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Abstract

We study an automatic technique for the verification of
cryptographic protocols based on a Horn clause model of
the protocol. This technique yields proofs valid for an un-
bounded number of sessions of the protocol. However, up to
now, it gave no definite information when the proof failed. In
this paper, we present an algorithm for reconstructing an at-
tack against the protocol when the desired security property
does not hold. We have proved soundness, termination, as
well as a partial completeness result for our algorithm. We
have also implemented it in the automatic protocol verifier
ProVerif. As an extreme example, we could reconstruct an
attack involving 200 parallel sessions against the f200g200

protocol [21].

1. Introduction

The verification of cryptographic protocols is a very ac-
tive research area. Recent progress in this area yields auto-
matic security proofs valid for an unbounded number of ex-
ecutions of the protocol, in order to handle, for instance, the
execution of a server which accepts many connections, pos-
sibly in parallel. Handling an unbounded number of ses-
sions is important for obtaining actual proofs of security
properties of protocols. However, this problem has been
shown to be undecidable [16] for a reasonable model of pro-
tocols. So, in order to prove properties for an unbounded
number of sessions, one needs to perform sound approxi-
mations: if the verifier claims that the property is true, then
it is. However, the verifier may find “false attacks”: situa-
tions in which the verifier cannot prove a true property.

One technique that can handle an unbounded number of
sessions relies on Horn clauses. The protocol is formalized
as a process in an extension of the pi calculus with crypto-
graphic primitives. This process is first translated into a set

∗ This work was partly done while the authors were at Max-Planck-
Institut für Informatik, Saarbrücken, Germany.

of Horn clauses. These clauses use a fact att(M), which
means that the attacker may have the message M . So if
att(M) is not derivable from the clauses, then the protocol
preserves the secrecy of the message M [2, 5]. Then, we use
a resolution-based solving algorithm to determine whether
att(M) is derivable from the clauses [9, 12]. When it is
not derivable, we have secrecy. However, when it is deriv-
able, both situations can happen: secrecy may be true (we
have a false attack) or false. Our goal in this paper is to ob-
tain more information in this case: we would like to recon-
struct an attack against the protocol when secrecy does not
hold. Formally, such an attack is an execution trace of the
process that models the protocol, in which the attacker ob-
tains the secret M . An exhaustive exploration of all traces
smaller than a given size is practical only for small exam-
ples. It becomes too costly for more complex ones.

Therefore, we exploit the information provided by the
resolution algorithm in order to reconstruct attacks. When
the Horn clause technique fails to prove secrecy of M ,
it outputs a derivation of the fact att(M) from the Horn
clauses. However, because of approximations, reconstruct-
ing an attack from this derivation is far from trivial: the
Horn clauses do not take into account the number of execu-
tions of each step of the protocol and the synchronizations
between inputs and outputs. Furthermore, the attack recon-
struction necessarily fails in some cases: when secrecy is in
fact true, and also sometimes when secrecy is false because
of the undecidability of the problem. In fact, we have a for-
mal notion of when a derivation corresponds to a trace, and
the trace reconstruction algorithm is allowed to fail when
the derivation of att(M) does not correspond to a trace.

As mentioned above, reconstructing the attack directly
from the derivation would be very difficult. Instead, our
reconstruction technique relies on the exploration of a re-
stricted, finite set of traces, guided by the derivation of
att(M). This simple idea yields an algorithm which is ob-
viously sound: when it returns a trace, it is really an attack
(Section 4.3). Furthermore, our restriction is such that the
set of explored traces is finite (Section 4.4) and, provided a
minor restriction on the allowed outputs is met, it contains



the desired attack when the derivation actually corresponds
to an attack (Section 4.5). Our algorithm is also very fast
in practice, because the restricted set of traces often con-
tains only one trace (Section 4.6). We have implemented
our algorithm in the protocol verifier ProVerif, available at
http://www.di.ens.fr/˜blanchet/crypto-eng.html.

Related work Up to now, the main methods that automat-
ically find attacks against protocols are methods that do
not perform approximations, such as the constraint solving
technique of [22] and the first uses of model-checking [20].
The attack is then a direct result of the verification algo-
rithm. However, these techniques are limited to a small,
bounded number of sessions. In extensions of model check-
ing using data independence techniques [25, 13], proofs can
be obtained for an unbounded number of sessions but a
bounded message size (provided some restrictions on the
form of the protocol are met), at the cost of possible false
attacks. These extensions are intended to prove protocols
more than to find attacks, since attacks can be found with
exact model-checking algorithms for a bounded number of
sessions, when the state space is not too large. Most other
techniques do not output attacks. The typing [17, 4] and the-
orem proving [24] approaches prove security properties but
do not output attacks when the proof fails (although man-
ual inspection of why the proof fails may help in finding an
attack). For abstract interpretation techniques, such as [23],
we do not know of results on how to reconstruct attacks.

For the Horn clause verification technique itself, the
problem of reconstructing an explicit soundness proof when
the verifier proves the property has been studied in [26, 18].
However, the problem of reconstructing an attack when the
verifier fails to prove the property has not been studied yet
as far as we know.

Outline The next section introduces our process calculus
with its syntax and semantics. Section 3 recalls the transla-
tion of a process into Horn clauses. Section 4 is the core of
our contribution: it presents our technique for reconstruct-
ing attacks and studies its properties (soundness, complete-
ness, termination, complexity). Finally, Section 5 concludes
with extensions and future work.

2. The process calculus

2.1. Syntax and informal semantics

We represent protocols in the calculus described in Fig-
ure 1. This calculus is essentially the one of [2, 5]. It distin-
guishes terms (messages) and processes (programs). It as-
sumes an infinite set of variables denoted x, y, z, . . . and
an infinite set of names denoted a, b, c, s, . . . It also distin-
guishes two categories of function symbols, constructors f
and destructors g.

M,N ::= terms
x, y, z variable
a, b, c, s name
f(M1, . . . ,Mn) constructor application

P,Q ::= processes
0 nil
P | Q parallel composition
!kP replication
(νa)P restriction
M〈N〉.P output
M(x)k.P input
let x = g(M1, . . . ,Mn) in P else Q

destructor application
if M = N then P else Q conditional

Figure 1. Syntax of the process calculus

Constructors build new terms, so terms can be vari-
ables, names, and constructor applications f(M1, . . . ,Mn).
Destructors manipulate terms. Precisely, each destructor g
is defined by a finite set def(g) of rewrite rules g(M1,
. . . ,Mn) → M , such that M1, . . . ,Mn,M do not con-
tain names and all variables of M also occur in M1, . . . ,
Mn. We also require that when several rewrite rules ap-
ply for the same arguments, they yield the same result. (We
could remove this requirement, but this would complicate
the work without much practical benefit.) The evaluation
of g(M1, . . . ,Mn) succeeds and returns M when there is
a rewrite rule g(M ′

1, . . . ,M
′
n) → M ′ in def(g) such that

M1, . . . ,Mn,M is an instance of M ′
1, . . . ,M

′
n,M ′. In this

case, we write g(M1, . . . ,Mn) → M , and the destruc-
tor application let x = g(M1, . . . ,Mn) in P else Q ex-
ecutes P with x bound to M . Otherwise, it executes Q.
The else clause can be omitted when it is 0. The condi-
tional if M = N then P else Q can be defined as syntactic
sugar for the destructor application let x = equals(M,N)
in P else Q where the destructor equals is defined by
equals(x, x) → x and x is a fresh variable. Similarly, we
define let x = M in P as let x = id(M) in P where the
destructor id is defined by id(x) → x.

Constructors and destructors can be used to repre-
sent most common cryptographic primitives. For instance,
shared-key encryption can be encoded by a construc-
tor sencrypt(M,N) which returns the encryption of
M under key N , and a destructor sdecrypt defined by
sdecrypt(sencrypt(x, y), y) → x which returns the cleart-
ext x from the ciphertext sencrypt(x, y) and the secret key
y. Public-key encryption can be modeled thanks to two con-
structors pencrypt(M,N) which returns the encryption of
M under key N , and pk(M) which builds a public key from
the secret key M , and a destructor pdecrypt defined by



pdecrypt(pencrypt(x, pk(y)), y) → x. Similarly, signa-
tures are encoded using a binary constructor sign(M,N),
which signs M with the key N , and two destructors
checksign defined by checksign(sign(x, y), pk(y)) → x
(which returns the cleartext x from its signature sign(x, y),
after it has been checked with the public key pk(y)), and
getmess defined by getmess(sign(x, y)) → x (which re-
turns the cleartext x from its signature without check-
ing its validity). We refer to [10, 11] for other exam-
ples.

