclusion val(P(A, b) ∩ Kn
+) ⊂

P(A, b) is still valid. Conversely, given x ∈ P(A, b), the point x′ = (x, �) ∈ Tn+1

belongs to the cone C. By the previous proof, there exists a lift x′ of x′ in C ∩
Kn+1

+ . Since val(x′n+1) = �, the point x = (x′1/x′n+1, . . . ,x
′
n/x

′
n+1) is well-defined.

Furthermore, x clearly satisfies val(x) = x and it belongs to P(A, b) ∩Kn
+.

Theorem 3.5 shows that valuation commutes with intersection for half-spaces
in general position. This is still true for mixed intersections of half-spaces and
(s-)hyperplanes. Similar to our notation for Puiseux polyhedra, we let

PI(A, b) :=
⋂
i∈I

H(Ai, bi) ∩ P(A, b).

Corollary 3.6. Suppose that (A b) is tropically sign generic. Then, for all
A ∈ sval−1(A), b ∈ sval−1(b), and I ⊂ [m],

(3.7) val
(
PI(A, b) ∩Kn

+

)
= PI(A, b) .

Proof. We first prove the result when I = [m]. In this case, the claim is about
the intersection of all (Puiseux or signed tropical) hyperplanes in the arrangement.
The first inclusion val

(⋂m
i=1 H(Ai, bi) ∩ Kn

+

) ⊂ ⋂m
i=1 H(Ai, bi) is trivial. Conversely,

let x ∈ ⋂m
i=1 H(Ai, bi). Note that there is nothing to prove if that intersection is

empty. The point x belongs to the tropical polyhedron P(A, b). By Theorem 3.5, x
admits a lift in the Puiseux polyhedron P(A, b) ∩ Kn

+. But observe that the choice
of tropical signs for the rows of (A b) is arbitrary. Indeed, if (A′ b′) is obtained
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1

2

3

(0, 0, 0)

(0, 2, 1)

(0, 1, −1)

[2, 1, 3]

[−,−, 123]

[2,−, 13]

[12,−, 3]

[123,−,−] [23, 1,−] [2, 13,−] [−, 123,−]

[−,
1,
23
]

[−,
12
, 3
]

Fig. 6. Unsigned (left) and signed (right) cell decompositions induced by the three tropical
s-hyperplanes in Example 3.7.

by multiplying some rows of (A b) by 	�, then (A′ b′) satisfies the conditions of
Theorem 3.5 and x belongs to P(A′, b′). Thus, for any sign pattern s ∈ {−1,+1}m,
there exists a lift xs of x which belongs to the Puiseux polyhedron P(As, bs) ∩ Kn

+,

where (As bs) =
( s1 . . .

sm

)
(A b).

Since the Puiseux points xs are nonnegative with valuation x, any point in their
convex hull is also nonnegative with valuation x. We claim that the convex hull
conv{xs | s ∈ {−1,+1}m} contains a point in the intersection

⋂m
i=1 H(Ai, bi). We

prove the claim by induction on the number m of hyperplanes.

If m = 1, we obtain two points x+ and x− on each side of the hyperplane
H(A1, b1), and it is easy to see that their convex hull intersects the hyperplane.
Now, suppose we have m � 2 hyperplanes. Let S+ (resp., S−) be the set of all sign
patterns s ∈ {−1,+1}m with sm = +1 (resp., sm = −1). By induction, the convex
hull conv{xs | s ∈ S+} contains a point x+ in the intersection of the first m − 1

hyperplanes
⋂m−1

i=1 H(Ai, bi). Similarly, conv{xs | s ∈ S−} contains a point x− in⋂m−1
i=1 H(Ai, bi). The points x+ and x− are on opposite sides of the last hyperplane

H(Am, bm), and thus their convex hull intersects H(Am, bm).

When I � [m], the previous proof can be generalized by considering only the sign
patterns s ∈ {−1,+1}m such that si = +1 for all i �∈ I.

By Corollary 3.6, the intersection of the nonnegative orthant Kn
+ with the cells of

the arrangement of Puiseux hyperplanes {H(Ai, bi)}i∈[m] induces a cellular decom-
position of Tn into tropical polyhedra. We call this collection of tropical polyhedra
the signed cells of the arrangement of tropical s-hyperplanes {H(Ai, bi)}i∈[m]. Notice
that the signed cells form an intersection poset thanks to Corollary 3.6.

The signed cell decomposition coarsens the cell decomposition introduced in
[DS04], which partitions Tn into ordinary polyhedra. Here we call the latter cells
unsigned. In particular, the one-dimensional signed cells are unions of (closed) one-
dimensional unsigned cells. However, some one-dimensional unsigned cells may not
belong to any one-dimensional signed cell. In the example depicted in Figure 3, this
is the case for the ordinary line segment [(1, 0, 1), (1, 1, 1)].
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Example 3.7. Consider the tropical polyhedral cone C in T3 given by the three
homogenous constraints

x2 � max(x1, x3),(3.8)

x1 � max(x2 − 2, x3 − 1),(3.9)

max(x1, x3 + 1) � x2 − 1 .(3.10)

This gives rise to an arrangement of three tropical s-hyperplanes in which C forms
one signed cell; see Figure 6 (right) for a visualization in the x1 = 0 plane. Each
tropical s-hyperplane yields a unique unsigned tropical hyperplane. An open sector
is one connected component of the complement of an unsigned tropical hyperplane.
The ordinary polyhedral complex arising from intersecting the open sectors of an
arrangement of unsigned tropical hyperplanes is the type decomposition of Develin and
Sturmfels [DS04]. In our example the type decomposition has 10 unsigned maximal
cells; in Figure 6 (left), we marked them with labels as in [DS04].

The apices of the unsigned tropical hyperplanes arising from the three constraints
above are p1 = (0, 0, 0), p2 = (0, 2, 1), and p3 = (0, 1,−1). The tropical convex hull of
p1, p2, and p3, with respect to min as the tropical addition, is the topological closure
of the unsigend bounded cell [2, 1, 3].

The signed cell C is precisely the union of the two maximal unsigned cells [2, 1, 3]
and [23, 1,−] together with the (relatively open) bounded edge of type [23, 1, 3] sitting
in between. The other signed cells come about by replacing “�” by “�” in some subset
of the constraints above. For instance, exchanging “�” by “�” in (3.8) and keeping the
other two yields the signed cell which is the union of the three unsigned cells [2,−, 13],
[12,−, 3], [123,−,−] and two (relatively open) edges in between. Altogether there are
six maximal signed cells in this case.

The proper notion of a “face” of a tropical polyhedron is a subject of active
research; see [Jos05] and [DY07]. Notice that, like the tangent digraphs, the signed
and unsigned cells depend on the arrangement of s-hyperplanes, while several different
arrangements may describe the same tropical polyhedron. For example,

(3.11) {x ∈ T2 | x1 ⊕ x2 � 1} = {x ∈ T2 | x1 � 1 and x2 � 1} .

Even if a canonical external representation exists (see [AK13]), it may not satisfy the
genericity conditions of Corollary 3.6. Thus this approach does not easily lead to a
meaningful notion of faces for tropical polyhedra.

Lacking a good notion of a “face,” the following two results introduce suitable
concepts which are good enough for our algorithms.

Proposition-Definition 3.8 (tropical basic points). Suppose that (A b) is
tropically sign generic and that Assumption 3 holds. Let I be a subset of [m] of
cardinality n such that tper(|AI |) > �. If the set PI(A, b) is not empty, it contains a
unique point, called a (feasible) tropical basic point of P(A, b).

The tropical basic points of P(A, b) are exactly the valuations of the basic points
of P(A, b) for any lift (A b) ∈ sval−1(A b).

Proof. This is a straightforward consequence of Corollary 3.6 and the definition
of basic points. Assumption 3 ensures that the sets of the form PI(A, b), for any
I ⊂ [m], are contained in Kn

+.

Remark 3.9. Alternatively, the fact that PI(A, b), if it is not empty, contains a
unique element, follows from the Cramer theorem in the symmetrized tropical semi-
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ring [Plu90], see Theorem 5.1 below. This also implies that the technical condition
that xj > � in Assumption 3 is not needed to derive the uniqueness of this element.

Proposition-Definition 3.10 (tropical edges). Suppose that (A b) is tropically
sign generic and that Assumption 3 holds. Let K be a subset of [m] of cardinality n−1
such that AK has a tropically sign nonsingular maximal minor. If the set PK(A, b) is
not empty, then it is called a (feasible) tropical edge.

The tropical edges of P(A, b) are exactly the valuation of the edges of P(A, b)
for any lift (A b) ∈ sval−1(A b).

Proof. The arguments are the same as in the proof of Proposition-
Definition 3.8.

The correspondence between basic points and edges with their tropical counter-
parts is illustrated in Figures 2 and 3, where basic points are depicted by red dots
and edges by black lines. These definitions are meaningful only if (A b) is tropically
sign generic. Otherwise, P(A, b) may have no basic points in the sense of Proposition-
Definition 3.8. For instance, the set {x ∈ T2 | x1 � x2 ⊕ 0 and x2 � x1 ⊕ 0} does not
contain such a point. Notice that our genericity assumptions imply that the tropical
edges arise as complete intersections of tropical half-spaces. In this sense Corollary 3.6
is a signed version of [SS04, Proposition 6.3].

A point x in a tropically convex set S is called an extreme point of S if, for any
y, z ∈ S, x ∈ tconv({y, z}) implies x = y or x = z.

Proposition 3.11. Suppose that (A b) is tropically sign generic and that As-
sumption 3 holds. Then the extreme points of P(A, b) are tropical basic points.

Proof. Consider any lift (A b) ∈ sval−1(A b). Then P(A, b) ⊂ Kn
+ by Assump-

tion 3, and val(P(A, b)) = P(A, b) by Corollary 3.6. The basic points of P(A, b)
are precisely its extreme points. As a result, we have P(A, b) = conv(P ) + pos(R),
where P is the set of basic points, conv(P ) its convex hull, and pos(R) is a pointed
polyhedral cone generated by a finite set R ⊂ Kn. Note that R ⊂ Kn

+ as P(A, b) ⊂
Kn

+. Thus, by [DY07, Proposition 2.1], we know that P(A, b) = tconv(val(P )) ⊕
tpos(val(R)). By Proposition-Definition 3.8, val(P ) is precisely the set of tropical
basic points of P(A, b). The tropical analogue of Milman’s converse of the Krein–
Milman theorem, which is proved, for instance, in Theorem 2 of [GK11] in the case
of polyhedra, implies that the set of extreme points of P(A, b) is included in val(P ).
It follows that every extreme point is basic.

Remark 3.12. While extreme points are basic points, the converse does not hold.
For example, (1, 1) is a basic point of the tropical polyhedron {x ∈ T2 | x1 �
1 and x2 � 1}, but it is not extreme.

