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Introduction

“Function value free” black-box optimization:

1 Minimize f : Rd → R.

2 0-th order (direct search) setting.

3 Black-box model

x f(x)f

4 Don’t ever rely on function values, only comparisons
f (x) < f (x ′), e.g., for ranking.
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Introduction

Algorithm operations:

1 generate solution x ∈ R
d – most of the logic

2 evaluate f (x) – black box, most of the computation time

3 compare (rank) against other solutions: f (x) < f (x ′)?
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Introduction: Challenges

Facing a black-box objective, anything can happen.
We’d better prepare for the following challenges:

non-smooth or even discontinuous objective

multi-modality

observations of objective values perturbed by noise

high dimensionality, e.g., d ≫ 1000

black-box constraints (possibly non-smooth, ...)
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Evolution Strategies

input m ∈ R
d , σ > 0, C (= I) ∈ R

d×d

loop
sample “offspring” x1, . . . , xλ ∼ N (m, σ2C )
evaluate f (x1), . . . , f (xλ)
select new “population” of size µ (e.g., best offspring)
update mean vector m
update global step size σ

update covariance matrix C

until stopping criterion met
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input m ∈ R
d , σ > 0, C (= I) ∈ R

d×d

loop
sample “offspring” x1, . . . , xλ ∼ N (m, σ2C )
evaluate f (x1), . . . , f (xλ)
select new “population” of size µ (e.g., best offspring)
update mean vector m
update global step size σ

update covariance matrix C

until stopping criterion met

randomized

population-based

rank-based (function-value free)

step size control

metric learning (covariance matrix adaptation, CMA)
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This Talk

Given samples and their ranks,

how to update the distribution parameters?
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Change of perspective: algorithm state
population x1, . . . , xµ → distribution N (m,C ).

Parameters (m,C ) = θ ∈ Θ, distribution Pθ, pdf pθ.

For multi-variate Gaussians:

Θ = R
d × Pd

Pd =
{

M ∈ R
d×d

∣

∣

∣
M = MT ,M pos. def.

}

Statistical manifold of distributions
{

Pθ

∣

∣

∣
θ ∈ Θ

}

∼= Θ .

Equipped with intrinsic (Riemannian) geometry;
metric tensor given by Fisher information matrix I(θ).
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Goal: optimization of θ ∈ Θ instead of x ∈ R
d .

Lift objective function f : Rd → R to objective Wf : Θ→ R.

Simplest choice:

Wf (θ) = Ex∼Pθ

[

f (x)
]

More flexible choice:

Wf (θ) = Ex∼Pθ

[

w
(

f (x)
)

]

with monotonic weight function w : R→ R.

Tobias Glasmachers Natural Evolution Strategies for Direct Search 10



Information Geometric Perspective

Expectation operator “adds one degree of smoothness”.

Tobias Glasmachers Natural Evolution Strategies for Direct Search 11



Information Geometric Perspective

Expectation operator “adds one degree of smoothness”.

Hence under weak assumptions Wf (θ) can be optimized with
gradient descent (GD):

θ ← θ − η · ∇θWf (θ)

Tobias Glasmachers Natural Evolution Strategies for Direct Search 11



Information Geometric Perspective

Expectation operator “adds one degree of smoothness”.

Hence under weak assumptions Wf (θ) can be optimized with
gradient descent (GD):

θ ← θ − η · ∇θWf (θ)

“log-likelohood trick”:

∇θWf (θ) = ∇θEx∼Pθ

[

w
(

f (x)
)

]

= Ex∼Pθ

[

∇θ log
(

pθ(x)
)

· w
(

f (x)
)

]
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Information Geometric Perspective

Problem: this does not work well. Why?

We have to replace the “plain” gradient on (Euclidean)
parameter space Θ with the natural gradient respecting the
intrinsic geometry of the statistical manifold:

∇̃θWf (θ) =
(

I(θ)
)

−1

· ∇θWf (θ)

The natural gradient is invariant under changes of the
parameterization θ 7→ Pθ.

(Natural) gradient vector field Θ→ TΘ defines (natural)
gradient flow φt(θ) tangential to ∇̃θWf (θ).

Optimization: follow inverse flow curves t 7→ φ−t(θ) from θ

into (local) minimum of Wf .
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Information Geometric Perspective

Black-box setting: expectation

Ex∼Pθ

[

∇θ log
(

pθ(x)
)

· w
(

f (x)
)]

is intractable.
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Ex∼Pθ

[

∇θ log
(

pθ(x)
)

· w
(

f (x)
)]

is intractable.

Monte Carlo (MC) approximation

∇θWf (θ) ≈ G (θ) =
1

λ

λ
∑

i=1

[

∇θ log
(

pθ(xi )
)

· w
(

f (xi )
)

]

for x1, . . . , xλ ∼ Pθ.

The estimate E[G (θ)] = ∇θWf (θ) is consistent, hence
following G (θ) amounts to stochastic gradient descent.

Yields natural gradient MC approximation

G̃(θ) =
(

I(θ)
)

−1
· G (θ) .
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Stochastic Natural Gradient Descent (SNGD) update rule:

θ ← θ − η · G̃(θ)

SNGD is a two-fold approximation of the gradient flow:

discretized time: Euler steps,
randomized gradient: MC sampling.