The other constructs come from the pi calculus: the inac-
tive process 0, the parallel composition P | Q, the replica-
tion !kP which represents an unbounded number of copies
of P in parallel, the restriction (νa)P which creates a new
name a then executes P , the output M〈N〉.P which out-
puts message N on channel M then executes P , the input
M(x)k.P which receives a message on channel M , binds
x to that message and executes P . In this paper, we con-
sider that the input and output can be executed even when
the channel M does not reduce to a name at runtime. (We
can also handle the other option, in which they block in this
case.)

The replication !kP and the input M(x)k are labeled
with a constant integer k, named occurrence label. We re-
quire that in the initial process P0, each of these inte-
gers occurs at most once. These integers are used to track
which replication and input in a reduced process comes
from which construct in the initial process.

Free names and variables, fn(P ) and fv(P ), are defined
as usual. A closed process is a process without free vari-
ables; it may contain free names. We denote by {M/x} the
substitution which replaces the variable x with the term M .

2.2. Semantics

Our semantics is described in Figure 2. Usually, the se-
mantics of such calculi is defined by a structural equiva-
lence and a reduction relation. In this paper, we adopt an-
other presentation of the semantics, which eliminates the
structural equivalence. (This idea was already used in [3].)
In our semantics, a configuration is a triple E ,P,S, where
P is a multiset of processes, E is the set of free names of
P and of names created by the adversary, and S is the set
of terms known by the adversary. Intuitively, the configura-
tion E ,P,S corresponds to the process

(νa1) . . . (νan)(P1 | . . . | Pm | Q)

where E = {a1, . . . , an}, P = {P1, . . . , Pm}, and Q rep-
resents an adversary whose current knowledge is S.

The main advantage of eliminating structural congru-
ence for our purpose is that the reduction is more guided
than with the standard presentation. For each construct at
the top of the process, a single reduction rule among the

E ,P ∪ {0},S → E ,P,S (Red Nil)
E ,P ∪ {P | Q},S → E ,P ∪ {P,Q},S (Red Par)

E ,P ∪ {!kP},S → E ,P ∪ {P, !kP},S (Red Repl)
a′ /∈ E

E ,P ∪ {(νa)P},S → E ∪ {a′},P ∪ {P{a′/a}},S
(Red Restr)

M /∈ S

E ,P ∪ {M(x)k.P,M〈N〉.Q},S
→ E ,P ∪ {P{N/x}, Q},S

(Red I/O)

g destructor of arity n, g(M1, . . . ,Mn) → M

E ,P ∪ {let x = g(M1, . . . ,Mn) in P else Q},S
→ E ,P ∪ {P{M/x}},S

(Red Let1)
g destructor of arity n,

g(M1, . . . ,Mn) 6→ M for all terms M

E ,P ∪ {let x = g(M1, . . . ,Mn) in P else Q},S
→ E ,P ∪ {Q},S

(Red Let2)
M ∈ S

E ,P ∪ {M〈N〉.P},S → E ,P ∪ {P},S ∪ {N}

(Red Out)
M,N ∈ S

E ,P ∪ {M(x)k.P},S → E ,P ∪ {P{N/x}},S
(Red In)

f constructor of arity n,M1, . . . ,Mn ∈ S

E ,P,S → E ,P,S ∪ {f(M1, . . . ,Mn)}
(Red Constr)

g destructor of arity n,M1, . . . ,Mn ∈ S,
g(M1, . . . ,Mn) → M

E ,P,S → E ,P,S ∪ {M}
(Red Destr)

a′ /∈ E

E ,P,S → E ∪ {a′},P,S ∪ {a′}
(Red New)

Figure 2. Reduction rules of the semantics

rules (Red Nil) to (Red Let2) is applicable. The semantics
of the restriction is also closer to the intuition that the re-
striction creates a new name (here a′), and the renamings
are strongly limited: they occur only when applying the re-
striction, while in the standard semantics, they can occur at
any application of structural congruence. Our choice makes
it easier to track that the same term occurs in several pro-
cesses of a trace.

The rules (Red Out) to (Red New) represent the actions
of the adversary. (Red Out) means that the process sends
a message to the adversary, and (Red In) that it receives a
message from the adversary. (Red Constr) and (Red Destr)
correspond to internal computations of the adversary, ap-
plying respectively constructors and destructors, and (Red



New) to the creation of a new name by the adversary. Note
that, for (Red I/O), we require that the adversary does not
have the channel M /∈ S, since otherwise, this reduction
can be simulated by steps (Red Out) followed by (Red In)
(the adversary first receives the message from the process,
then sends it back). This version of (Red I/O) avoids hav-
ing two choices for each communication on a public chan-
nel, so it reduces the number of traces to consider.

2.3. Example

As a running example, we will consider a simplified ver-
sion of the Denning-Sacco key distribution protocol [15]:

Message 1. A → B :
{

{k}skA

}

pkB

Message 2. B → A : {s}k

In this protocol, two principals A and B wish to establish a
shared key k. A creates a fresh key k, signs it with its se-
cret key skA, encrypts it under the public key pkB of B,
and finally sends it to B (message 1). When he receives the
message, B can decrypt it with its secret key skB , and as-
sumes, checking the signature with the public key pkA of A,
that the key k has been created by A. As a result, A and B
share this key, and B can send a secret s under k to A (mes-
sage 2). We use the second message to check if the shared
key k can be used to encrypt secret data shared by A and B.
This protocol is subject to the following attack, described
in [14]:

Message 1. A → C :
{

{k}skA

}

pkC

Message 1’. C(A) → B :
{

{k}skA

}

pkB

Message 2. B → A : {s}k

The principal A starts a session with the attacker C by send-
ing the first message. When receiving this message, C de-
crypts it, and encrypts the result with the public key of B.
The obtained message (Message 1’) looks like a legitimate
message for a session between A and B. C, impersonat-
ing A, sends it to B. B replies with the second message,
as if B was talking to A. Since C also obtains k from the
first message, it can decrypt B’s message and obtain the se-
cret s.

We can represent this protocol by the following pro-
cesses:

PA(skA) = c(xpkB
)1.(νk)

c〈pencrypt(sign(k, skA), xpkB
)〉

PB(pkA, skB) = c(xm)2.let xp = pdecrypt(xm, skB) in

let xk = checksign(xp, pkA) in c〈sencrypt(s, xk)〉
P0 = (νskA)let pkA = pk(skA) in c〈pkA〉.

(νskB)let pkB = pk(skB) in c〈pkB〉.

(!3PA(skA) | !4PB(pkA, skB))

P0 first creates the secret key skA of A, builds its public key
pkA, and publishes it by sending it on the public channel

c. Similarly for B, it creates skB , computes pkB , and pub-
lishes it. Then it consists of an unbounded number of copies
of PA and PB , which respectively represent the principals
A and B. We consider that the attacker chooses the partici-
pant whom A will establish the shared key k with, by send-
ing to A the public key of this participant on the channel c.
PA then inputs this message, binds xpkB

to it, creates a new
key k, and sends the key signed with skA and encrypted un-
der xpkB

on the channel c (message 1). PB inputs this mes-
sage, tries to get k by decrypting the message and check-
ing the signature, binds xk to the obtained key, and finally
sends the secret s under xk (message 2).

2.4. Secrecy

Let the protocol be represented by a closed process P0.
Let S0 be the set of public names of the protocol, which cor-
responds to the initial knowledge of the adversary. This set
contains for example public channel names. Secrecy is then
defined as follows:

Definition 1 Let P0 be a closed process and S0 a finite set
of names. A trace T of P0 from S0 is a finite sequence of
reductions fn(P0) ∪ S0, {P0}, S0 → . . . → E ′,P ′,S ′.

The closed term M is learnt in the trace T if and only if
T contains a state E ,P,S where M ∈ S.