The polars of sign cyclic polyhedral cones studied in [AGK11] are also examples in
which not every basic point is extreme. Actually, Theorems 2 and 6 in that reference
provide combinatorial characterizations of extreme and basic points in terms of lattice
paths. A comparison of both characterizations shows that the lattice paths are more
constrained in the case of extreme points.

4. Pivoting between two tropical basic points. In this section, we show
how to pivot from a tropical basic point to another, i.e., to move along a tropical
edge between the two points, in a tropical polyhedron P(A, b), where A ∈ Tm×n

±
and b ∈ Tm± . Under some genericity conditions, by Corollary 3.6 this is equivalent
to the same pivoting operation in an arbitrary lift P(A, b) over Puiseux series of the
considered tropical polyhedron, whereA ∈ sval−1(A) and b ∈ sval−1(b). However, our
method relies only on the tropical matrix A and the tropical vector b. The complexity
of this tropical pivot operation will be shown to be O(n(m+ n)), which is analogous
to the classical pivot operation.
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Pivoting is more easily described in homogeneous terms. For W = (A b) we
consider the tropical cone C = P(W, �), seen as a subset of the tropical projective

space TPn. This cone is defined as the intersection of the half-spaces H�
i := {x ∈

TPn | W+
i � x � W−i � x} for i ∈ [m]. Similarly, we denote by Hi the s-hyperplane

{x ∈ TPn | W+
i � x = W−i � x}. We also let CI := PI(W, �) for any subset I ⊂ [m].

Throughout this section, we make the following assumptions.
Assumption 4. The matrix W is tropically generic.
Assumption 5. Every point in C \ {(�, . . . , �)} has finite coordinates.
Assumption 4 is a tropical version of primal nondegeneracy. It is strictly stronger

than the condition that W = (A b) is tropically sign generic used in the previous
section, and hence, in particular, we can make use of Corollary 3.6. Under Assump-
tion 5, which is strictly stronger than Assumption 3, the tropical polyhedron P(A, b)
is a bounded subset of Rn. To see this, consider C as a subset of Tn+1. As C is a
closed set, Assumption 5 implies that there exists a vector 	 ∈ Rn+1 such that x � 	
for all x ∈ C. Let tconv(P )⊕ tpos(R) be the internal description of P(A, b) provided
by Theorem 2.4. If R contains a point r, then it is easy to verify that (r, �) lies in
C, which contradicts Assumption 5. Since every p ∈ P belongs to P(A, b), the point
(p, �) belongs to C, and thus pj � lj for all j ∈ [n]. It follows that P(A, b) = tconv(P )
is a bounded subset of Rn.

Assumptions 4 and 5 are two of the three conditions required for a tropical linear
program to be standard in the sense of Theorem 1.1.

As a consequence, the Puiseux polyhedron P(A, b) is also bounded and contained
in the interior of Kn

+.
Through the bijection given in (2.4), the tropical basic point associated with a

suitable subset I ⊂ [m] is identified with the unique projective point xI ∈ TPn in the
intersection CI . In addition, when pivoting from the basic point xI , we move along a
tropical edge EK := CK defined by a set K = I \ {iout} for some iout ∈ I.

By Proposition-Definitions 3.8 and 3.10, a tropical edge EK is a tropical line
segment tconv(xI , xI′

). The other endpoint xI′ ∈ TPn is a basic point for I ′ =
K∪{ient}, where ient ∈ [m]\I. So, the notation iout and ient refers to the indices leaving
and entering the set of active constraints I which is maintained by the algorithm.
Notice that the latter set corresponds to the nonbasic indices in the classical primal
simplex method, so that the indices entering/leaving I correspond to the indices
leaving/entering the usual basis, respectively.

As a tropical line segment, EK is known to be the concatenation of at most n
ordinary line segments.

Proposition 4.1 (see [DS04, Proposition 3]). Let EK = tconv(xI , xI′
) be a

tropical edge. Then there exists an integer q ∈ [n] and q + 1 points ξ1, . . . , ξq+1 ∈ EK
such that

EK = [ξ1, ξ2] ∪ · · · ∪ [ξq, ξq+1], where ξ1 = xI and ξq+1 = xI′
.

Every ordinary segment is of the form

(4.1) [ξp, ξp+1] = {xp + λeJp | 0 � λ � μp},
where the length of the segment μp is a positive real number, Jp ⊂ [n+1], and the jth
coordinate of the vector eJp is equal to 1 if j ∈ Jp and to 0 otherwise. Moreover, the
sequence of subsets J1, . . . , Jq satisfies

∅ � J1 � · · · � Jq � [n+ 1].



TROPICALIZING THE SIMPLEX ALGORITHM 773

The vector eJp is called the direction of the segment [ξp, ξp+1]. The intermedi-
ate points ξ2, . . . , ξq are called breakpoints. In the tropical polyhedron depicted in
Figure 3, breakpoints are represented by white dots.

Note that in the tropical projective space TPn, the directions eJ and −e[n+1]\J

coincide. Both correspond to the direction of Tn obtained by removing the (n+ 1)th
coordinate of either −e[n+1]\J if (n+ 1) ∈ J or eJ otherwise.

4.1. Overview of the pivoting algorithm. We now provide a sketch of the
pivoting operation along a tropical edge EK . Geometrically, the idea is to traverse the
ordinary segments [ξ1, ξ2], . . . , [ξq, ξq+1] of EK . At each point ξp, for p ∈ [q], we first
determine the direction vector eJq , then move along this direction until the point ξp+1

is reached. As the tangent digraph at a point x ∈ C encodes the local geometry of the
tropical cone C around x, the direction vectors can be read from the tangent digraphs.
Moreover, the tangent digraphs are acyclic under Assumption 4. This imposes strong
combinatorial conditions on the tangent digraph, which, in turn, allows us to easily
determine the feasible directions.

For the sake of simplicity, let us suppose that the tropical edge consists of two
consecutive segments [ξ, ξ′] and [ξ′, ξ′′], with direction vectors eJ and eJ

′
, respectively.

Starting at the basic point ξ = xK∪{iout}, we shall prove below that, at every basic
point, the tangent digraph is a spanning tree where every hyperplane node has exactly
one incoming arc and one outgoing arc. In other words, for every i ∈ K ∪ {iout}, the
sets argmax(W+

i �ξ) and argmax(W−i �ξ) are both reduced to a singleton, say, {j+i }
and {j−i }. We want to “get away” from the s-hyperplane Hiout . Since the direction
vector eJ is a 0/1 vector, the only way to do so is to increase the variable indexed by
j+iout while not increasing the component indexed by j−iout . Hence, we must have j+iout ∈ J

and j−iout �∈ J . While moving along eJ , we also want to stay inside the s-hyperplane Hi

for i ∈ K. Hence, if j+i ∈ J for some i ∈ K, we must also have j−i ∈ J . Similarly, if
j+i �∈ J , then we must also have j−i �∈ J . Removing the hyperplane node iout from the

tangent digraph �Gξ provides two connected components; the first one, C+, contains
j+iout , and the second one, C−, contains j−iout . From the discussion above, it follows that
the set J consists of the coordinate nodes in C+.

When moving along eJ from ξ, we leave the s-hyperplane Hiout . Consequently, the
hyperplane node iout “disappears” from the tangent digraph. It turns out that this is
the only modification that happens to the tangent digraph. More precisely, at every
point in the open segment ]ξ, ξ′[, the tangent digraph is the graph obtained from �Gξ

by removing the hyperplane node iout and its two incident arcs. We shall denote this
digraph by �G]ξ,ξ′[. By construction, �G]ξ,ξ′[ is acyclic and consists of two connected
components, and every hyperplane node has one incoming and one outgoing arc.

We shall move from ξ along eJ until “something” happens to the tangent digraph.
In fact only two things can happen, depending on whether ξ′ is a breakpoint or a basic
point. As we supposed ξ′ to be a breakpoint, a new arc anew will “appear” in the
tangent digraph, i.e., �Gξ′ = �G]ξ,ξ′[ ∪ {anew}. Let us sketch how the arc anew can be
found. We denote anew = (jnew, k), where jnew is a coordinate node and k ∈ K is a
hyperplane node. We shall see that jnew must belongs to J (i.e., the component C+),
while k must belongs to the component C−.

Hence, the arc anew “reconnects” the two components C+ and C− (see Figure 8).

Since k had one incoming and one outgoing arc in �G]ξ,ξ′[, it has exactly three incident

arcs in �Gξ′ . One of them is anew = (jnew, k); the second one, aold = (jold, k), has the
same orientation as anew; and the third one, a′ = (k, l), has an orientation opposite
to anew and aold.
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Let us now find the direction vector eJ
′
of the second segment [ξ′, ξ′′]. Consider the

hyperplane node k with the three incident arcs anew, aold, and a′. By Proposition 4.1,
we know that J ⊂ J ′; hence we must increase the variable jnew. Since we want to stay
inside the hyperplane Hk, it follows that we must also increase the variable indexed by
	. On the other hand, we do not increase the variable jold. As before, all hyperplane
nodes i ∈ K \ {k} have exactly one incoming and one outgoing arc. Removing the arc
aold from the graph provides two connected components; the first one, C′+, contains
the coordinate nodes jnew and 	 as well as the hyperplane node k, while the second one,
C′−, contains jold. The new direction set J ′ is given by the coordinate nodes in C′+.

The tangent digraph in the open segment ]ξ′, ξ′′[ is again constant and is defined

by �G]ξ′,ξ′′[ = �Gξ′ \ {aold}. Hence, �G]ξ′,ξ′′[ is an acyclic graph, with two connected
components C′+ and C′−, where every hyperplane node has one incoming and one
outgoing arc.

The basic point ξ′′ is reached when a new s-hyperplane ient �∈ K is hit. This
happens when the hyperplane node ient “appears” in the tangent digraph, along with
one incoming (j+, ient) and one outgoing arc (ient, j

−). Observe that we must have
j− ∈ J and j+ �∈ J . It follows that the two components C′+ and C′− are reconnected
by adding ient and its two incident arcs.

In section 4.2, we prove that the tangent digraphs satisfy the above-mentioned
characterization and that they provide the feasible directions. In section 4.3, we
characterize the lengths of the ordinary segments, that is, we deduce when a arc or
a hyperplane node “appears” in the tangent digraphs. In section 4.4, we prove that
the tangent digraphs evolve as described above. It allows us to incrementally update
the information needed to find the directions and lengths of the segments. This will
finally provide an efficient implementation of the pivoting operation.

4.2. Directions of ordinary segments. Given a point x in a tropical cone D,
we say that the direction eJ , with ∅ � J � [n + 1], is feasible from x in D if there
exists μ > 0 such that the ordinary segment {x+ λeJ | 0 � λ � μ} is included in D.
The following lemma will be helpful to prove the feasibility of a direction.