Natural gradient flow is invariant under choice of distribution
parameters θ 7→ Pθ.

SNGD algorithm invariant in first order approximation due to
Euler steps.

Ollivier et al. Information-Geometric Optimization Algorithms: A Unifying

Picture via Invariance Principles. arXiv:1106.3708, 2011.

Tobias Glasmachers Natural Evolution Strategies for Direct Search 14



Natural (Gradient) Evolution Strategies

Natural (gradient) Evolution Strategies (NES) closely follow
this scheme. They were the first ES derived this way.
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Natural (Gradient) Evolution Strategies

Natural (gradient) Evolution Strategies (NES) closely follow
this scheme. They were the first ES derived this way.

NES approach: optimization of expected objective value with
Gaussian distributions.

Offspring x1, . . . , xλ act as MC sample for the estimation
of G (θ).

Closed form Fisher tensor for N (m,C ):

Ii ,j(θ) =
∂mT

∂θi
C−1∂m

∂θj
+

1

2
tr

(

C−1 ∂C

∂θi
C−1 ∂C

∂θj

)
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Natural (Gradient) Evolution Strategies

NES algorithm

input θ ∈ Θ, λ ∈ N, η > 0
loop

sample x1, . . . , xλ ∼ Pθ

evaluate f (x1), . . . , f (xλ)
G (θ)← 1

λ

∑λ
i=1∇θ log

(

pθ(xi )
)

· f (xi )

G̃(θ)←
(

I(θ)
)

−1
· G (θ)

θ ← θ − η · G̃(θ)
until stopping criterion met

Wierstra et al. Natural Evolution Strategies. CEC, 2008 and JMLR, 2014.
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Natural (Gradient) Evolution Strategies

NES works better when replacing f (xi ) in

G (θ) =
1

λ

λ
∑

i=1

[

∇θ log
(

pθ(xi )
)

· f (xi )
]

with rank-based utility values w1, . . . ,wλ.
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Natural (Gradient) Evolution Strategies

NES works better when replacing f (xi ) in

G (θ) =
1

λ

λ
∑

i=1

[

∇θ log
(

pθ(xi )
)

· f (xi )
]

with rank-based utility values w1, . . . ,wλ.

Sample ranks are f -quantile estimators, hence utility values
can be represented as w(f (xi )) with special weight function
w = wθ based on f -quantiles under current distribution Pθ.

This turns NES into a function value free algorithm.

Benefits:

invariance under monotonic transformations of objective values
linear convergence on scale invariant problems.

Tobias Glasmachers Natural Evolution Strategies for Direct Search 17



Exponential Natural Evolution Strategies

xNES (exponential NES) algorithm

input (m,A) ∈ Θ, λ ∈ N, ηm, ηA > 0
loop

sample z1, . . . , zλ ∼ N (0, I)
transform xk , . . . , xλ ← Azk +m

evaluate f (x1), . . . , f (xλ)
G̃m(θ)←

1
λ

∑λ
i=1 w(f (xi )) · zi

G̃C (θ)←
1
λ

∑λ
i=1 w(f (xi)) ·

1
2
(ziz

T
i − I)

m← m − ηm · A · G̃m(θ)

A← A · exp
(

−ηA ·
1
2
G̃C (θ)

)

until stopping criterion met

Glasmachers et al. Exponential Natural Evolution Strategies. GECCO, 2010.
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Natural (Gradient) Evolution Strategies

The resulting algorithm is indeed an ES (Rd perspective),
and at the same time an SNGD algorithm (Θ perspective).
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and at the same time an SNGD algorithm (Θ perspective).

ES traditionally have three distinct and often very different
mechanisms for

optimization: adaptation of m,
step size control: adaptation of σ,
metric learning: adaptation of C .
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The resulting algorithm is indeed an ES (Rd perspective),
and at the same time an SNGD algorithm (Θ perspective).

ES traditionally have three distinct and often very different
mechanisms for

optimization: adaptation of m,
step size control: adaptation of σ,
metric learning: adaptation of C .

SNGD has only a single mechanism.

Astonishing insight: all (most) parameters can be updated
with a single mechanism.
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Exponential Natural Evolution Strategies

Although derived completely differently, this algorithm turns
out to be closely related to CMA-ES.

Akimoto et al. Bidirectional relation between CMA evolution strategies and

natural evolution strategies. PPSN 2010.
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Although derived completely differently, this algorithm turns
out to be closely related to CMA-ES.

Akimoto et al. Bidirectional relation between CMA evolution strategies and

natural evolution strategies. PPSN 2010.

In particular, the update of m is identical and the rank-µ
update of CMA-ES coincides with a NES update.

This is astonishing, it is surely not by coincidence.

This is insightful: it means that CMA-ES is (essentially) a
SNGD algorithm.
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Summary

Evolution Strategies (ES) are randomized direct search
methods suitable for continuous black box optimization.

Here we have focused on a core question: how to update the
distribution parameters in a principled way?

The parameter space is equipped with the non-Euclidean
information geometry of the corresponding statistical manifold
of search distributions.

SNGD on a stochastically relaxed problem results in a direct
search algorithm: the Natural-gradient Evolution Strategy
(NES) algorithm.

The SNGD parameter update is by no means restricted to
Gaussian distributions. It is a general construction template
for update equations of continuous distribution parameters.
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Thank you!

Questions?
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