Let Msecret be a closed term such that fn(Msecret ) ⊆
fn(P0). The process P0 preserves the secrecy of Msecret

from S0 if and only if there exists no trace of P0 from S0 in
which Msecret is learnt.

This definition of secrecy resembles the one of [1, Section
6.2]. We have shown that this definition is equivalent to the
notion of secrecy of [3], which is similar to [4, 2, 5] and in
which the adversary is represented by any process instead
of by its knowledge S. [4] already mentioned that these two
notions capture the “same concept”, but as far as we know,
the equivalence was not proved up to now.

In the following of the paper, P0 will always be a closed
process, Msecret a closed term such that fn(Msecret ) ⊆
fn(P0), and S0 a finite set of names. The description of the
attack that we are going to produce will be a trace in which
Msecret is learnt.

3. Generation of the clauses

The verification algorithm first translates the protocol
and the actions of the adversary into Horn clauses. Then
it uses a resolution-based solving algorithm in order to de-
termine whether a fact is derivable from the clauses. If the
fact “the attacker knows Msecret” is not derivable from the
clauses, then the protocol preserves the secrecy of Msecret .

We present here the generation of the clauses, which is
based on the one of [2, 10]. The main novelty with respect



to [2, 10] is that we add labels to the clauses in order to re-
member where they come from. This information is neces-
sary for reconstructing traces.

We assume that the protocol is represented by a closed
process P0, in which all restrictions use distinct names, and
names in restrictions are distinct from free names of P0.
We also assume that the bound variables of P0 are distinct.
(These constraints can be enforced by renaming.)

The terms used in clauses are named ”patterns”. They
are defined by the following grammar:

p, q ::= patterns
x, y, z variable
i variable session identifier
λ constant session identifier
a[p1, . . . , pn] name
f(p1, . . . , pn) constructor application

Session identifiers are used to distinguish copies of the same
process created by a replication. Every time a replication
is executed, the generated copy of the process is associ-
ated to a fresh session identifier λ. Each name a′ created by
a restriction (νa) is then mapped to pattern a[p1, . . . , pn],
where a is considered as a function symbol. (We write a[. . .]
rather than a(. . .) just to distinguish it from constructor
and destructor applications.) The arguments p1, . . . , pn are
used to distinguish different names created by the same re-
striction. They include both the messages received by in-
puts above the considered restriction and session identifiers
of replications above that restriction. Since different names
coming from the same restriction are created in different
copies of the process, so have different session identifiers,
they are mapped to different patterns. For example, in the
Denning-Sacco protocol, names k are represented by pat-
terns k[iA, xpkB

] where iA is the session identifier associ-
ated with replication !3 just above PA and xpkB

is the mes-
sage received in PA by the input c(xpkB

)1. Then we have a
different pattern for names created in a different copy of PA

or after receiving different inputs xpkB
.

The clauses use two predicates, att and mess:

F ::= facts
att(p) the attacker may know p
mess(p, q) the message q may appear on channel p

3.1. Attacker clauses

The clauses below describe the actions of the adver-
sary. The clause (Init) corresponds to its initial knowl-
edge. Clause (Rn) expresses that it can create an unbounded
number of new names b[i]. Clauses (Raf ) and (Rag) mean
that it can apply constructors and destructors respectively,
clauses (Rl) and (Rs) that it can listen and send messages
on channels it has. These clauses have a label L above the
arrow, used to remember their origin: (Init) and (Rn) have

empty label, (Raf ) and (Rag) have label Ra, while (Rl)
and (Rs) have labels Rl and Rs respectively.

For each a ∈ S0, att(a[ ]) (Init)
att(b[i]) where b does not occur in P0 (Rn)
For each constructor f of arity n,

att(x1) ∧ . . . ∧ att(xn)
Ra
==⇒ att(f(x1, . . . , xn))

(Raf )
For each destructor g,

for each rewrite rule g(N1, . . . , Nn) → N in def(g),

att(N1) ∧ . . . ∧ att(Nn)
Ra
==⇒ att(N) (Rag)

att(x) ∧ mess(x, y)
Rl
=⇒ att(y) (Rl)

att(x) ∧ att(y)
Rs
==⇒ mess(x, y) (Rs)

3.2. Protocol clauses

We now define the translation of the protocol itself into
Horn clauses. More precisely, we define the set of clauses
[[P,K,H, I]]E by induction on P , where P is the process to
translate, K is the sequence of occurrence labels of inputs
and replications above P in P0, H is the sequence of facts
mess(p, p′) corresponding to the inputs above P in P0, I is
the sequence of patterns corresponding to terms received by
inputs and of session identifiers of replications above P in
P0, and E is an environment, that is, a mapping from names
and variables to patterns.

The addition of a mapping u 7→ p to E is denoted by
E [u 7→ p]. If M is a term, E(M) is the pattern defined by
considering E as a substitution defined by E(u) = p if
u 7→ p is in E . The concatenation of a fact F to H is de-
noted by H∧ F . The concatenation of k to K is denoted by
K, k, and similarly for I, p. The translation is defined as fol-
lows:

[[0,K,H, I]]E = ∅
[[P | Q,K,H, I]]E = [[P,K,H, I]]E ∪ [[Q,K,H, I]]E

[[!kP ,K,H, I]]E = [[P, (K, k),H, (I, i)]]E
where i is a new variable session identifier

[[(νa)P,K,H, I]]E = [[P,K,H, I]](E [a 7→ a [I]])

[[M(x)k.P,K,H, I]]E=[[P, (K, k), (H ∧ mess(E(M),

x′)), (I, x′)]](E [x 7→ x′]) where x′ is a new variable

[[M〈N〉.P,K,H, I]]E = [[P,K,H, I]]E

∪ {H
K,I
==⇒ mess(E(M), E(N))}

[[let x = g(M1, . . . ,Mn) in P else Q,K,H, I]]E =
⋃

{[[P,K, σH, σI]]((σE) [x 7→ σ′p′]) |

g(p′1, . . . , p
′
n) 7→ p′ is in def(g) and

(σ, σ′) is a most general pair of substitutions such
that σE(M1) = σ′p′1, . . . , σE(Mn) = σ′p′n}

∪ [[Q,K,H, I]]E



The set of clauses corresponding to the protocol is then
[[P0, ∅, ∅, ∅]]E0 where E0 = {a 7→ a[ ] | a ∈ fn(P0)} and
∅ is the empty sequence.

Although the presentation of the formulas is a bit differ-
ent in order to fit the instrumented semantics defined in Sec-
tion 4.1, the generated clauses are the same as in [10], ex-
cept for the addition of labels on the arrow of the clauses.

The translation of a replication simply updates the var-
ious parameters: it adds the occurrence label k to K and a
new session identifier to I. The replication is otherwise ig-
nored since clauses can be applied any number of times.

The restriction adds to E the mapping of the name a
to the pattern a[I]. So each name is represented by a pat-
tern having as arguments the previous inputs and the ses-
sion identifiers of the session in which the name is created.

Each input adds the fact mess(E(M), x′) corresponding
to the received message to H. So H keeps track of the mes-
sages that must be received in order to reach the current pro-
gram point. The input also adds its occurrence label k to K,
and the pattern of the received message x′ to I.

Each output generates a new clause, which expresses
that, when H is true (that is, when the output may be exe-
cuted), the message N may be sent on channel M . In other
words, if the process outputs message N on channel M af-
ter receiving N1, . . . , Nn on channels M1, . . . , Mn respec-
tively (thanks to inputs located above the output in P0), then

we generate a clause mess(p1, q1)∧. . .∧mess(pn, qn)
K,I
==⇒

mess(p, q) where p, q, pi, qi are the patterns corresponding
to M,N,Mi, Ni respectively. This clause is labeled with
the pair K, I in order to remember that the output is ex-
ecuted after the inputs and replications whose occurrence
labels are in K and whose received messages and session
identifiers are in I.

Finally, the translation of a destructor application is the
union of the cases in which the destructor succeeds and in
which the destructor fails. In the first case, we execute P af-
ter instantiating all patterns by the substitution σ, in order
to record the information that the destructor succeeds. In the
second case, we execute Q.