Lemma 4.2. Let x ∈ Rn+1. Then, the following properties hold:
(i) If x belongs to H�

i \ Hi, every direction is feasible from x in H�
i .

(ii) If x belongs to Hi, the direction eJ is feasible from x in the half-space H�
i if

and only if argmax(W+
i � x) ∩ J �= ∅ or argmax(W−i � x) ∩ J = ∅.

(iii) If x belongs to Hi, the direction eJ is feasible from x in the s-hyperplane Hi

if and only if the sets argmax(W+
i � x) ∩ J and argmax(W−i � x) ∩ J are

both empty or both nonempty.
Proof. The first point is immediate. To prove the last two points, observe that if

x ∈ Hi, then W+
i � x = W−i � x > �, thanks to x ∈ Rn+1 and Assumption 1. Then,

for λ > 0 sufficiently small, we have

W+
i � (x + λeJ) =

{
(W+

i � x) + λ if argmax(W+
i � x) ∩ J �= ∅ ,

W+
i � x otherwise ,

and the same property holds for W−i � x.
We propose to determine feasible directions with tangent graphs. It turns out

that tangent graphs in a tropical edge have a very special structure. Indeed, under
Assumption 4, these graphs do not contain any cycle by Lemma 3.3. In other words,
they are forests: each connected component is a tree. Hence we have the equality

(4.2) number of nodes = number of edges + number of connected components .

Note that [DS04, Proposition 17] determines that number of connected components.
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We introduce some additional basic notions and notation on directed graphs.
Two nodes of a digraph are said to be weakly connected if they are connected in the
underlying undirected graph. Given a directed graph �G and a set A of arcs between
some nodes of �G, we denote by �G ∪ A the digraph obtained by adding the arcs of A.
Similarly, if A is a subset of arcs of �G, we denote by �G \A the digraph where the arcs

of A have been removed. By extension, if N is a subset of nodes of �G, then �G \ N is
defined as the digraph obtained by removing the nodes in N and their incident arcs.
The degree of a node of �G is defined as the pair (p1, p2), where p1 and p2 are the
numbers of incoming and outgoing arcs incident to the node.

Proposition 4.3. Let x be a point in a tropical edge EK . Then, exactly one of
the following cases arises:

(C1) x is a basic point for the basis K ∪{iout}, where iout ∈ [m]\K. The tangent
graph Gx at x is a spanning tree, and the set of hyperplane nodes is K ∪ {iout}. In

the tangent digraph �Gx, every hyperplane node has degree (1, 1). Let J be the set of
coordinate nodes weakly connected to the unique node in argmax(W+

iout
� x) in the

digraph �Gx \ {iout}. The only feasible direction from x in EK is eJ .
(C2) x is in the relative interior of an ordinary segment. The tangent graph Gx

is a forest with two connected components, and the set of hyperplane nodes is K. In
the tangent digraph �Gx, every hyperplane node has degree (1, 1). Let J be the set of
coordinate nodes in one of the components. The two feasible directions from x in EK
are eJ and −eJ = e[n+1]\J .

(C3) x is a breakpoint. The tangent graph Gx is a spanning tree, and the set of

hyperplane nodes is K. In the tangent digraph �Gx, there is exactly one hyperplane
node k with degree (2, 1) or (1, 2), while all other hyperplane nodes have degree (1, 1).
Let a and a′ be the two arcs incident to k with same orientation. Let J and J ′ be the
set of coordinate nodes weakly connected to k in �Gx \ {a} and �Gx \ {a′}, respectively.
The two feasible directions from x in EK are eJ and eJ

′
.

Proof. Since x has finite entries, the graph Gx contains exactly n+ 1 coordinate
nodes. Let n′ be the number of hyperplane nodes in Gx. Consider any i ∈ K. Since x
is contained in the s-hyperplane Hi and x ∈ Rn+1, we have W+

i � x = W−i � x > �.
Thus K is contained in the set of hyperplane nodes. Therefore n′ � n−1. As there is
at least one connected component, there is at most n+n′ edges by (4.2). In addition,
each hyperplane node is incident to at least two edges, so that there is at least 2n′

edges in Gx. We deduce that n′ � n. As a result, by using (4.2), we can distinguish
three cases:

(i) n′ = n, in which case there is only one connected component in Gx and exactly

2n edges. In addition, all the hyperplane nodes have degree (1, 1) in �Gx.
(ii) n′ = n − 1, the graph Gx contains precisely two connected components and

2n′ − 2 edges. As in the previous case, every hyperplane node has degree
(1, 1) in �Gx.

(iii) n′ = n − 1 and Gx has one connected component. In this case, there are

2n′ − 1 edges. In �Gx, there is exactly one hyperplane node with degree (2, 1)
or (1, 2), and all the other hyperplane nodes have degree (1, 1).

We next show that these cases correspond to the ones in our claim.
Case (i). Since n′ = n, the set of hyperplane nodes is of the form K ∪ {iout}

for some iout �∈ K. Moreover, Gx is a spanning tree. As a consequence, it contains
a matching between the coordinate nodes [n] and the hyperplane nodes K ∪ {iout}.
Such a matching can be constructed as follows. Let �G′ be the digraph obtained by
directing the edges of Gx toward the coordinate node n + 1. In this digraph, every



776 ALLAMIGEON, BENCHIMOL, GAUBERT, AND JOSWIG

coordinate node j ∈ [n] has exactly one outgoing arc to a hyperplane node σ(j),
as there is exactly one path from j to n + 1 in the spanning tree Gx. Moreover,
every hyperplane node i has exactly one incoming arc and one outgoing arc in �G′.
Indeed, i is incident to two arcs in �G′, and exactly one of them leads to the path to
coordinate node n + 1. We conclude that σ(j) �= σ(j′) when j �= j′. Thus the set
of edges {(j, σ(j)) | j ∈ [n]} forms the desired matching. Then, by Lemma 3.2, the
submatrix W ′ of W formed from the columns in [n] and the rows in K ∪{iout} satisfy
tper(|W ′|) > �. Furthermore, W ′ = AK∪{iout}. As a consequence, x is a basic point
for the set K ∪ {iout}.

Since the graph Gx is a spanning tree where the hyperplane node iout is not a leaf,
removing iout from Gx provides two connected components C+ and C−, containing
the coordinate nodes in argmax(W+

iout
� x) and in argmax(W−iout � x), respectively.

Let J be the set of the coordinate nodes in C+.

We claim that the direction eJ is feasible from x in EK . Indeed, if the hyperplane
node i ∈ K belongs to C+, then argmax(W+

i � x) ⊂ J and argmax(W−i � x) ⊂ J .
In contrast, if the node i ∈ K belongs to C−, we have argmax(W+

i � x) ∩ J =
argmax(W−i � x)∩J = ∅. By Lemma 4.2, this shows that the direction eJ is feasible

in all s-hyperplanes Hi with i ∈ K. It is also feasible in the half-space H�
iout

, since

x ∈ Hiout and argmax(W+
iout

� x) ⊂ J . Finally, for all i �∈ K ∪ {iout}, the point x

belongs to H�
i \ Hi. Indeed, if x ∈ Hi, then i would be a hyperplane node. Thus, by

Lemma 4.2, the direction eJ is feasible in H�
i . As EK = (∩i∈KHi) ∩ (∩i
∈KH�

i ), this
proves the claim.

Since x is a basic point it admits exactly one feasible direction in EK . Thus eJ is
the only feasible direction from x in EK .

Case (ii). In this case, Gx is a forest with two components C1 and C2, and K is
precisely the set of hyperplane nodes. Let J be the set of coordinate nodes in C1. Then
Lemma 4.2 shows that the direction eJ is feasible from x in EK . Indeed, the point x
belongs to H�

i \Hi for i �∈ K. In addition, for all i ∈ K, the sets argmax(W+
i �x)∩J

and argmax(W−i � x) ∩ J are both nonempty if i belongs to C1, and both are empty
otherwise.

Symmetrically, the direction e[n+1]\J = −eJ is also feasible in EK , as [n+1] \J is
the set of coordinate nodes in the component C2. It follows that x is in the relative
interior of an ordinary segment.

Case (iii). The graph Gx is a spanning tree. Let k be the unique half-space node

of degree (2, 1) or (1, 2) in �Gx and a, a′ the two arcs incident to k with the same
orientation.

Then �Gx \ {a} consists of two weakly connected components C1 and C2. Without
loss of generality, we assume that k belongs to C1. Let J be the set of coordinate
nodes in C1. We now prove that eJ is feasible from x in EK , thanks to Lemma 4.2.
Indeed, x ∈ H�

i \ Hi for i �∈ K. In addition, if i ∈ K, the sets argmax(W+
i � x) ∩ J

and argmax(W−i � x) ∩ J are both nonempty if i ∈ C1, and both empty if i ∈ C2.
Thus, eJ is feasible in the s-hyperplane Hi.

Similarly, let J ′ be the set of coordinate nodes weakly connected to k in �Gx \{a′}.
Then the direction eJ

′
is also feasible. Note that J and J ′ are neither equal nor

complementary. Thus, there are two distinct and nonopposite directions which are
feasible from x in EK , which implies that x is a breakpoint.
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Example 4.4. Figure 4 depicts the tangent digraphs at every point of the trop-
ical edge EK for K = {H1,H2}, and this illustrates Proposition 4.3. The set I =
{H1,H2,H3} of constraints determines the basic point xI = (1, 0, 0). From its tangent
digraph, we deduce that the initial ordinary segment of the edge EK is directed by
e{2}.

The tangent digraph at a point in ](1, 1, 0), (1, 0, 0)[ has exactly two weakly con-
nected components. They yield the feasible directions e{2} and e{1,3,4}, which corre-
spond to the vectors (0, 1, 0) and (0,−1, 0) of T3.

At the breakpoint (1, 1, 0), the tangent digraph is weakly connected, and the
hyperplane node H1 has degree (2, 1). Removing the arc from coordinate node 4
to H1 provides two weakly connected components, respectively, {1, 2} ∪ {H1} and
{3, 4} ∪ {H2}. The coordinate nodes of the component containing H1 yields the
feasible direction e{1,2}. Similarly, it can be verified that the other feasible direction,
obtained by removing the arc from coordinate node 2, is the vector e{1,3,4}.

4.3. Moving along an ordinary segment. In this section we provide exact
details on how to obtain the next point ξ′ from a given point ξ and a direction given
in terms of the set J . We determine whether ξ′ is a basic point or a breakpoint, and
we determine the length μ of the resulting segment [ξ, ξ′] = {ξ + λeJ | 0 � λ � μ}
of the tropical edge EK . The metric results from this section will be interpreted in
terms of tangent digraphs in the next section.