Furthermore, in the generated clauses, the algorithm will
replace every atom of the form mess(c[ ], p) where c ∈ S0

by the atom att(p), in order to simplify the clauses. The
new clauses are obviously equivalent to the previous ones
thanks to the clauses (Rl) and (Rs). (For simplicity, we ig-
nore this optimization in our theoretical study in this paper.)

For example, the Denning-Sacco protocol is translated
into the following clauses:

∅,∅
==⇒ att(pk(skA[ ])) (DS1)
∅,∅
==⇒ att(pk(skB [ ])) (DS2)

att(x)
(3,1),(iA,x)
=======⇒

att(pencrypt(sign(k[iA, x], skA[ ]), x))
(DS3)

att(p)
(4,2),(iB ,p)
=======⇒ att(sencrypt(s[ ], x′))

with p = pencrypt(sign(x′, skA[ ]), pk(skB [ ]))
(DS4)

The first two clauses correspond to the outputs of the pub-
lic keys of A and B. The third one represents the behavior
of a session of the process PA: if the attacker has a pub-
lic key x, it can send x to A, A replies with the fresh key k
signed with skA and encrypted under x, which the attacker
intercepts. The label (3, 1), (iA, x) of this clause means that
the output is executed after making a copy of the replicated
process of replication 3, with associated session identifier
iA, and receiving the message x on input 1. The last clause
translates the fact that a session of PB is able to output the
secret s encrypted under a key when the message received
by the input 2 is well-formed (i.e. all destructors in PB suc-
ceed). Similarly, the label (4, 2), (iB , p) means that replica-
tion 4 has been reduced (with associated session identifier
iB) and that message p has been received in input 2 before
sending the output.

This translation introduces some approximations. For in-
stance, we assume that the “else” clause of the destructor
application may always be executed. Moreover, actions are
considered as implicitly replicated, since clauses can be ap-
plied any number of times. (The only exception concerns
name creation: since different names are distinguished by
different session identifiers, a restriction is not equivalent to
a replicated restriction.) These approximations lead to pro-
ducing false attacks, that is, situations in which the verifier
can derive att(E0(Msecret )) from the clauses but the pro-
cess preserves the secrecy of Msecret . To illustrate such a
case, let us consider the following process:

Pfalse = (νa)c(x)1.c〈a〉.if a = x then c〈s〉 else 0

where c is a public channel. It generates

att(x)
(1),(x)
====⇒ att(a[ ])

att(a[ ])
(1),(a[ ])
=====⇒ att(s[ ])

Then we derive att(s[ ]) using for instance (Rn) to obtain
att(x) for some x. Nevertheless, the reader will easily check
that s is not learnt in any trace of Pfalse from {c}. This dis-
crepancy comes from the fact that the Horn clause model
allows repetitions of executions, as if the process was

P ′
false = (νa)!2c(x)1.c〈a〉.if a = x then c〈s〉 else 0

and P ′
false does not preserve the secrecy of s. (The attacker

obtains a after sending anything on c, then in a second run
sends a on c so that P ′

false outputs s.) Our algorithm will ob-
viously not find a trace of Pfalse corresponding to a deriva-
tion of att(s[ ]).



Ra (Rasdecrypt )

att(s[ ])

Ra (Ragetmess)

att(pk)

(DS4) (4, 2), (iB , p′1)

att(p2)

(Rapencrypt ) Ra

att(p′1)

∅, ∅ (DS2)

att(pk(skB [ ]))

where the dashed tree is

(Rapdecrypt ) Ra

att(sign(pk, skA[ ]))

(DS3) (3, 1), (iA, pk(b[i]))

att(p1)

(Rapk ) Ra

att(pk(b[i]))

(Rn)

att(b[i])

(Rn)

att(b[i])

Figure 3. Derivation tree for the Denning-Sacco protocol

3.3. Secrecy result

We denote by RP0,S0
the set of clauses that represent the

attacker abilities and the process P0:

RP0,S0
= [[P0, ∅, ∅, ∅]]E0

∪ {(Init), (Rn), (Raf ), (Rag), (Rl), (Rs)}

We recall the following result [5]:

Theorem 1 If the fact att(E0(Msecret )) is not derivable
from the clauses RP0,S0

, then P0 preserves the secrecy of
Msecret from S0.

We determine whether a fact is derivable from the clauses
using a resolution-based algorithm detailed in [9, 12]. When
the fact is derivable, the resolution algorithm reconstructs
a derivation tree of att(E0(Msecret )) from RP0,S0

. Such a
tree can be formally defined as follows:

Definition 2 (Derivation) Let F be a closed fact. Let R be
a set of clauses. A derivation tree of F from R is a finite
tree defined as follows:

1. Its nodes (except the root) are labeled by clause labels
L (which may be empty, Rl, Rs, Ra, or the pair K, I)
and by clauses R ∈ R.

2. Its edges are labeled by facts.

3. If the tree contains a node labeled by L and R with one
incoming edge labeled by C and n outgoing edges la-
beled by H1, . . . , Hn, then there exists a substitution σ

such that σR = (H1∧. . .∧Hn
L
=⇒ C) (so C can be de-

rived from H1, . . . , Hn using R).

L R

C

H1

. . .
Hn

4. The root has one outgoing edge, labeled by F .

In our running example, our resolution algorithm gener-
ates the derivation tree of att(s[ ]) from the initial knowl-
edge S0 = {c} given in Figure 3, where

pk = k[iA, pk(b[i])]

p1 = pencrypt(sign(pk, skA[ ]), pk(b[i]))

p′1 = pencrypt(sign(pk, skA[ ]), pk(skB [ ]))

p2 = sencrypt(s[ ], pk)

Informally, this derivation corresponds to the well-known
attack against the Denning-Sacco protocol [14]: at the bot-
tom of the second column of Figure 3, the attacker creates a
new secret key (of pattern b[i]) and the corresponding public
key by (Rapk ). Then it starts a run with A, by clause (DS3)
to obtain the first message of the protocol (of pattern p1),
and decrypts it, obtaining the signature. Then, at the bot-
tom of the first column of Figure 3, it encrypts the signature
with pkB , to obtain the first message of a run between A
and B (pattern p′1). Using (DS4), it obtains the second mes-
sage {s}k. On the other hand, it can also obtain k from the
signature by (Ragetmess ), so it finally obtains s by decryp-
tion.



E ,P ∪ {(0,K,H, I)},S,ΛÃ E ,P,S,Λ (Ins Nil)
E ,P ∪ {(P | Q,K,H, I)},S,ΛÃ E ,P ∪ {(P,K,H, I), (Q,K,H, I)},S,Λ (Ins Par)

λ /∈ Λ

E ,P ∪ {(!kP ,K,H, I)},S,ΛÃ E ,P ∪ {(P, (K, k),H, (I, λ)), (!kP ,K,H, I)},S,Λ ∪ {λ}
(Ins Repl)

a′ /∈ dom(E)

E ,P ∪ {((νa)P,K,H, I)},S,ΛÃ E [a′ 7→ a[I]],P ∪ {(P{a′/a},K,H, I)},S,Λ
(Ins Restr)

M 6∈ S

E ,P ∪ {(M(x)k.P,K,H, I), (M〈N〉.Q,K′,H′, I ′)},S,ΛÃ
E ,P ∪ {(P{N/x}, (K, k),H ∧ mess(E(M), E(N)), (I, E(N))), (Q,K′,H′, I ′)},S,Λ

(Ins I/O)

g destructor of arity n, g(M1, . . . ,Mn) → M

E ,P ∪ {(let x = g(M1, . . . ,Mn) in P else Q,K,H, I)},S,ΛÃ
E ,P ∪ {(P{M/x},K,H, I)},S,Λ

(Ins Let1)

g destructor of arity n, g(M1, . . . ,Mn) 6→ M for all terms M

E ,P ∪ {(let x = g(M1, . . . ,Mn) in P else Q,K,H, I)},S,ΛÃ E ,P ∪ {(Q,K,H, I)},S,Λ
(Ins Let2)

M ∈ S

E ,P ∪ {(M〈N〉.P,K,H, I)},S,ΛÃ E ,P ∪ {(P,K,H, I)},S ∪ {N},Λ
(Ins Out)