For all i ∈ [m], we define

λ+
i (ξ, J) := (W+

i � ξ)−max
j∈J

(w+
ij + ξj) ,

λ−i (ξ, J) := (W+
i � ξ)−max

j∈J
(w−ij + ξj) ,

where W = (wij). When it is clear from the context, λ+
i (ξ, J) and λ−i (ξ, J) will be

simply denoted by λ+
i and λ−i . By Assumptions 1 and 5, we have W+

i � ξ > �. In
contrast, maxj∈J (w+

ij + ξj) and maxj∈J (w−ij + ξj) may be equal to −∞, in which case

we use the convention −(−∞) = +∞, and so λ+
i = +∞ and λ−i = +∞, respectively.

When maxj∈J (w+
ij + ξj) and maxj∈J (w−ij + ξj) are finite, the scalars λ+

i and λ−i are
nonnegative real numbers.

Let xλ := ξ + λeJ . Observe that λ+
i is the smallest λ � 0 such that W+

i � ξ =
w+

ij+xλ
j for some j ∈ J . Similarly, λ− is the smallest λ � 0 such thatW+

i �ξ = w−ij+xλ
j

for some j ∈ J . More precisely, we have

W+
i � xλ =

{
W+

i � ξ if 0 � λ � λ+
i ,

(W+
i � ξ) + λ− λ+

i if λ � λ+
i ,

W−i � xλ =

{
W−i � ξ if 0 � λ � β−i ,

(W+
i � ξ) + λ− λ−i if λ � β−i ,

where β−i = λ−i + (W−i � ξ) − (W+
i � ξ). In particular β−i � λ−i and equality holds

when i ∈ K. The evolution of W+
i � (ξ+λeJ ) versus W−i � (ξ+λeJ ) is visualized in

Figure 7.
The endpoint ξ′ is either a breakpoint or a basic point. We will prove that it is a

basic point if a new hyperplane node ient �∈ K “appears” in the tangent digraph. In
that case the index ient must belong to the following set:

Ent(ξ, J) := {i ∈ [m] \K | argmax(W+
i � ξ) ∩ J = ∅} .
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0 λ+
i

λβ−i0 λ−i λ

W+
i � ξ

W−i � ξ

0 λ+
i

λβ−i0 λ−i λ

W+
i � ξ

W−i � ξ

Fig. 7. Evolution of W+
i � (ξ + λeJ ) (in red) and W−

i � (ξ + λeJ ) (in black) with λ � 0 for

i ∈ Ent and λ−
i < λ+

i (left) or λ−
i > λ+

i (right).

We shall see that ξ′ is a breakpoint if a hyperplane node k ∈ K “acquires” a new arc
and thus becomes of degree (2, 1) or (1, 2). Such a node k must be an element of the
following set:

Br(ξ, J) := {i ∈ K | argmax(W+
i � ξ) ∩ J = ∅ and argmax(W−i � ξ) ∩ J = ∅} .

We already mentioned that the notation ient (and so, Ent(ξ, J)) and iout is chosen by
analogy with the entering or leaving indices in the classical simplex method. Note
that the set Br(ξ, J) does not have any classical analogue. It represents intermediate
indices which shall be examined before a leaving index is found.

When this does not bear the risk of confusion, we simply use the notation Br and
Ent.

Proposition 4.5. Let {ξ+λeJ | 0 � λ � μ} be an ordinary segment of a tropical
edge EK . The following properties hold:

(i) The length μ of the segment is the greatest scalar λ � 0 satisfying the following
conditions:

(4.3)
λ � min(λ+

i , λ
−
i ) for all i ∈ Br ,

λ � λ−i for all i ∈ Ent such that λ−i � λ+
i .

(ii) If μ = λ−ient for ient ∈ Ent, then ξ+μeJ is a basic point for the basis K∪{ient}.
(iii) If μ = min(λ+

k , λ
−
k ) for k ∈ Br, then ξ + μeJ is a breakpoint.

Proof. Let xλ := ξ + λeJ for all λ � 0.
We claim that xλ belongs to EK if λ satisfies (4.3). To that end, we first show

that xλ ∈ Hi for i ∈ K. Consider an i ∈ Br. Then β−i = λ−i . Therefore, for all
0 � λ � min(λ+

i , λ
−
i ) we have xλ ∈ Hi since

W+
i � xλ = W+

i � ξ = W−i � ξ = W−i � xλ .

Let i ∈ K \Br. Then by Lemma 4.2, argmax(W+
i � ξ)∩ J and argmax(W−i � ξ)∩ J

are both nonempty. Thus λ+
i = λ−i = β−i = 0. Therefore, xλ ∈ Hi for all λ � 0 since

in this case

W+
i � xλ = (W+

i � ξ) + λ = W−i � xλ .

We now examine the half-spaces H�
i , where i ∈ [m] \ K. If i �∈ Ent, then

argmax(W+
i � ξ) ∩ J �= ∅. Consequently, λ+

i = 0. Thus xλ ∈ H�
i for all λ � 0

as we have
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W+
i � xλ = (W+

i � ξ) + λ � max(W−i � ξ, (W+
i � ξ) + λ− λ−i ) = W−i � xλ .

If i ∈ Ent and 0 � λ � min(λ+
i , λ

−
i ), then xλ ∈ H�

i . Indeed,

W+
i � xλ = W+

i � ξ � max(W−i � ξ, (W+
i � ξ) + λ− λ−i ) = W−i � xλ .

Now if further λ+
i < λ−i , then, for λ � λ+

i , we have

W+
i � xλ = (W+

i � ξ) + λ− λ+
i � max(W−i � ξ, (W+

i � ξ) + λ− λ−i ) = W−i � xλ .

We conclude that if i ∈ Ent and λ+
i < λ−i , then xλ ∈ H�

i for all λ � 0.

Second, we claim that the solution set of the inequalities (4.3) admits a greatest
element λ∗ ∈ R. By contradiction, suppose that xλ ∈ EK for all λ � 0. Recall that eJ

and −e[n+1]\J coincide as elements of TPn. Consequently the half-ray {ξ−λe[n+1]\J |
λ � 0} is contained in EK and thus in C. Since C is closed, it contains the point
y ∈ Tn+1 defined by yj = ξj if j ∈ J and yj = � otherwise. As J � [n + 1], this
contradicts Assumption 5.

Third, we claim that λ∗ = μ. To prove the claim it is sufficient to show that xλ∗

is either a breakpoint or a basic point of EK . We distinguish three cases:
(a) λ∗ = λ−i for some i ∈ Ent. Then W−i � xλ∗

= W+
i � ξ. Moreover λ∗ � λ+

i

and thus W+
i � xλ∗

= W+
i � ξ. This implies that W+

i � xλ∗
= W−i � xλ∗

> �.
As a consequence, i �∈ K is a hyperplane node in the tangent graph Gxλ∗ . By
Proposition 4.3, we conclude that xλ∗

is a basic point for the set K ∪ {i}.
(b) λ∗ = λ+

i � λ−i for some i ∈ Br. Then, observe that

(4.4) argmax(W+
i � xλ∗

) = argmax(W+
i � ξ) ∪ argmax

j∈J
(w+

ij + ξj) .

The two sets on the right-hand side of (4.4) are nonempty and disjoint, since
i ∈ Br. Thus argmax(W+

i � xλ∗
) contains at least two distinct elements.

Moreover, xλ∗ ∈ EK by the discussion above, and thus i ∈ K appears as a
hyperplane node in �Gxλ∗ . Consequently, the hyperplane node i has at least

two incoming arcs in �Gxλ∗ . We deduce by Proposition 4.3 that the degree of

the hyperplane node i in �Gxλ∗ is (2, 1) and that xλ∗
is a breakpoint.

(c) λ∗ = λ−i � λ+
i for some i ∈ Br. By the same argument as above, argmax(W−i �

xλ∗
) contains at least two distinct elements. This implies that xλ∗

is a break-
point and that the hyperplane node i has degree (1, 2).

Note that the arguments above also prove Proposition 4.5(ii) and (iii).
Remark 4.6. When ξ + μeJ is a breakpoint, the proof of Proposition 4.5 ensures

that the hyperplane node k in the tangent digraph �Gξ+μeJ has degree (2, 1) if μ = λ+
k

or (1, 2) if μ = λ−k . In particular, this proves that μ is equal to only one scalar among
the λ−i , λ

+
k and λ−k , where i ∈ Ent and k ∈ Br.

Example 4.7. We now have all the ingredients required to perform a tropical
pivot. Feasible directions are given by Proposition 4.3, while Proposition 4.5 provides
the lengths of ordinary segments and the stopping criterion.

Let us illustrate this on our running example. We start from the basic point
(4, 4, 2) (i.e., the point (4, 4, 2, 0) in TP3) given by I = {H1,H2,H5}, and we move
along the edge EK , where K = {H1,H2}. The tangent digraph at (4, 4, 2) is depicted
in the bottom right of Figure 4. By Proposition 4.3(C1), the initial direction is
−e{1,2,3}, i.e., J = {4}. By definition, Br is formed by the hyperplane nodes which are
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not adjacent to the coordinate node 4 in the tangent digraph. Hence, Br = {H1,H2}.
Moreover, in the homogeneous setting, the inequalities H3 and H4 read

x2 � x4,

x1 � max(x4, x2 − 3).

In both of them, the maximum in the left-hand side is reduced to one term, and it
does not involve x4. Thus, Ent = {H3,H4}. The reader can verify that

λ+
H1

= 3− 0 = 3, λ−H1
= 3− (−∞) = +∞,

λ+
H2

= 2− (−∞) = +∞, λ−H2
= 2− 0 = 2,

λ+
H3

= 4− (−∞) = +∞, λ−H3
= 4− 0 = 4,

λ+
H4

= 4− (−∞) = +∞, λ−H4
= 4− 0 = 4.

As a result, the length of the initial ordinary segment is μ = 2, given by μ = λ−H2
�

λ+
H2

. As H2 ∈ Br, the point (4, 4, 2)− 2e{1,2,3} = (2, 2, 0) is a breakpoint.

The next feasible direction is −e{1,2} as J = {3, 4}. We still have Ent = {H3,H4}
but now Br = {H1}. The length of this ordinary segment is μ = 1 = λ+

H1
. Conse-

quently, we reach the breakpoint (1, 1, 0) = (2, 2, 0)− 1e{1,2}, where the next feasible
direction, −e{2}, is given by J = {1, 3, 4}. The set Br is now empty and Ent = {H4}.
Clearly, μ = 1 = λ−H4

. As H4 ∈ Ent, the next endpoint (1, 0, 0) = (1, 1, 0)− 1e{2} is a
basic point.

4.4. Efficient implementation of the pivoting operation. Our implementa-
tion of the pivoting operation relies on the incremental update of the tangent digraph
along the tropical edge. This avoids computing from scratch the tangent digraph at
each breakpoint, in which case the time complexity of the pivoting operation would
be naively in O(n2m).

In the previous section we described the “travel” from a given point ξ into the
direction given by J to the next point, called ξ′. Our key observation is that the
tangent digraph is constant in the open segment ]ξ, ξ′[ and that it “acquires” a new
arc or a new hyperplane node when the endpoint ξ′ is reached. This is made precise
in the lemma below and the subsequent proposition.

Lemma 4.8. Let [ξ, ξ′] = {ξ + λeJ | 0 � λ � μ} be an ordinary segment of

EK . Every point in ]ξ, ξ′[ has the same tangent digraph �G]ξ,ξ′[, which is equal to the

intersection of �Gξ and �Gξ′ .

Proof. Let xλ := ξ+ λeJ . By Proposition 4.3, the hyperplane node set of �Gxλ for
λ ∈ ]0, μ[ is equal to K. If ξ and ξ′ are both basic points, the sets of hyperplane nodes
in their tangent digraphs are respectively of the form K∪{iout} and K ∪{ient}, where
iout, ient �∈ K, and iout �= ient. If one of the two endpoints, say, ξ, is a breakpoint,
the hyperplane node set of its tangent digraph is K, while the hyperplane node set of
�Gξ′ contains K. In all cases, the intersection of the hyperplane node sets of �Gξ and
�Gξ′ is equal to K. Moreover, the coordinate node set of �Gx is equal to [n+ 1] for all
x ∈ [ξ, ξ′].

Let i ∈ Br. If 0 < λ < μ, then in particular λ < min(λ+
i , λ

−
i ) by Proposition 4.5.

Hence,

(4.5) argmax(W±i � xλ) = argmax(W±i � ξ) .

Besides, argmax(W±i � ξ′) = argmax(W±i � xμ) is a superset of argmax(W±i � ξ),
and the inclusion is strict when μ is equal to the corresponding scalar λ+

i or λ−i .
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k

aold anew

�Gξ′

k

aold

�G]ξ,ξ′[

J
k

anew

�G]ξ′,ξ′′[

J ′

Fig. 8. Illustration of Proposition 4.9(ii) and Remark 4.10, with a sequence of tangent digraphs
around a breakpoint ξ′ between two consecutive segments [ξ, ξ′] ∪ [ξ′, ξ′′]. The direction of [ξ, ξ′],
from ξ to ξ′, is given by the set of coordinate nodes J, indicated in green. The direction of the
second segment, from ξ′ to ξ′′, is governed by J ′ depicted in orange.

Similarly, let i ∈ K \Br. By Lemma 4.2, argmax(W+
i �ξ)∩J and argmax(W−i �

ξ) ∩ J are both nonempty. Moreover, for all λ > 0, we have

(4.6) argmax(W±i � xλ) = argmax(W±i � ξ) ∩ J .

In particular, argmax(W±i � ξ′) = argmax(W±i � ξ) ∩ J .
Equations (4.5) and (4.6) ensure that argmax(W±i � xλ) = argmax(W±i � ξ) ∩

argmax(W±i � ξ′) for all i ∈ K and λ ∈ ]0, μ[. This shows that the arc set of �Gxλ is

precisely the intersection of the arc sets of �Gξ and �Gξ′ .
Proposition 4.9. Let [ξ, ξ′] = {ξ + λeJ | 0 � λ � μ} be an ordinary segment of

EK .
(i) If ξ is a basic point, i.e., ξ = xK∪{iout} for a given iout �∈ K, then

�G]ξ,ξ′[ = �Gξ \ {iout} .

(ii) If ξ′ is a breakpoint and k the hyperplane node of �Gξ′ with degree (2, 1) or
(1, 2), then

�Gξ′ = �G]ξ,ξ′[ ∪ {anew} ,

where anew is an arc between k and the unique element of argmaxj∈J (|wkj |+
ξj).
Moreover, if [ξ′, ξ′′] is the next ordinary segment in EK , then

�G]ξ′,ξ′′[ = �Gξ′ \ {aold},
where aold is the unique arc incident to k with the same orientation as anew
in �Gξ′ .

An illustration of (ii) is given in Figure 8.
Proof. Let xλ := ξ + λeJ .
(i) By Proposition 4.3(C2), the tangent digraph �G]ξ,ξ′[ does not contain the hy-

perplane node iout. As �G]ξ,ξ′[ is a subdigraph of �Gξ by Lemma 4.8, we deduce that it

is also a subdigraph of �Gξ \ {iout}. Since �G]ξ,ξ′[ and �Gξ \ {iout} have the same number
of nodes and arcs by Proposition 4.3, we conclude that they are equal.
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(ii) We assume that k has degree (2, 1) in �Gξ′ , the proof being similar when k has
degree (1, 2). To begin with, we know that μ = λ+

k (ξ, J) thanks to Remark 4.6. Let
l ∈ argmaxj∈J (w

+
kj+ξj). Then for all 0 < λ < λ+

k (ξ, J), we have w
+
kl+xλ

l < W+
k �xλ,

while w+
kl + xμ

l = W+
k � xμ. It follows that the arc (l, k) does not belong to �G]ξ,ξ′[,

whereas it appears in �Gξ′ . We deduce that �G]ξ,ξ′[∪{(l, k)} is a subgraph of �Gξ′ thanks

to Lemma 4.8. Both are equal by Proposition 4.3. Note that argmaxj∈J (w
+
kj + ξj)

is reduced to {l} as k has two incoming arcs in �Gξ′ . Due to Remark 4.6 we have
λ+
k (ξ, J) < λ−k (ξ, J). It follows that

argmax
j∈J

(|wkj |+ ξj) = argmax
j∈J

(w+
kj + ξj) = {l} .

In the second place, by applying Lemma 4.8 to the segment [ξ′, ξ′′], we know that
�G]ξ′,ξ′′[ is a subdigraph of �Gξ′ . By Proposition 4.3, the hyperplane node k has degree

(1, 1) in �G]ξ′,ξ′′[. Thus, the digraph �G]ξ′,ξ′′[ is either equal to �Gξ′ \{anew} or �Gξ′ \{aold}.
As the former corresponds to the tangent digraph �G]ξ,ξ′[, we deduce that �G]ξ′,ξ′′[ =
�Gξ′ \ {aold}.

Remark 4.10. We point out that in Proposition 4.9(ii), the set J ′ corresponding
to the direction of the next segment [ξ′, ξ′′] is precisely given by the set of coordinate

nodes weakly connected to k in the digraph �G]ξ′,ξ′′[ = �Gξ′ \ {aold}; see Figure 8 for an
illustration.

Indeed, according to Proposition 4.3(C2), the digraph �G]ξ′,ξ′′[ consists of two
weakly connected components. Let J be the set of coordinate nodes of the compo-
nent containing the hyperplane node k. From any point in ]ξ′, ξ′′[, the two feasible
directions are ±eJ. As a result, J ′ = J or J ′ = [n + 1] \ J. Let l be the coordinate
node incident to anew. Then l ∈ J by Proposition 4.9(ii), and so l ∈ J ′ as J ⊂ J ′. In
addition, since anew still appears in �G]ξ′,ξ′′[, the coordinate node l is weakly connected
to k. Therefore, l ∈ J. We conclude that J ′ = J, as expected.

The following proposition allows us to incrementally maintain the sets Ent, Br
and the associated scalars λ±i along the tropical edge EK .

Proposition 4.11. Let [ξ, ξ′] ∪ [ξ′, ξ′′] be two consecutive ordinary segments of
EK , where [ξ, ξ′] = {ξ + λeJ | 0 � λ � μ} and [ξ′, ξ′′] = {ξ′ + λeJ

′ | 0 � λ � μ′}.
Then,

(i) Br(ξ′, J ′) ⊂ Br(ξ, J);
(ii) argmax(W+

i � ξ′) = argmax(W+
i � ξ) for all i ∈ Ent(ξ′, J ′);

(iii) Ent(ξ′, J ′) = {i ∈ Ent(ξ, J) | μ < λ+
i (ξ, J) and argmax(W+

i � ξ)∩ (J ′ \ J) =
∅};

(iv) for all i ∈ Ent(ξ′, J ′) ∪ Br(ξ′, J ′), we have

W+
i � ξ′ = W+

i � ξ

λ+
i (ξ
′, J ′) = min

(
λ+
i (ξ, J)− μ , (W+

i � ξ)− max
j∈J′\J

(w+
ij + ξj)

)
,

λ−i (ξ
′, J ′) = min

(
λ−i (ξ, J)− μ , (W+

i � ξ)− max
j∈J′\J

(w−ij + ξj)

)
.

Proof.
(i) Suppose by contradiction that i �∈ Br(ξ, J). Then, by Lemma 4.2 the inter-

sections argmax(W+
i � ξ) ∩ J and argmax(W−i � ξ) ∩ J are both nonempty. As a

consequence, argmax(W+
i �ξ′) and argmax(W−i �ξ′) are included in J . Since J ⊂ J ′

by Proposition 4.1, we conclude that i �∈ Br(ξ′, J ′).
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(ii) First observe that Ent(ξ′, J ′) ⊂ Ent(ξ, J). Indeed, consider an i ∈ K \
Ent(ξ, J). Then argmax(W+

i � ξ) ∩ J �= ∅, which implies argmax(W+
i � ξ′) ⊂ J .

Using the inclusion J ⊂ J ′, we obtain that argmax(W+
i � ξ′) ∩ J ′ �= ∅, and therefore

i �∈ Ent(ξ′, J ′).
Second if i ∈ Ent(ξ, J) satisfies μ � λ+

i (ξ, J), then argmax(W+
i � ξ′) intersects

J ⊂ J ′, thus i �∈ Ent(ξ′, J ′). As a consequence,

(4.7) Ent(ξ′, J ′) ⊂ {i ∈ Ent(ξ, J) | μ < λ+
i (ξ, J)} .

Finally for any i ∈ Ent(ξ′, J ′), we have μ < λ+
i (ξ, J) and therefore argmax(W+

i �ξ′) =
argmax(W+

i � ξ).
(iii) Using (4.7) let us consider an i ∈ Ent(ξ, J) such that μ < λ+

i (ξ, J). Then,
as above, argmax(W+

i � ξ′) = argmax(W+
i � ξ). Moreover, i ∈ Ent(ξ, J) implies

argmax(W+
i �ξ)∩J = ∅. Thus argmax(W+

i �ξ′)∩J ′ = ∅ if and only if argmax(W+
i �

ξ) ∩ (J ′ \ J) = ∅.
(iv) Consider i ∈ Ent(ξ′, J ′) ∪ Br(ξ′, J ′). If i ∈ Ent(ξ′, J ′), then μ < λ+

i (ξ, J)
by (4.7). Otherwise, if i ∈ Br(ξ′, J ′), then i ∈ Br(ξ, J) by Proposition (4.11)(i) and
thus μ � λ+

i (ξ, J) by (4.3). In both cases, we obtain W+
i � ξ′ = W+

i � ξ.
Let us rewrite λ+

i (ξ
′, J ′) as follows:

λ+
i (ξ
′, J ′) = min

(
(W+

i � ξ′)−max
j∈J

(w+
ij + ξ′j) , (W+

i � ξ′)− max
j∈J′\J

(w+
ij + ξ′j)

)
.