M,N ∈ S

E ,P ∪ {(M(x)k.P,K,H, I)},S,ΛÃ E ,P ∪ {(P{N/x}, (K, k),H ∧ mess(E(M), E(N)), (I, E(N)))},S,Λ
(Ins In)

f constructor of arity n,M1, . . . ,Mn ∈ S

E ,P,S,ΛÃ E ,P,S ∪ {f(M1, . . . ,Mn)},Λ
(Ins Constr)

g destructor of arity n,M1, . . . ,Mn ∈ S, g(M1, . . . ,Mn) → M

E ,P,S,ΛÃ E ,P,S ∪ {M},Λ
(Ins Destr)

a′ 6∈ dom(E) b[λ] /∈ im(E)

E ,P,S,ΛÃ E [a′ 7→ b[λ]],P,S ∪ {a′},Λ
(Ins New)

Figure 4. Instrumented semantics

4. Reconstruction of attacks

4.1. Instrumented semantics

We instrument the semantics, to add additional informa-
tion in order to remember the mapping between names and
their corresponding patterns, as well as to track where each
process of the semantic configuration comes from. In order
to achieve this goal, we remember the received messages,
the session identifiers, and the occurrence labels of executed
inputs and replications. More precisely, the state of the in-
strumented semantics is of the form E ,P,S,Λ, where E is
a mapping from names to their corresponding patterns, S
is the attacker knowledge as in the initial semantics, P is a
multiset of quadruples (P,K,H, I), with the same mean-
ing as in the generation of clauses (this helps in establish-
ing a precise correspondence between the clauses and the
trace):

❏ P is a process.

❏ K is the list of labels of already reduced inputs and
replications that occur above P in P0. That is, when
K = (k1, . . . , kn), P comes from reductions of a pro-

cess P0 of the form α1.C1[α2.C2[. . . αn.Cn[P ′] . . .]]
where P is an instance of P ′, C1, . . . , Cn are con-
texts not containing replications and inputs, and for all
i ∈ {1, . . . , n}, αi = Mi(xi)

ki or αi = !ki .

❏ H is the list of facts mess(p, p′) corresponding to al-
ready reduced inputs that occur above P in P0.

❏ I is the list of patterns corresponding to terms received
by the inputs and of session identifiers of replications
that occur above P in P0.

and Λ is the set of already used session identifiers.
The semantics is defined in Figure 4. All rules just up-

date the configuration described above. (Ins Repl) picks an
unused session identifier λ and uses it for the new copy of
P . (Ins Restr) adds a new name a′ to E , and maps it to its
corresponding pattern a[I]. (Ins In) updates the information
for process P by adding the occurrence label k of the in-
put to K, the fact mess(E(M), E(N)) to H, and the mes-
sage E(N) to I. (Ins I/O) updates the information for the
process performing the input in a similar way. In (Ins New),
b is the same function symbol as in (Rn).

The following proposition expresses that the instru-
mented semantics just adds more information on existing



traces, without really changing them.

Proposition 1 If by a reduction (Ins R) of the instrumented
semantics, we have

E , {(P1,K1,H1, I1), . . . , (Pn,Kn,Hn, In)},S,ΛÃ

E ′, {(P ′
1,K

′
1,H

′
1, I

′
1), . . . , (P

′
n′ ,K′

n′ ,H′
n′ , I ′

n′)},S ′,Λ′

(1)

then the corresponding reduction (Red R) yields

Edom, {P1, . . . , Pn},S → E ′
dom, {P ′

1, . . . , P
′
n′},S ′ (2)

with Edom = dom(E) and E ′
dom = dom(E ′).

Conversely, if a reduction (Red R) yields (2) then for
any E , Λ, Ki,Hi, Ii (i ∈ {1, . . . , n}), there exist E ′, Λ′,
K′

i,H
′
i, I

′
i (i ∈ {1, . . . , n′}), such that (1) with Edom =

dom(E) and E ′
dom = dom(E ′).

4.2. Restricted semantics

In this section, we define the restricted semantics, in
which the reductions are guided by a closed derivation tree.
The reconstruction of the attack is done by exhaustive ex-
ploration of all traces of this semantics.

In the derivation tree built in Section 3.3, the session
identifiers are variables. We build a closed derivation tree
D from it, by substituting distinct constant session identi-
fiers λ for variable session identifiers.1

We say that a derivation tree D contains a clause

H′ K
′,I′

===⇒ C ′, and we write H′ K
′,I′

===⇒ C ′ ∈ D, if and only
if D contains a node labeled K′, I ′ and R, whose incom-
ing edge is labeled C ′ and outgoing edges are labeled H′.
We denote by K v K′ the fact that K is a prefix of K′, and
similarly for I v I ′ and H v H′. We say that D justi-

fies K,H, I when there exists H′ K
′,I′

===⇒ C ∈ D such that
K v K′, I v I ′, and H v H′.

We now define the restricted semantics which restricts
the instrumented semantics to traces that correspond to the
derivation tree D. The rules (Res Nil), (Res Par), (Res Re-
str), (Res Out), (Res Let1), and (Res Let2) are identical to
the corresponding rules (Ins R) of the instrumented seman-
tics. The other rules are given in Figure 5.

Intuitively, each clause corresponds to an action of the
adversary or comes from an output of the protocol, as de-
scribed in Section 3. In order to find a trace correspond-
ing to a given derivation tree D, we restrict the semantics so

1 According to the previous definitions, no other variable can occur,
since we can show the invariant that all variables except session iden-
tifiers that occur in the conclusion or in the label of a clause also occur
in its hypothesis. However, in practice, the solving algorithm some-
times leaves other variables uninstantiated. In particular, some hy-
potheses att(x) may occur. We substitute these variables x with con-
stant patterns b[λ] for distinct new λ, as if these facts were proved us-
ing clause (Rn).

M,N ∈ S F = mess(E(M), E(N))
D justifies (K, k),H ∧ F, (I, E(N))

E ,P ∪ {(M(x)k.P,K,H, I)},S,ΛÃ
E ,P ∪ {(P{N/x}, (K, k),H ∧ F, (I, E(N)))},S,Λ

(Res In)
M /∈ S F = mess(E(M), E(N))

Q 6= 0 or D justifies (K, k),H ∧ F, (I, E(N))

E ,P ∪ {(M(x)k.P,K,H, I), (M〈N〉.Q,K′′,H′′, I ′′)},
S,ΛÃ E ,P ∪ {(P{N/x}, (K, k),H ∧ F, (I, E(N))),

(Q,K′′,H′′, I ′′)},S,Λ

(Res I/O)
λ /∈ Λ D justifies (K, k),H, (I, λ)

E ,P ∪ {(!kP ,K,H, I)},S,ΛÃ E ,
P ∪ {(P, (K, k),H, (I, λ)), (!kP ,K,H, I)},S,Λ ∪ {λ}

(Res Repl)

att(E(M1)) ∧ . . . ∧ att(E(Mn))
Ra
==⇒ att(E(M)) ∈ D

M1, . . . ,Mn ∈ S

E ,P,S,ΛÃ E ,P,S ∪ {M},Λ
(Res Constr) / (Res Destr)

att(b[λ]) ∈ D a′ 6∈ dom(E) b[λ] /∈ im(E)

E ,P,S,ΛÃ E [a′ 7→ b[λ]],P,S ∪ {a′},Λ
(Res New)

Figure 5. Restricted semantics

that a reduction rule is used only when there exists a corre-
sponding clause in D. More precisely:

• We first consider the cases of (Res In), (Res I/O) when
Q = 0, and (Res Repl). These rules create a process
P ′ as follows: (Res In) and (Res I/O) execute an input
process M(x)k.P by replacing it with P ′ = P{N/x};
(Res Repl) executes !kP by creating a copy of P , so
P ′ = P . We use these three reduction rules only if D
justifies the parameters KP ′ ,HP ′ , IP ′ of the created

process P ′, that is, if there exists a clause H′ K
′,I′

===⇒ C
in D such that KP ′ v K′, HP ′ v H′, and IP ′ v I ′.