We saw that W+
i � ξ′ = W+

i � ξ. Furthermore, ξ′j = ξj + μ if j ∈ J and ξ′j = ξj
otherwise. Thus the first term of the minimum above is equal to

(W+
i � ξ)−max

j∈J
(w+

ij + ξ + μ) = λ+
i (ξ, J)− μ.

The second term satisfies

(W+
i � ξ′)− max

j∈J′\J
(w+

ij + ξ′j) = (W+
i � ξ)− max

j∈J′\J
(w+

ij + ξj) .

The same argument holds for λ−i (ξ
′, J ′).

We now present an algorithm (Algorithm 2) allowing us to move along an ordinary
segment [ξ, ξ′] = {ξ + λeJ | 0 � λ � μ} of the tropical edge EK . This algorithm takes
as input the initial endpoint ξ, together with some auxiliary data, including the set
J encoding the direction of the segment [ξ, ξ′], the tangent digraph in ]ξ, ξ′[, and the
sets Ent(ξ, J) and Br(ξ, J). It also uses an auxiliary function Ω, which is defined
for the pairs (i, j) ∈ Ent(ξ, J) × [n + 1] and which returns in time O(1) whether
j ∈ argmax(W+

i � ξ). We shall see in the main pivoting algorithm that this function
is defined once and for all when pivoting over the whole tropical edge.

Algorithm 2 returns the other endpoint ξ′. On top of that, if ξ′ is a breakpoint of
EK , it provides the set J ′ corresponding to the direction of the next ordinary segment
[ξ′, ξ′′] of EK , some additional data corresponding to ξ′, J ′ (for instance the sets

Ent(ξ′, J ′) and Br(ξ′, J ′)), and the digraph �G]ξ′,ξ′′[.
Several kinds of data structures are manipulated in Algorithm 2, and we need to

specify the complexity of the underlying operations. Arithmetic operations over T are
supposed to be done in time O(1). Tangent digraphs are represented by adjacency
lists. They are of size O(n), and so they can be visited in time O(n). Matrices
are stored as two-dimensional arrays, so an arbitrary entry can be accessed in O(1).
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Vectors and the values W+
i � ξ, λ+

i (ξ, J) and λ−i (ξ, J) for i ∈ [m] are stored as arrays
of scalars. Apart from Δ = J ′ \ J , sets are represented as Boolean arrays, so that
testing membership takes O(1). The set Δ is stored as a list, and thus iterating over
its elements can be done in O(|Δ|).

Algorithm 2. Traversal of an ordinary segment of an tropical edge.

Input: An endpoint ξ of an ordinary segment [ξ, ξ′] of a tropical edge EK and
• the set J encoding the direction eJ of [ξ, ξ′] = {ξ + λeJ | 0 � λ � μ}
• the tangent digraph �G]ξ,ξ′ [ in the relative interior of [ξ, ξ′]
• the sets Ent(ξ, J) and Br(ξ, J)
• the scalars W+

i � ξ, λ+
i (ξ, J) and λ−

i (ξ, J) for i ∈ Br(ξ, J) ∪ Ent(ξ, J)

• an auxiliary function Ω determining in time O(1) if j ∈ argmax(W+
i � ξ) for all i ∈ Ent(ξ, J)

and j ∈ [n+ 1]

Output: The other endpoint ξ′ and,
if ξ′ is a basic point, the integer ient �∈ K such that ξ′ = xK∪{ient};
if ξ′ is a breakpoint:

• the set J ′ encoding the direction eJ
′
of the next ordinary segment

[ξ′, ξ′′] = {ξ′ + λeJ
′ | 0 � λ � μ′}

• the tangent digraph �G]ξ′,ξ′′ [
• the sets Ent(ξ′, J ′) and Br(ξ′, J ′)
• the scalars W+

i � ξ′, λ+
i (ξ′, J ′) and λ−

i (ξ′, J ′) for i ∈ Br(ξ′, J ′) ∪ Ent(ξ′, J ′)

1

Proposition 4.12. Algorithm 2 is correct, and its time complexity is bounded
by O(n+m|J ′ \ J |).
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Proof.

Correctness. The correctness of the highlighted parts of the algorithm straight-
forwardly follows from the corresponding results given as annotations.

At line 9, the set Br(ξ′, J ′) is built by iterating over the nodes of �Gξ′ and collect-
ing the hyperplane nodes i with no neighbor in J ′. This is correct since the set of
hyperplane nodes is precisely K (by Proposition 4.3 and the fact that ξ′ is a break-
point), and because the adjacent nodes of each i ∈ K are precisely the elements of

argmax(W+
i � ξ′) ∪ argmax(W−i � ξ′) by construction of �Gξ′ .

Complexity. At lines 8 and 11, the operations of removing or adding an arc can
be performed in O(n) by visiting the digraphs. Identifying the arc aold at line 11
amounts to iterate over the arcs incident to k, and there are exactly three such arcs
by Proposition 4.3.

Testing whether a hyperplane node i of �Gξ′ satisfies argmax(W+
i � ξ′) ∩ J ′ =

argmax(W−i � ξ′)∩J ′ = ∅ can be done in O(1), by determining whether the adjacent

coordinate nodes (at most 3) in �Gξ′ belong to J ′. Thus the set Br(ξ′, J ′) can be built

in time O(n) by iterating over the hyperplane nodes of �Gξ′ .

Given i ∈ Ent(ξ, J), determining whether argmax(W+
i � ξ) ∩ Δ = ∅ can be

performed by calling the auxiliary function Ω for every element j ∈ Δ. It follows that
Ent(ξ′, J ′) can be computed at line 14 in time O(m|J ′ \ J |).

Computations at lines 17 and 18 are done by iterating over elements j ∈ Δ and
then retrieving the values of W+

i � ξ, w+
ij , w

−
ij , and ξj . Since these values are stored

in arrays, they can be accessed in constant time. Therefore, λ+
i (ξ
′, J ′) and λ−i (ξ

′, J ′)
are computed in time O(|Δ|) = O(|J ′ \ J |). The complexity of other operations is
easily obtained. In total, the complexity of the algorithm is O(n+m|J ′ \ J |).

Algorithm 3. Linear-time pivoting algorithm.

Input: A basic point xI of P(A, b), the associated set I, and an integer iout ∈ I

Output: The other basic point xI′ of the edge EI\{iout}, and the integer ient ∈ I \ {iout}
such that I′ = (I \ {iout}) ∪ {ient}

1 compute �GxI O(mn)

2 �G]ξ1 ,ξ2[ ← �GxI \ {iout} O(n)

3 J ← coordinate nodes weakly connected to the element of argmax(W+
iout
� xI) in �G]ξ,ξ′ [

O(n)

4 compute E ← Ent(xI , J) and B ← Br(xI , J) O(mn)

5 compute W+
i � xI , λ+

i (xI , J) and λ−
i (xI , J) for all i ∈ E ∪B O(mn)

6 Ω ← function defined on the set E × [n+1] by Ω(i, j) =

{
true if j ∈ argmax(W+

i � xI)

false otherwise

O(mn)

7 input ← xI , J, �G]ξ1 ,ξ2[, E,B, (W+
i � x)i∈E∪B , (λ+

i (xI , J))i∈E∪B , (λ−
i (xI , J))i∈E∪B

8 while true do at most n iterations

9 call Algorithm 2 on (input , Ω) and stores the result in output
10 if output is of the form (ξ′, ient) then return (ξ′, ient)
11 else input ← output

Theorem 4.13. Algorithm 3 allows us to pivot from a basic point along a tropical
edge in time O(n(m + n)) and space O(nm).

Proof. First observe that the function Ω initially defined at line 6 does not need
to be updated during the iterations of the loop from lines 8 to 11. Indeed, let [ξ, ξ′]
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and [ξ′, ξ′′] be two consecutive ordinary segments of direction eJ and eJ
′
, respectively.

By Proposition 4.11, we have the inclusion Ent(ξ′, J ′) ⊂ Ent(ξ, J) and the equality
argmax(W+

i � ξ′) = argmax(W+
i � ξ) for all i ∈ Ent(ξ′, J ′) . It follows that if Ω is

a function determining whether j ∈ argmax(W+
i � ξ) for all i ∈ Ent(ξ, J), it can be

used as well to determine whether j ∈ argmax(W+
i � ξ′) for all i ∈ Ent(ξ′, J ′).

Then, the correctness of the algorithm straightforwardly follows from Proposi-
tion 4.9(i) (for the computation of �G]ξ1,ξ2[ at line 2), Proposition 4.3 (for the compu-
tation of J at line 3), and Proposition 4.12.

The complexity of the operations from lines 1 to 7 can easily be verified to be
in O(mn). Let q � n be the number of iterations of the loop from lines 8 and 11,
and let eJ1 , eJ2 , . . . , eJq be the directions of the ordinary segments followed during
the successive calls to Algorithm 2. By Proposition 4.12, the total complexity of the
loop is

O(nq +m|J2 \ J1|+m|J3 \ J2|+ · · ·+m|Jq \ Jq−1|) ,

which can be bounded by O(n(m + n)). Finally, the space complexity is obviously
bounded by O(nm).

5. Reduced costs. In this section, we introduce the concept of tropical reduced
costs, which are merely the signed valuations of the reduced costs over Puiseux series.
Then, pivots improving the objective function and optimality over Puiseux series can
be determined only by the signs of the tropical reduced costs. We show that, under
some genericity assumptions, the tropical reduced costs can be computed using only
the tropical entries A and c in time O(n(m + n)). This complexity is similar to the
classical simplex algorithm, as this operation corresponds to the update of the inverse
of the basic matrix AI .

5.1. Symmetrized tropical semiring. Until now our coordinate domain was
the set of signed tropical numbers T±. As noted in section 2.1.1, this has the drawback
of not being a semiring since, in general, a⊕(	a) is not defined. This can be remedied
by extending T± to the symmetrized tropical semiring from [Plu90], which we denote
here as S. We shall see in particular that the computation of tropical reduced costs
reduces to the resolution of the analogue of a Cramer system over the symmetrized
tropical semiring.