Indeed, the clause H′ K
′,I′

===⇒ C means that an out-
put is executed after executing the sequence of in-
puts and replications described by K′,H′, I ′ and lo-
cated above the output in the initial process. The pro-
cess (P ′,KP ′ ,HP ′ , IP ′) is obtained after executing
the sequence of inputs and replications described by
KP ′ ,HP ′ , IP ′ and located above P ′ in the initial pro-
cess. If the clause comes from an output located in the
process P ′, then the sequence of inputs and replica-
tions above P ′ is a prefix of the one above the output,
so KP ′ v K′, HP ′ v H′, and IP ′ v I ′. In this case,
we allow the creation of the process P ′ so that the out-



put corresponding to the clause can be executed. On
the other hand, the actions of processes P ′ that do not
satisfy this condition have no counterpart in the deriva-
tion, so we do not generate such processes.

More formally, the clause H′ K
′,I′

===⇒ C comes from

an output in (P ′,KP ′ ,HP ′ , IP ′) when H′ K
′,I′

===⇒ C ∈
[[P ′,KP ′ ,HP ′ , IP ′ ]]E . Such a clause obviously veri-
fies KP ′ v K′, HP ′ v H′, and IP ′ v I ′.

We do not restrict (Res I/O) when Q 6= 0, because
such a (Res I/O) reduction may just serve in allowing
the process Q that follows the output to be executed,
and in this case, there may not be any clause in D that
justifies the process P{N/x} executed after the input.

• A reduction (Res Constr) consists of the creation by
the adversary of a new term M by applying a con-
structor f to M1, . . . ,Mn. The clause att(E(M1)) ∧

. . .∧att(E(Mn))
Ra
==⇒ att(E(M)) exactly corresponds

to this action. Consequently, we restrict (Res Constr)
to the case where D contains such a corresponding
clause. The rules (Res Destr) and (Res New) are re-
stricted similarly.

We focus on restricting the reduction rules mentioned above
because, in contrast to the others, they introduce much non-
determinism. For instance, (Ins Repl) can be applied an un-
bounded number of times on a process !kP . Restricting
these rules is then necessary in order to have a finite and
small set of traces in the restricted semantics. Our algorithm
simply consists in exploring all these traces, up to the opti-
mizations described in Section 4.6.

Our algorithm succeeds in reconstructing the well-
known attack against the Denning-Sacco protocol. The
derivation tree of Figure 3 is first instantiated by substi-
tuting λ, λA, λB for i, iA, iB respectively, which yields
the derivation tree D. Starting from the initial configura-
tion

E0 = {c 7→ c[ ], s 7→ s[ ]},P0 = {(P0, ∅, ∅, ∅)},
S0 = {c},Λ0 = ∅

we apply (Res New) to create a new name a mapped to pat-
tern b[λ] (justified by clause (Rn) in D). Then we start ex-
ecuting P0 by applying (Res Restr), (Res Let1), and (Res
Out) twice, followed by (Res Par), without any restric-
tion. Then we apply (Res Repl) twice. For replication 3,
with session identifier λA, (Res Repl) is justified by the in-
stance of (DS3) in D, whose label is (3, 1), (λA, pk(b[λ])):
(3) v (3, 1), (λA) v (λA, pk(b[λ])), and ∅ v H′. Simi-
larly, for replication 4 with session identifier λB , (Res Repl)
is justified by the instance of (DS4) in D. Then we obtain
the configuration:

E1 = E0[a 7→ b[λ], sk′
A 7→ skA[ ], sk′

B 7→ skB [ ]],

P1 = {(P ′
A, (3), ∅, (λA)), (P ′

B , (1), ∅, (λB)),

(!3P ′
A, ∅, ∅, ∅), (!4P ′

B , ∅, ∅, ∅)},
S1 = {c, a, pk(sk′

A), pk(sk′
B)},Λ1 = {λA, λB}

where P ′
A = PA(sk′

A) and P ′
B = PB(pk(sk′

A), sk′
B).

Replications cannot be further reduced, because D would
not justify these reductions. We apply (Res Constr) to build
pk(a), justified by (Rapk ) in D. Then we execute (Res In)
on input 1 with message pk(a), justified by (DS3) in D.
Then we can apply (Res Restr), (Res Out), and (Res Nil)
without restriction, to finish executing P ′

A. We obtain:

E2 = E1[k
′ 7→ k[λA, pk(b[λ])]],

P2 = {(P ′
B , (1), ∅, (λB)), (!3P ′

A, ∅, ∅, ∅), (!4P ′
B , ∅, ∅, ∅)},

S2 = S1 ∪ {pk(a), pencrypt(sign(k′, sk′
A), pk(a))},Λ1

We apply (Res Destr) to obtain sign(k′, sk′
A), justi-

fied by (Rapdecrypt ) in D. Then, by (Res Destr) again,
we compute k′, justified by (Ragetmess ) in D. (Res Con-
str) then gives pencrypt(sign(k′, sk′

A), pk(sk′
B)), justified

by (Rapencrypt ) in D. Then we execute (Res In) on input 2 in
P ′

B with message pencrypt(sign(k′, sk′
A), pk(sk′

B)), jus-
tified by (DS4) in D. We can then apply (Res Let1) twice
and (Res Out) which adds sencrypt(s, k′) to Si. Fi-
nally, (Res Destr) provides s, justified by (Rasdecrypt ) in
D.

4.3. Soundness

The following proposition expresses, as the name says,
that the restricted semantics is a restriction of the instru-
mented semantics:

Proposition 2 If, by a reduction rule (Res R) of the re-
stricted semantics, we have E ,P,S,Λ Ã E ′,P ′,S ′,Λ′

then the reduction rule (Ins R) in the instrumented seman-
tics yields the same reduction.

This result is easy to prove, so we do not detail its proof
here. Then, by combining Propositions 1 and 2, we obtain
the following Theorem 2: learning a secret in the restricted
semantics implies learning it in the initial semantics.

Definition 3 Let D be a closed derivation tree. A D-
restricted trace T of P0 from S0 is a finite sequence
E0, {(P0, ∅, ∅, ∅)}, S0, ∅ Ã . . . Ã E ′,P ′,S ′,Λ′ of re-
duction rules of the restricted semantics (restricted by D)
where E0 = {a 7→ a[ ] | a ∈ fn(P0) ∪ S0}.

Definition 4 The term M is learnt in the restricted trace T
if and only if T contains a state E ,P,S,Λ where M ∈ S.

Theorem 2 (Soundness) Let D be a closed derivation tree.
If Msecret is learnt in a D-restricted trace of P0 from S0,
then Msecret is learnt in a trace of P0 from S0 in the ini-
tial semantics.



This result shows the soundness of our attack reconstruc-
tion algorithm. Indeed, the algorithm explores all traces in
the restricted semantics. If it finds an attack, then there is
also an attack in the initial semantics of the calculus. How-
ever, any restriction of the semantics would have this prop-
erty as well. To justify our choices, we need to prove com-
pleteness results, as we do in Section 4.5.

4.4. Termination

The next theorem shows that a closed process has a finite
number of restricted traces. This implies the termination of
our trace reconstruction algorithm.

Theorem 3 (Termination) Let D be a closed derivation
tree. There exists a finite number of D-restricted traces of
P0 from S0, up to renaming of new names and excluding re-
ductions that do not change the state.

Proof sketch Let us consider the search tree associated to
the restricted semantics, starting from the initial configu-
ration of P0. This tree has finite degree and its depth is
bounded by

|P0| × (number of distinct λs in D + 1)

+ (number of clauses (Raf ), (Rag), and (Rn) in D)

where |P0| is the size of P0. Intuitively, processes can be
copied by replications at most as many times as there are
distinct λs in D, and each copy generates at most |P0| exe-
cution steps. The second component of the sum bounds the
number of reductions (Res Constr), (Res Destr), and (Res
New) executed by the adversary. So by König’s lemma, this
tree is finite. 2

4.5. Partial completeness

The following result is a restatement of Theorem 1,
which was already proved in previous papers. However, the
major novelty of our proof is that it is constructive: from
an attack, we give an explicit construction of a derivation
tree of the fact att(E0(Msecret )). This construction is im-
portant, because it formalizes a correspondence between at-
tacks and derivation trees, which we use in order to state the
completeness result. The proofs of these results are omitted
because of space constraints.

Theorem 4 For each trace of P0 from S0 in the instru-
mented semantics in which Msecret is learnt, one can build
a corresponding closed derivation tree of att(E0(Msecret ))
from the clauses of RP0,S0

.