As a set S is the union of T± and a third copy of T, denoted T•. The members of
the latter, written as a• for a ∈ T, are the balanced tropical numbers. The numbers
a, 	a and a• are pairwise distinct unless a = �. Sign and modulus are extended to S

by setting sign(a•) = 0 and |a•| = a.
The addition of two elements x, y ∈ S, denoted by x⊕ y, is defined to be max(|x|,

|y|) if the maximum is attained only by elements of positive sign, 	max(|x|, |y|) if it is
attained only by elements of negative sign, and max(|x|, |y|)• otherwise. For instance,
(	1)⊕ 1⊕ (	3) = 1•⊕ (	3) = 	3. The multiplication x� y of two elements x, y ∈ S

yields the element with modulus |x|+ |y| and with sign sign(x) sign(y). For example,
(	1)�2 = 	3 and (	1)� (	2) = 3 but 1•� (	2) = 3•. An element x ∈ T± not equal
to � has a multiplicative inverse x−1 which is the element of modulus −|x| and with
the same sign as x. The addition A ⊕ B and multiplication A � B of two matrices
A = (aij) and B = (bij) are the matrices with entries aij ⊕ bij and

⊕
k aik � bkj ,

respectively.
The set S also comes with the reflection map x �→ 	x which sends a balanced

number to itself, a positive number a to 	a, and a negative number 	a to a. We will
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write x 	 y for x ⊕ (	y). Two numbers x, y ∈ S satisfy the balance relation x ∇ y
when x	 y is a balanced number. Note that

x ∇ y =⇒ x = y for all x, y ∈ T± .(5.1)

The balance relation is extended entrywise to vectors in Sn. In the semiring S, the
relation ∇ plays the role of the equality relation; in particular the next result shows
that a version of Cramer’s theorem is valid in the tropical setting, up to replacing
equalities by balances.

The tropical determinant of the square matrix M = (mij) ∈ Sn×n is given by

(5.2) tdet(M) =
⊕

σ∈Sym(n)

tsign(σ) �m1σ(1) � · · · �mnσ(n).

Also observe that a square matrix of Tn×n
± is tropically sign singular if and only if its

tropical determinant is a balanced number.
Theorem 5.1 (signed tropical Cramer theorem [Plu90]). Let M ∈ Sn×n and

d ∈ Sn. Every solution y ∈ Tn
± of the system of balances

(5.3) M � y ∇ d

satisfies

(5.4) tdet(M)� yj ∇ tdet(Mj←d) for all j ∈ [n],

where Mj←d is the matrix obtained by replacing the jth column of M by d.
Conversely, if the tropical determinants tdet(M) and tdet(Mj←d) for j ∈ [n] are

not balanced elements, then the vector with entries yj = tdet(M)−1 � tdet(Mj←d) is
the unique solution of (5.3) in Tn

±.
This result was proved in [Plu90]; see also [AGG09, AGG14] for more recent dis-

cussions. A different tropical Cramer theorem (without signs) was proved by Richter-
Gebert, Sturmfels, and Theobald [RGST05]; their proof relies on the notion of a
coherent matching field introduced by Sturmfels and Zelevinsky [SZ93].

Remark 5.2. The quintuple (T±,max,+,	0,T•) is an example of a “fuzzy ring”
in the sense of [Dre86, Definition 1.1]. In the notation of that reference, T± is “the
group of units” and T• is the set denoted “K0.”

5.2. Computing solutions of tropical Cramer systems. The Jacobi iter-
ative algorithm of [Plu90] allows one to compute a signed solution y of the system
M � y ∇ d; see also [AGG14] for more information. We next present a combinatorial
version of this algorithm for the special case where the entries of M and d are in T±.

Suppose that tdet(M) �= �, and let σ be a maximizing permutation in tdet(M)
(or equivalently, in tper(|M |)). The Cramer digraph of the system associated with σ
is the weighted bipartite directed graph over the “column nodes” {1, . . . , n+ 1} (the
index n + 1 represents the affine component) and “row nodes” {1, . . . , n} defined as
follows: every row node i ∈ [n] has an outgoing arc to the column node σ(i) with
weight m−1iσ(i), and an incoming arc from every column node j �= σ(i) with weight

	mij when j ∈ [n], and weight di when j = n+ 1.
Example 5.3. The maximizing permutation for the system of balances (5.5) below

is σ(1) = 1, σ(2) = 3 and σ(3) = 2. The Cramer digraph is represented in Figure 9.

(5.5)

⎛
⎝	(−1) −∞ −∞

−1 	(−2) 0
	(−1) 0 −∞

⎞
⎠�

⎛
⎝y1
y2
y3

⎞
⎠ ∇

⎛
⎝−2

0
−1

⎞
⎠ .
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3

2

1y1

y2 y3

y4

	1−1

	(−1)0

−2 0

0

−2−1

Fig. 9. The Cramer digraph for the system of balances in (5.5). Column nodes are squares and
row nodes are circles. Arcs with weight −∞ are omitted. The maximizing permutation σ is given
by the red arcs. The coordinate yj of the signed solution y of (5.5) is obtained by the multiplication
(in S) of the weight on the longest path from y4 to yj.

Note that all the coefficients miσ(i) are different from �. In what follows, it will
be convenient to consider the longest path problem in the weighted digraph obtained
from the Cramer digraph associated with σ by forgetting the tropical signs, i.e., by
taking the modulus of each weight. Note in particular that there is no directed cycle
the weight of which has a positive modulus (otherwise σ would not be a maximizing
permutation in the tropical determinant of M). Consequently, the latter longest path
problem is well-defined (longest weights being either finite or −∞, but not +∞).

The digraph of longest paths from a node v refers to the subgraph of the Cramer
digraph formed by the arcs belonging to a longest path from node v. This digraph
is acyclic and each of its nodes is reachable from the node v (possibly with a path of
length �). As a result, it always contains a directed tree rooted at v. Such a directed
tree can be described by a map which sends every node (except the root) to its parent
node. Note that by construction of the Cramer digraph, a column node j has only
one possible parent node σ−1(j). Consequently, we will describe a directed tree of
longest paths by a map γ that sends every row node to its parent column node.

Proposition 5.4. Let M ∈ Tn×n
± such that tdet(M) �= � and d ∈ Tn

±. Let σ be
a maximizing permutation in the tropical determinant of M . In the Cramer digraph
of the system M � y ∇ d associated with σ, consider the digraph of longest paths from
the column node n+1. In this digraph of longest paths, choose any directed subtree γ
rooted at the column node n+ 1. Then, the recursive relations

(5.6) yσ(i) =

{
di �m−1iσ(i) when γ(i) = n+ 1 ,

	miγ(i) �m−1iσ(i) � yγ(i) otherwise

provide a solution in Tn
± of the system M � y ∇ d.

Proof. Since the column node n+1 reaches all column nodes in the directed tree
defined by γ, (5.6) defines a point y in Tn

±. The modulus |yj | is the weight of a longest
path from the column node n+1 to the column node j. By the optimality conditions
of the longest paths problem, for any i ∈ [n], we have

|miσ(i)|+ |yσ(i)| � |di| ,
|miσ(i)|+ |yσ(i)| � |mij |+ |yj| for all j ∈ [n] .
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Furthermore, we have |miσ(i)| + |yσ(i)| = |miγ(i)| + |yγ(i)| when γ(i) �= n + 1 and
|miσ(i)|+ |yσ(i)| = |di| otherwise.

Thus, if γ(i) �= n + 1, the terms miσ(i) � yσ(i) and miγ(i) � yγ(i) have maximal
modulus among the terms of the sum mi1 � y1 ⊕ · · · ⊕min � yn 	 di. Moreover, (5.6)
ensures that miσ(i) � yσ(i) ⊕ miγ(i) � yγ(i) is balanced. Similarly, if γ(i) = n + 1,
then miσ(i) � yσ(i) 	 di is balanced and the terms miσ(i) � yσ(i) and di have maximal
modulus in mi1 � y1 ⊕ · · · ⊕min � yn 	 di. In both cases, we conclude that Mi � y
∇ di.

A digraph of longest paths for Example 5.3 is shown in Figure 9. From the
relations (5.6), we obtain the signed solution y = (	(−1),−1, 0).

5.2.1. Complexity analysis. We now discuss the complexity of the method
provided by Proposition 5.4. First, a maximizing permutation σ can be found in time
O(n3) by the Hungarian method; see [Sch03, section 17.2]. Second, the digraph of
longest paths, as well as a directed tree of longest paths, can be determined in time
O(n3) using the Bellman–Ford algorithm; see [Sch03, section 8.3]. Last, the solution
x can be computed in time O(n).

However, we claim that the complexity of the second step can be decreased to
O(n2). The idea is to consider a variant of the Cramer digraph with nonpositive
weights, and then to apply Dijkstra’s algorithm to solve the longest paths problem.
We exploit the fact that the Hungarian method is a primal-dual algorithm, which
returns, along with a maximizing permutation σ, an optimal solution (u, v) to the
dual assignment problem:

(5.7)
min

u,v∈Rn

n∑
i=1

ui +

n∑
j=1

vj

|mij | − ui − vj � 0 for all i, j ∈ [n] .

By complementary slackness, we have

(5.8) |miσ(i)| = ui + vσ(i) for all i ∈ [n] .

Since tdet(M) �= �, the assignment problem has a solution with a finite cost. There-
fore, the dual problem (5.7) is feasible and bounded. Thus it admits a solution
u, v ∈ Rn.

We make the diagonal change of variables yj = vj � zj, for all j ∈ [n], where
the zj are the new variables. We consider the matrix M ′ = (m′ij) obtained from

M by the diagonal scaling m′ij = μ−1 � u−1i �mij � v−1j , where μ is a real number

to be fixed soon, together with the vector d′ with entries d′i = μ−1 � u−1i � di for
all i ∈ [n]. Then, dividing (tropically) every row i of the system M � y ∇ d by μ
and by ui, and performing the above change of variables, we arrive at the equivalent
system M ′ � z ∇ d′. By choosing μ := max(maxi(|di| − ui), 0), we get that |d′i| � 0,
and |m′ij | � 0 for all i, j ∈ [n]. The longest path problem to be solved in order to
apply the construction of Proposition 5.4 to M ′� z ∇ d′ now involves a digraph with
nonpositive weights.

It follows that the latter problem can be solved by applying Dijkstra’s algorithm
to the digraph with modified costs. Moreover, the directed tree provided by Dijkstra’s
algorithm is also valid in the original problem.
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Algorithm 4. Computing tropical reduced costs.