Next, we assume that all outputs are on a public channel or
asynchronous (that is, of the form M〈N〉.0). This restric-
tion is true in most cases for cryptographic protocols: very

often, all messages are sent on a public channel, which mod-
els an insecure network such as Internet. Asynchronous out-
puts appear for instance when modeling a mutable value by
having the current value available on a private channel. We
show that, in this case, if our reconstruction algorithm is
given a derivation tree that corresponds to an attack by the
above construction, then it finds back an attack.

Theorem 5 (Partial completeness) Assume that all out-
puts of P0 are of the form M〈N〉.P with M a name in
S0 not bound in P0 or P = 0. If D is a closed deriva-
tion of att(E0(Msecret )) from RP0,S0

which corresponds
to some trace of P0 from S0 by Theorem 4, then there ex-
ists a D-restricted trace of P0 from S0 in which Msecret is
learnt.

This result does not hold when we have a synchronous out-
put on a channel not in S0, because in this case, the re-
duction rule (Ins I/O) may introduce synchronizations with
parts of the process whose execution is not visible on the
derivation. For example, for the process

P0 = (νcpriv)(cpub(x)k.cpriv(y)k′

| cpriv〈s〉.cpub〈s〉)

with S0 = {cpub}, att(s[ ]) is derivable, by the derivation
containing att(s[ ]) as only clause. This derivation corre-
sponds to the execution trace of P0 by Theorem 4, but P0

has no restricted trace, because no clause in the derivation
corresponds to receiving a message on cpub as needed to
execute cpub(x)k before executing the communication on
cpriv . (If cpriv was public, we could execute cpriv〈s〉 with-
out requiring any prior operation.) Moreover, the part of
the process that needs to be executed in order to enable
cpriv(y)k′

may be arbitrarily large, so we cannot hope to
succeed in general in this case.

The completeness result does not mean that ProVerif al-
ways finds attacks for insecure protocols, even when the
constraint on the outputs required by Theorem 5 is satisfied.
Indeed, the solving algorithm may not return a derivation
tree that corresponds to an attack by Theorem 4. In prac-
tice, our algorithm finds the desired trace in the vast major-
ity of cases, as detailed in Section 4.7.

4.6. Optimizations and complexity

We optimize our algorithm by systematically applying
all rules except (Res I/O) and (Res In) as soon as they are
allowed, even if other reductions are also allowed. This is
justified by the following proposition:

Proposition 3 If there is a D-restricted trace C0 Ã
∗ Ci Ã

∗

. . . in which Msecret is learnt, and a reduction rule R dif-
ferent from (Res I/O) and (Res In) is applicable in Ci, then

there is a D-restricted trace C0 Ã
∗ Ci

R
Ã C′

i+1 Ã
∗ . . . in

which Msecret is learnt and R is applied in Ci.



Proof sketch This result follows from fairly standard
commutations of reduction rules. 2

Thanks to this result, the only remaining choices concern
rules (Res In) and (Res I/O): we have to choose the received
message for (Res In) and the interacting processes for (Res
I/O). With the hypotheses of Theorem 5, we can show that
we have in fact no choice:

Proposition 4 With the hypotheses of Theorem 5, our algo-
rithm finds the desired trace without backtracking.

Proof sketch In this case, for both (Res In) and (Res I/O),
we just have to choose the received message. Indeed, for
(Res I/O), if several asynchronous outputs send the same
message on the same channel, their processes are equal, so
it does not matter with which one we reduce. By hypothesis,
the derivation D corresponds to a trace T . In this trace, the
input of occurrence k is executed only once for a given value
of the session identifiers in I, receiving a certain message
N . Then all processes (P ′,K′,H′, I ′) in T with K, k v K′

and I, x v I ′ have x = E(N). Moreover, by construction
of D from T (Theorem 4), all clauses of D labeled K′, I ′

come from such processes, so N is the only possible re-
ceived message in (Res In) and (Res I/O) knowing I and k.

2

In this case, our algorithm is extremely efficient. The ab-
sence of backtracking does not hold in general when the
derivation D does not correspond to a trace: there may be
several applications of the clause, each yielding a possible
received message, even when the input can in fact be exe-
cuted only once.

Even in the absence of backtracking, some operations
can be fairly costly: reductions (Res In), (Res Constr), (Res
Destr), (Res Repl) involve searching the derivation tree for
a suitable clause. Furthermore, reductions (Res In), (Res
Out), (Res I/O), (Res Constr), (Res Destr) can fail at one
point and succeed later, for instance when the attacker has
more knowledge, so we have to repeat the test until the re-
duction succeeds (or the goal of the trace is reached). We
optimized this part by keeping as much as possible the in-
formation computed when the test failed, to reuse it in fu-
ture tests for the same reduction:

• As soon as a term M is added to S, we remove
att(E(M)) from the hypotheses of attacker clauses of
D. Then the reductions (Res Constr) or (Res Destr) are
triggered simply when an attacker clause without hy-
pothesis appears. This avoids the repeated testing of
whether the arguments of the constructor or destruc-
tor are in S.

• We cache the set of possible messages found in the
derivation D for each input, so that this set is com-
puted only once for each newly created input process.

• For each input and output channel and each possible
input message, when we test whether it is in S, we re-
member that this test has been done, so that only the
newly added elements of S need to be tested next time.

As an additional optimization, we begin with translating
all patterns in the derivation tree into their corresponding
terms, by replacing patterns a[I] with fresh names ai. The
association between names and patterns is stored so that the
name ai is reused when executing the restriction that cre-
ates the name of pattern a[I]. The rest of the algorithm then
never manipulates patterns.

Moreover, when a derivation tree contains several sub-
trees deriving the same att fact, we keep only one of these
subtrees and ignore the others. (This must not be done for
mess facts, because sending several times the same message
on the same private channel may be useful in the trace.)

The following proposition evaluates the worst-case com-
plexity of our algorithm when the hypothesis of Theorem 5
is satisfied. (The general case is most probably exponential,
because of backtracking.) The proof of this result is given
in the appendix.

Proposition 5 Let |D| be the size of the derivation tree, L
the length of returned trace plus the number of free names
of P0, T the maximum size of a term, |S| the maximum num-
ber of terms in S in any configuration of the trace, |P | the
maximum size of a process in any configuration of the trace,
|C| the maximum number of parallel processes in any con-
figuration of the trace.

Assuming the hypothesis of Theorem 5, the worst-case
complexity of our algorithm is O(L×(T |C|2+T |S|+|D|+
|P |)). When furthermore all channels are in S0, the com-
plexity decreases to O(L × (|C| + T |S| + |D| + |P |)).

4.7. Experimental results

Our algorithm could reconstruct attacks against the fol-
lowing protocols of the literature: Needham-Schroeder
public-key, Denning-Sacco, several versions of Woo-Lam,
flawed versions of Yahalom and Otway-Rees. It also re-
constructs traces that show that the end of the proto-
col is reachable for more complex, secure protocols such as
Skeme [19] or the web services protocols that serve as ex-
ample to the verifier TulaFale [8]. For all these exam-
ples, the total time for finding derivation trees is 1.4 s
and the trace reconstruction time is 0.1 s on a Pen-
tium M 1.8 GHz.

On the certified email protocol studied in [3], our tool re-
constructs 2 out of 4 traces. The failure cases come from the
presence of synchronous outputs on private channels. The
total time for finding derivation trees is 0.8 s and the trace
reconstruction time is 25 ms.



On the JFK protocol [7], our tool reconstructs 2 out of
8 traces. In the failure cases, the derivation tree found by
ProVerif does not correspond to a trace (although the trace
exists). For JFK and the certified email protocol mentioned
above, our algorithm explores 1 to 6 traces depending on
the desired goal; in all other examples, it explores only one
trace, which is the desired attack. (This is coherent with
Proposition 4.) For JFK, the total time for finding deriva-
tion trees is 2.5 s and the trace reconstruction time is 1.6 s
(0.3 s when backtracking is disabled—the algorithm suc-
ceeds exactly in the same cases as with backtracking). A
preliminary modification of the derivation tree allows us to
find all traces: when the same input (same occurrence label
and same session identifiers) receives several different mes-
sages in the derivation, we unify these messages. Indeed,
when the derivation corresponds to a trace, these messages
must be equal. With this transformation, traces are found in
all 8 cases, in 0.3 s and without backtracking.

Another interesting example is the family of fngn pro-
tocols [21]: the n-th protocol of the family has an attack
using n parallel sessions. ProVerif correctly detects and re-
builds this attack, without any prior information on n. This
illustrates its ability to handle an unbounded number of ses-
sions. (Tested up to n = 200; the time for finding a deriva-
tion was 47 s and the trace reconstruction time 67 s. For
instance, for n = 50, these times were respectively 0.4 s
and 0.5 s. This protocol is the only example we have on
which trace reconstruction is longer than finding a deriva-
tion. The complexity of the trace reconstruction algorithm
on the family of fngn protocols is O(n4). This result is not
a consequence of Proposition 5. One needs to use the speci-
ficities of the fngn protocols to obtain it. Experimentally,
for n = 200, the most time consuming parts are the exe-
cution of n2 restrictions and the translation of patterns into
terms.)

4.8. On a variant of this algorithm

We could also have exploited the tree structure of the
derivation in order to reconstruct a trace, executing reduc-
tions in the partial order given by the derivation tree, from
the leaves to the root. This variant would use the same re-
stricted semantics as the one given above, except that each
reduction should be justified by a particular node of the
derivation, the current node, instead of by any node, and the
output and input processes of (Res I/O) should correspond
respectively to the current node and its father. The current
node would move in the derivation tree according to a post-
fix depth-first search. (Each node would be visited after vis-
iting its sons from left to right, so the current node would
start at the left-most leaf and end at the root.) One would
change the current node when one executes the action cor-
responding to the node (either the output M〈N〉 is executed

for a node labeled H
K,I
==⇒ mess(E(M), E(N)) or a con-

structor or destructor is applied to M1, . . . ,Mn, yielding

M for a node labeled att(E(M1)) ∧ . . . ∧ att(E(Mn))
Ra
==⇒

att(E(M))) or when this action has already been executed
before in the trace. (The second case is necessary because
the derivation tree may contain several subtrees that corre-
spond to the same actions, as the dashed subtree of Figure 3,
and because an output may be executed at some point just to
be able to execute the process that follows it, while the out-
put itself is useful at some other point in the derivation.)

The soundness and termination results obviously also
hold for this algorithm, with the same proofs, as well as the
absence of backtracking (there is in fact no choice). We be-
lieve that the partial completeness theorem would also hold,
although its proof would be more complicated. (We would
have to show that the updates of the current node are done
correctly.)

One might think that this variant would be even more ef-
ficient than the one presented above. Our first tests with this
variant indicate that it can indeed be up to 4 times faster,
but we also have examples on which it is up to 2 times
slower. On f200g200, it is 1.2 times faster. (Since this vari-
ant never backtracks, and the previous algorithm with back-
tracking disabled also finds the traces that this variant finds,
we compare with the previous algorithm with backtrack-
ing disabled.) Anyway, in practice, the difference in run-
time does not matter much, since in most cases the time for
reconstructing a trace is largely dominated by the time for
finding a derivation.

Moreover, our algorithm succeeds more often in the
presence of synchronous outputs on private channels (out-
puts M〈N〉.P with M /∈ S and a non-empty P ). Indeed,
if at some point in the derivation the output should be exe-
cuted only so that P can be executed, the variant of this sec-
tion will be blocked, even if later in the search of the deriva-
tion, a node justifies the output. In contrast, our previous al-
gorithm will succeed in this case (but it will fail if no node
in the derivation justifies the output). This is the reason why
the variant of this section fails in one more case than the pre-
vious algorithm for the certified email protocol [3]. (For our
other examples, it succeeds in exactly the same cases.) We
preferred increasing our chances of success, even if we ob-
tain a slightly less efficient algorithm.

5. Conclusion

We have presented an efficient algorithm for reconstruct-
ing attacks against cryptographic protocols. We have proved
its soundness and termination, as well as a partial com-
pleteness result. By lack of space, some extensions have
been omitted in this paper. For instance, we also han-
dle cryptographic primitives defined by equations as in
the applied pi calculus [6]. We have considered only se-



crecy properties in this paper, but we have also extended
our technique to the case of correspondence properties be-
tween events [27]. These properties, of the form “if some
event has been executed, then some other events must have
been executed”, can be used to formalize authenticity prop-
erties. ProVerif can prove correspondence properties as
shown in [10, 3]. Our trace reconstruction algorithm is
able to reconstruct attacks against non-injective correspon-
dence properties (those in which the number of executions
of events does not matter). For future work, it would be in-
teresting to extend it to injective correspondence properties
as well as process equivalence properties [11]. This is how-
ever more difficult because our techniques for proving these
properties are more approximate than for secrecy or non-
injective correspondences, so the failure of the proof is more
likely not to correspond to an attack.
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Appendix: Complexity

Proof sketch (of Proposition 5) We give the complexity
of our implementation for the language presented in this
paper. The complexity could be improved, for instance by
using more clever data structures such as balanced binary
search trees for S. However, such structures would not be
able to handle the extension to equational theories men-
tioned in the conclusion, because we need to compare terms
modulo the equational theory instead of syntactically in this
extension. That is why we do not use them, and simply rep-
resent S by a list.

We first note that each reduction creates at most two new
processes, so at most 2L different processes are considered
in the whole trace.

For each free name a of P0, we remove hypotheses
att(a[ ]) from all attacker clauses in D. The time for this
step is dominated by O(L|D|). Then we perform the fol-
lowing actions:

• Reductions (Res In) or (Res I/O): For each new input
process (so at most 2L times in the whole run), we look
for corresponding clauses in the derivation tree. This
takes time O(|D|). At most one possible message term
is then found (by Proposition 4), and this term is stored

in a cache for further tests. For each input process, we
test whether the channel is in S. Thanks to the cache,
the same part of S is scanned at most once for each
new input process (there are at most 2L such processes
in the whole run), so this test takes O(LT |S|). If the
channel is in S, we test whether the previously found
message term is in S, which also takes O(LT |S|).
Then we execute (Res In). For each executed (Res In)
reduction (at most L times), we substitute a term in
a process, in time O(|P |), and update of the config-
uration, in time O(|C|). If the channel is not in S, we
look for a corresponding asynchronous output process,
which takes time O(LT |C|2). If we find one, we exe-
cute (Res I/O), which also takes time O(|P | + |C|) for
each reduction (Res I/O) and there are at most L of
them.

Total: O(L × (|D| + T |S| + T |C|2 + |P |)).

• Reductions (Res Out): For each output process, we test
whether the channel is in S which takes O(LT |S|) as
the input case. If the channel is in S, we execute (Res
Out). For each (Res Out) reduction (at most L times), if
the message term M of this output is not in S, we add
it, and remove att(E(M)) from all hypotheses of at-
tacker clauses of D. This takes time O(|D|+ T |S|). If
an attacker clause without hypothesis now occurs in D,
a reduction (Red Constr) or (Red Destr) is triggered.
Furthermore, updating the configuration takes O(|C|).

Total: O(L × (T |S| + |D| + |C|)).

• Reductions (Res Constr) or (Res Destr): If the term
M built by this reduction is not in S, we add it, and
remove att(E(M)) from all hypotheses of attacker
clauses of D. This takes time O(T |S| + |D|) for each
such reduction, and there are at most L of them.

Total: O(L × (T |S| + |D|)).

• Reductions (Res Repl): For each (Res Repl) reduction
(at most L times), we look for a suitable clause in D,
in time O(|D|), we copy the process, in time O(|P |),
and we update of the configuration, in time O(|C|).

Total: O(L × (|D| + |P | + |C|)).

• Reductions (Res New): In fact, this reduction is only
executed at the beginning of the run, before all other re-
ductions. Each execution of (Res New) takes O(|D|):
we look for a suitable clause att(b[λ]) in D, and
then remove att(b[λ]) from all hypotheses of attacker
clauses of D.

• All other reductions can be executed at most in time
O(|P | + |C|), and there are at most L of them.

By adding the given times, we obtain the announced com-
plexity. When all channels are in S0, we never try I/O re-
ductions with asynchronous outputs, so the term T |C|2 dis-
appears. 2