Input: A basic point xI of P(A, b), the associated set I, the objective function c
Output: The tropical reduced costs yI

1 GxI ← tangent graph at xI O(mn)
2 σ ← maximizing permutation in tdet(AI ) obtained by a traversal of GxI O(n)

3 u← −xI O(n)

4 v ← A+
I � xI O(mn)

5 μ← max(maxj∈[n](cj − uj), 0) O(n)

6 M ′ ← tropically signed matrix with entries m′
ij = μ−1 � u−1

i � aji � v−1
j O(n2)

7 d′ ← tropically signed vector with entries di = μ−1 � u−1
i � ci O(n)

8 �C ← Cramer digraph of the system M ′ � y ∇ d′ for the permutation σ O(n2)

9 apply Dijkstra’s algorithm to �C from column node n+ 1 O(n2 + n log(n))
10 γ ← the tree of longest paths returned by Dijkstra’s algorithm
11 z ← signed vector obtained by applying (5.6) to the tree γ O(n)

12 return yI the signed vector with entries yIj = vj � zj O(n)

5.3. Tropical reduced costs as a solution of a tropical Cramer system.
In the rest of this section, we suppose that Assumption 5 holds, so we only consider
basic points xI with finite entries. We also make the following assumption, which is
a tropical version of dual nondegeneracy.

Assumption 6. The matrix (AT cT ) is tropically sign generic.

We can now define the vector of tropical reduced costs of a set I ⊂ [m] of cardi-
nality n such that tdet(AI) �= � to be the unique solution yI ∈ Tm± of the system of
m balances

(5.9)

{
A� � y ∇ c�,

yi ∇ � for all i ∈ [m] \ I.

Proposition 5.5. Let xI be a tropical basic point of P(A, b) for a suitable
I ⊂ [m]. Then there is a unique solution yI ∈ Tm± of the system of balances (5.9).

Let (A b) be any lift of (A b). Pivoting from the basic point xI of the Puiseux
polyhedron P(A, b) along the edge EI\{k} (for k ∈ I) improves the objective function
if and only if the tropical reduced cost yIk is tropically negative. The basic point xI is
an optimum of the Puiseux linear program if and only if the tropical reduced costs yI

are tropically nonnegative.

Proof. First, the signed valuation of the Puiseux reduced costs yI yields a signed
solution of (5.9). Let us show that this solution is unique. We apply Theorem 5.1
with M = A�I and d = c�. Since I yields a basic point, the matrix AI is not singular,
thus tdet(M) �= �. By Assumption 6, the tropical determinants of the matrices
M and Mj←d for j ∈ [n] belong to T±. Then by (5.4), the vector yI with entries
yIj = tdet(M)−1 � tdet(Mj←d) is the unique solution of (5.9).

We have shown that the tropical signs of the tropical reduced costs are ex-
actly the signs of the Puiseux reduced costs, which proves the second part of the
proposition.

Example 5.6. In Example 2.8, the tropical reduced costs associated with I =
{H1,H2,H3} are given by yI = (	(−1),−1, 0), which is the signed solution of (5.5).
It follows that the only edge with negative reduced cost is E{H2,H3}.

Theorem 5.7. Algorithm 4 computes the tropical reduced costs. Its time com-
plexity is bounded by O(n(m+ n)).
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Proof. The maximizing permutation σ is computed from GxI in line 2 as fol-
lows. We first determine a matching between the coordinate nodes 1, . . . , n and the
set I of hyperplane nodes using the technique described in the proof of Proposi-
tion 4.3, case (i). By Lemma 3.2, this matching provides a maximizing permutation
in tdet(|AI |). It can be obviously computed by a traversal of GxI starting from coor-
dinate node n + 1. Since GxI contains 2n + 1 nodes and 2n edges (see the proof of
Proposition 4.3), this traversal requires O(n) operations. The complexity of the other
operations of this algorithm is straightforward and given in annotations. We conclude
that the overall time complexity is O(m(n+ n)).

Let v = A+
I � xI . For any hyperplane node j ∈ I and any i ∈ [n], we have

vj � |aji|+ xI
i , where A = (aij). Moreover, equality holds for every edge (j, i) in the

tangent graph. In particular with the permutation σ, we have vσ(i) = |aσ(i)i| + xI
i .

By Assumptions 1 and 5, we have v ∈ Rn and xI ∈ Rn. Thus u = −xI and v form
an optimal solution to the dual assignment problem (5.7) for the matrix M = A�I . It
follows from the discussion in section 5.2 that the operations between lines 3 and 12
compute the tropical reduced costs.

We conclude this section by applying Algorithm 1 to the tropical linear program
of Example 2.8.

Example 5.8. We start from the tropical basic point (4, 4, 2) associated with
I = {H1,H2,H5}. For this set, tropical reduced costs are yH1 = 	(−1), yH2 = −1
and yH5 = 	4. We choose iout = H5 and pivot along the tropical edge E{H1,H2}.

We arrive at the basic point (1, 0, 0), associated with I = {H1,H2,H3}. The
reduced costs are yH1 = 	(−1), yH2 = −1 and yH3 = 0. The only tropically negative
reduced cost is yH1 , thus we pivot along E{H2,H3}.

The new basic point is (0, 0, 0), corresponding to the set {H2,H3,H4}. The
reduced costs are tropically positive: yH2 = −1, yH3 = 0, and yH4 = −2. Thus
(0, 0, 0) is optimal.

6. Proof of the main theorem and generalization to Hahn series. We
now have all the tools needed to prove Theorem 1.1 under the assumptions of primal
nondegeneracy (Assumption 4), finiteness (Assumption 5), and dual nondegeneracy
(Assumption 6). If a tropical linear program satisfies all three conditions we call it
standard.

Proof of Theorem 1.1. The time complexity of one iteration of the tropical simplex
algorithm follows from the complexity of the tropical pivoting operation (Theorem
4.13) and of the computation of tropical reduced costs (Theorem 5.7).

Proposition-Definition 3.8 and 3.10 ensure that the tropical pivoting operation
traces the image by the valuation map of the pivoting operation over Puiseux series.
By Proposition 5.5, choosing the pivot according to the signs of the tropical reduced
costs amounts to choosing a pivot according the signs of the Puiseux reduced costs.

We claim that under our assumptions, the edges of the Puiseux polyhedron have
a positive length (i.e., as a set, they are not reduced to a point). By contradiction,
suppose that an edge EK between the basic points xK∪{k} and xK∪{k′} has zero
length, where k �= k′ and k, k′ �∈ K. Then xK∪{k} = xK∪{k′}. Thus the tropical basic
point x = val(xK∪{k}) = val(xK∪{k′}) is contained in the n+1 tropical s-hyperplanes
H(Ai, bi) for i ∈ K ∪ {k, k′}. Since x has finite entries by Assumption 5, the n + 1
elements of K ∪ {k, k′} appear as hyperplane nodes in the tangent graph at x. This
contradicts Proposition 4.3 and proves the claim.

The basic points xK∪{k} and xK∪{k′} of an edge EK are related by xK∪{k′} =
xK∪{k}+μdk, where μ > 0 is the length of EK and dk its direction defined in (2.10).
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When pivoting from xK∪{k} to xK∪{k′}, the objective value increases by μ(cdk).
Furthermore, yk = cdk is the reduced cost of the pivot along EK from the basic point
xK∪{k}. As a consequence, as long as a pivot with a negative reduced cost is chosen,
each iteration improves the objective function over Puiseux series. By Assumption 5,
the Puiseux polyhedron is bounded, and thus the value of the Puiseux linear program
is finite. Therefore, Algorithm 1 does terminate.

Finally, the output of Algorithm 1 is a tropical basic point with tropically non-
negative reduced costs. By Proposition 5.5, the corresponding Puiseux basic point
is an optimum of the Puiseux linear program. Then by Proposition 2.6, the tropical
basic point is an optimum of the tropical linear program.

We described tropical linear programming in the max-plus version of the tropical
semiring. However, the proofs of our results also hold in any semiring (TG,max,+)
which arises from an abelian totally ordered group (G,+,�), i.e., the semiring is
defined on the set TG = G ∪ {�}, the order on G is extended to TG by setting � � x
for any x ∈ G, and the maximum is defined with respect to the order on G. In this
setting, the notion of “tropical general position” still makes sense. Puiseux series are
then replaced by the ordered field R[[tG]] of (formal) Hahn series with real coefficients
and with value group (G,+); recall that Hahn series are required to have a well-
ordered support. The analysis of section 3 relies only on the fact that the coefficients
of the series are real numbers (Theorem 3.5). In section 4 the description of a tropical
edge as the concatenation of ordinary segments still holds. Finally, in section 5, the
tropical Cramer theorem (Theorem 5.1) is still valid in this generalized setting.

Theorem 6.1. The assertions of Theorem 1.1 remain valid if the tropical semi-
ring is replaced by TG and if the field of real Puiseux series is replaced by the field of
real Hahn series R[[tG]], the execution time being now evaluated in a model in which
every arithmetic operation in the group G takes a time O(1).

We end this paper by mentioning some simple extensions of the present results.
Our version of the tropical simplex algorithm can readily be adapted to the maximiza-
tion of a tropical linear form over a tropical polyhedron, instead of the minimization.
Indeed, the former problem can be handled by taking as a cost vector a vector of
negative tropical numbers and lifting it to a cost vector of real Puiseux series with
negative leading coefficients.

More generally, one may consider a tropical cost vector with both negative and
positive coordinates. The present tropical simplex algorithm can still be defined in
this setting; however, its interpretation in terms of tropical optimization problem
turns out to be less satisfactory. Indeed, the cost function c � x may be a balanced
tropical number for some feasible vectors x, whereas there is no total order on the
symmetrized tropical semiring with a natural interpretation in terms of lift to real
Puiseux series. Hence, the tropical minimization problem appears to be somehow ill
defined. However, for an input in general position, the cost function evaluated at any
tropical basic point will always be unbalanced. Then, the tropical simplex algorithm,
with some straightforward modifications, can be used to return a tropical basic point
whose cost is minimal among all tropical basic points but which may be incomparable
with respect to some nonbasic feasible points.

We did not study the overall complexity of the tropical simplex algorithm. But we
expect, as in the classical case, an exponential behavior on some particular examples
(such as the Klee–Minty cubes [KM72]).

The results of this paper should allow the construction of more general tropi-
cal pivoting algorithms. In particular, the criss-cross method [FT97], which pivots
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between unfeasible basic points of the arrangement of s-hyperplanes, should also trop-
icalize. Pivots can be handled with Algorithm 3. The selection of pivots would involve
the tropical signs of the basic point and of the reduced costs.

Finally, we briefly comment on the complexity of deciding if the tropical linear
program (2.5) given by A ∈ Tm×n

± , b ∈ Tm± , and c ∈ T1×n satisfies our standard
conditions. It is always safe to assume that Assumptions 1 and 2 are satisfied, for it
takes at mostO(mn) time to simplify the input if this is not the case [GK11, Lemma 1].
Verifying the finiteness condition in Assumption 5 requires solving n tropical linear
feasibility problems to check for a nontrivial intersection with the boundary of the
tropical projective space, which amounts to solving mean-payoff games [AGG12]. So it
is unclear whether this can be done in polynomial time. Checking for nondegeneracity
takes exponential time in the classical case [Eri96], and hence this should also hold
for the tropical analogue, Assumption 4.
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